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Abstract: This paper mainly dealt with the technical and economic feasibility of an off-grid hy-
brid power generation system for a remote rural Turtuk village of Ladakh, located in the north-
ern part of India. The study showed that the proposed configured renewable integrated hybrid
system, using Hybrid Optimization of Multiple Energy Resources (HOMER) software, efficiently
met the energy demand, exhibiting optimum performance with low investment. The proposed
PV(115 kW)/Wind(1 kW)/Battery(164 strings of 6 V each)/DG(50 kW) hybrid system was a highly
commendable, feasible solution preferred from a total of 133,156 available solutions resulting from
HOMER simulations. The net present cost and energy cost of the proposed configuration were
$278,176 and $0.29/kWh, respectively. The proposed hybrid configuration fulfilled local load, with
95.97% reduced dominant harmful carbon dioxide emission, as compared to the sole us of a diesel
generator power supply system. The technical performance of the hybrid system was ensured, with
advantages including the highest renewable penetration and least unmet load. Furthermore, the
analysis exclusively evaluated the impact of the system’s economic parameters (namely, its expected
inflation rate, nominal discount rate, and project lifetime) on the net present cost and cost of energy
of the system using a noble single fix duo vary approach.

Keywords: decentralized energy system; solar photovoltaic; net present cost; levelized cost of energy;
renewable penetration; sensitivity analysis

1. Introduction

The traditional method of producing electricity uses a centralized power station
which generates electricity in very large quantities. This electricity is then transmitted and
distributed to load centers. Remote locations that are at a distance from centralized power
stations are often deprived of electricity. Due to the various geographical challenges faced
by these remote areas, their electricity supply network is not connected to the national grid.
Such communities generate electrical energy using diesel generator-based power plants to
fulfill their energy needs [1]. The emergence of smart cities, intelligent transport, and smart
devices is a growing demand for electrical energy globally. This growing demand has
created a challenge, namely to develop an economical and efficient system. In order to meet
supply and demand needs, a robust system is required to provide an uninterrupted power
supply by optimally utilizing energy resources to generate electricity. Another important
aspect of such a system is the ability to conduct thorough transmission planning from time
to time. This planning helps to identify the need for transmission line expansion to support
increasing demand for electricity and improve system reliability [2,3].
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The Government of India launched an initiative aimed at connecting remote areas with
the national grid and took steps to produce electricity using locally available renewable
energy sources [4]. India’s total installed power generation capacity is approximately
393 GW as of this writing [5]. This includes approximately 38% (nearly 151 GW) of power
generation through renewable energy sources using solar energy, wind energy, hydro
energy, etc. Power generation through fossil fuels like coal, lignite, and gas accounts for
nearly 58% (i.e., 253 GW) and approximately 0.1% (i.e., 0.51 GW) is generated through
DG. Furthermore, India has aimed to reduce the deployment of fossil fuels to generate
power; with this perspective, the country announced the goal of generating 175 GW of
electricity from renewable energy sources by the end of 2022 [6]. This included 100 GW of
electricity generation through solar energy, with the rest from wind energy, biomass and
hydro power. By 2030, India intends to be generating 500 GW of power from renewable
energy sources [7,8]. This target can only be achieved when all states of the country achieve
their respective targets within the specified timelines. As per new analyses, India is lagging
behind schedule on the production required to achieve its respective targets for 2022 and
2030, because several states are behind on achieving individual targets [9]. Though it is
necessary for all state governments to have consistent policies and work on local issues,
it is equally essential to perform technical and economic analyses on different parts of
country to evaluate the feasibility of a suitable combination of HPG systems. In order to
meet targets for the years 2022 and 2030, India needs to install 42 GW of renewable energy
each year [9].

With the introduction of distributed energy resources (DERs) or decentralized elec-
tricity generation [10,11], there is a transition in electricity generation and transmission
methods. DERs generate electricity on-site, i.e., near the load centers. Solar PV arrays, wind
turbines, combined heat and power systems, flywheels, and battery systems are some of the
currently growing DER technologies [12]. The greenhouse gas emissions can be reduced
in DERs, which uses clean fuels like solar and wind energy to produce electricity. This
initiative focuses on bringing down pollution levels. DERs can work independently from
the utility grid and directly supply electricity to the load. As a result, most DERs are not
connected to the utility grid [13]. For those DERs connected to the utility grid, bidirectional
flow of electrical energy is possible. In other words, the excess electricity generated from
DERs can be supplied to the grid. If the electricity demands at the load end increase, then
DER can take supply from the grid.

Renewable energy-based DERs produce sustainable, cost-effective electrical energy.
Various countries across the globe have started exploring ways of producing electricity
from renewable sources of energy [14,15]. The estimated worldwide electricity generation
through renewable sources in 2019 has reached 2351 GW [16]. Approximately 33% of overall
electricity generation is through renewable energy sources. Considering the economics and
weather conditions of remote regions, the focus has moved to generating from a renewable
hybrid power generation (HPG) system instead of a diesel generator (DG)-based power
plant [17]. The government has had to provide subsidies in fuel prices for diesel generators,
which imposes an extra economic burden. When the net present cost and operational cost
were compared, hybrid power plants proved to be more reliable and cost-effective than
DG-based power plants [18]. A desirable improvement in terms of cost, pollutant emission,
and reliability can be achieved by combining different renewable energy sources like solar
and wind to form an HPG system [19,20]. As renewable energy sources are available locally,
many countries are designing policies to adapt them to generate clean energy [21,22].
Before commissioning, a planning analysis should be conducted for an off-grid HPG
system, including technical and economic analyses, to understand the feasibility of the
system [23,24]. The economic analysis of an HPG system can be done based on two policies:
pricing based on time of use and wholesale government policy [25]. The government
has also worked on a policy of gross metering, in which energy internet supports the
bidirectional flow of electrical energy between the HPG system and main grid [26].
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Although the electricity network has expanded significantly, residential communities
in isolated areas still suffer power outages. Even if such communities are coupled to the
main grid, they suffer from poor power quality and frequent blackouts. In some cases,
connecting the community with the main grid may not be economically feasible due to high
capital investment for installing the transmission and distribution network [27]. Though
DG-based power plants have a low initial investment, the operating costs are high, and
their efficiency is low [28]. It is also worthwhile to note that the reliability of standalone
power plants based on solar and wind energy cannot be ascertained because of intermittent
weather conditions [29,30]. Thus, the electricity demands of isolated regions could be
fulfilled through an off-grid HPG system. Renewable energy sources like solar energy,
wind energy, biomass, and bio-fuels compensate each other when sparsely available for
electricity generation [31,32].

The amount of greenhouse gases, especially carbon, emitted by off-grid, DG-based
power plants are substantial [33]. As such, various studies have been conducted to find
suitable solutions for the production of clean energy using renewable resources and the
reduction of greenhouse gases [34]. In order to create a sustainable energy ecosystem,
the governments of many countries have begun to show interest in electricity generation
through renewable resources [35]. This has encouraged people to invest in installation of
solar plants in residences, which will have a positive impact on the environment. Middle
Eastern countries face extreme temperatures with little rainfall, so these countries have
begun adopting power generation through renewable resources [36]. This could help
such countries lessen their contributions to global warming. Reinforcement learning was
applied to find an optimal configuration for HPG systems [37]. This approach was based on
proximal policy optimization, achieving reductions in greenhouse gases by approximately
28.5% upon adopting HPG systems. Additionally, a 300 MW coal-based power plant
was integrated with a solar plant [38]. The aim was to reduce the emission of pollution
by reducing the consumption of coal for power generation. An optimized solution was
developed for an HPG system based on three policies on emission of carbon: carbon
tax, carbon cap-and-trade, and carbon offset [39]. The emission of greenhouse gases was
significantly reduced.

Based on the above analyses, the following facts can be considered regarding the
commissioning of an HPG system at the proposed location:

• With ever-increasing demand for electricity due to the expansion of smart cities,
electricity generation can be increased through the use of renewable energy sources
available locally at the considered site.

• Remote areas could produce electricity by commissioning DG-based power plants
through an off-grid method. However, such power plants result in high amounts of
pollutive elements in the atmosphere.

• The Indian government has undertaken many initiatives to motivate electricity gener-
ation through renewable sources of energy.

• The concept of DERs show promise as away to produce electricity ata reduced energy
cost, as they consist of renewable sources of electricity generation (excluding DGs).

• An HPG system may be designed according to the desired location’s weather condi-
tions. Locally available fuel sources like biomass may also be considered to reduce
diesel usage. DG can be part of the HPG system as a captive source of power genera-
tion if renewable sources fail to generate electricity.

• Much of the work has been done to promote installation of an HPG system to reduce
pollution levels caused by electricity generation through coal-based power plants.

In this article, the technical and economic analysis was undertaken for a region located
in south-central Asia in the union territory of Ladakh, situated in India. A remotely located
village in Ladakh named Turtuk was selected for technical and economic assessment. This
village is located at latitude 34◦17.98” N and longitude 78◦17.59” E, as shown in Figure 1.
This region experiences both arctic and desert climates, and so it is often known as a cold
desert. The temperature of the selected region varies widely during the daytime, and the
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seasonal variation of temperature ranges between −40 ◦C during winters to 35 ◦C during
summers. Because of high altitude and low humidity, the radiation level in Turtuk village
is as high as 6 to 7 kWh/m2/day [40,41]. Annual rainfall/snowfall is approximately 10 cm.
The air in this region is very dry, and relative humidity varies from 6% to 24%. Therefore,
this region has more than 300 sunny days in a year. The average wind speed of this region
ranges between 6 to 8 m/s [32,42].
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Figure 1. Map showing Turtuk village in Ladakh, India.

The reliability and quick response of HOMER (Hybrid Optimization of Multiple En-
ergy Resources) software (Pro 3.15) for estimating the optimal components of HPG systems
makes it suitable for optimizing power sources [43]. This software was used to study the ef-
fects of different storage technologies while in operation in PV/Hydrokinetic/Battery/DG
configuration. Here, upon comparing load flow control strategies with load tracking con-
trol, it was determined that there was variation in the minimum state of charge with respect
to net cost [44]. A new dispatch strategy was formulated using HOMER and MATLAB
link controller. It was concluded that variations in fuel price did not affected the proposed
strategy, as compared to load flow and cycle charging strategies [45]. An optimization study
was performed on PV/Wind/DG configuration using HOMER, with peak load demand
profiles for residential and commercial sectors [46]. An on-grid solar-based power plant
was analyzed to meet the electricity demand of a rural area in India using HOMER, to
lower the cost of energy [47]. Different dispatch strategies were studied for a village in
Uttrakhand, India for PV/WT/DG/Battery and PV/DG/Battery configurations. In this
case, a PV/DG/Battery configuration was considered the optimal solution as it offered low
cost of energy and lowered emissions [48].

In the current study, an analysis was done using Hybrid Optimization of Multiple
Electric Renewables (HOMER) software. The obtained optimization results were analyzed
by comparing net present cost (NPC), the levelized cost of energy (LCOE), and renewable
fraction of each system. LCOE was calculated for the commercial life of the technology
incorporated in HPG system. It calculated the annual cost of individual components by
considering the discount rates, and determined NPC by considering the relative time value
of money. This analysis resulted in the best combination of renewable resources as per the
lowest LCOE. An HPG system can reduce diesel consumption—and hence, the emission of
greenhouse gases. It can also help to optimally balance technology and financial metrics
while designing a micro-grid.

This paper was organized into five different sections. Section 1 introduces the work.
The methodology of the proposed work was provided in Section 2, including the load
estimation of the selected site. The configuration of the HPG system was given in Section 3.
Finally, the results and its discussions were provided in Section 4, followed by the conclu-
sion of the work.
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2. Methodology

The current study was primarily based on HOMER software, which requires meteo-
rological data and estimated load of the location as an input to the system. The software
retrieves data from the National Aeronautics and Space Administration (NASA). Therefore,
analysis of the weather characteristics and load estimation is essential before the design of
the hybrid system can be undertaken using locally available resources.

2.1. Weather Characteristics and Load Estimation of the Selected Site

The energy received on earth from the sun is electromagnetic radiation. Solar irradi-
ance is the power received from the sun per unit area. Thus, the amount of solar irradiance
received at a particular region is the daily average of horizontal solar radiation globally,
including the beam radiation received directly from the sun and the diffused radiation in
the atmosphere. The estimation of annual electrical energy production from wind turbines
is taken from the wind speed data of a particular region. Figure 2 shows the average solar
global horizontal irradiation (GHI) and the clearness index of Turtuk village. GHI is the
solar irradiance received on the horizontal surface of the earth. It is the summation of
direct normal irradiance (DNI), diffuse horizontal irradiance, and ground-reflected radi-
ation [49]. These data showed that the selected region experienced an average GHI of
4.89 kWh/m2/day. As shown in Figure 2, the maximum solar GHI was observed during
June as 6.84 kWh/m2/day. The weather remained clear during this month. The selected
region experienced an average clearness index of 0.586, as shown in Figure 2. Thus, the
region had a good clearness index, and the PV array system received the optimum amount
of sunlight to generate electricity. The monthly average temperature data are provided in
Figure 3, with the annual average at −10 ◦C. The summer season in Turtuk village begins
in June, with an average temperature of −1.2 ◦C. Wind energy also contributes to electricity
production at night when there is no solar energy. At the time of this study, this village
suffered from power outages and received power from the main grid for only 4 to 6 h. This
region also experienced a wind speed of 7.26 m/s average, with maximum wind speed
occurring in December, as shown in Figure 4.
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A comprehensive survey of the selected site was conducted to find the power consump-
tion by load and estimate the load profile of a typical household. The village households
consume power through five types of appliances. As shown in Table 1, the average load
of compact fluorescent lamp (CFL) lighting per house was the highest among all the ap-
pliances in a given day. Radio consumed the lowest amount of electricity per day due to
less usage. The total load of 300 households was taken as 199.5 kWh/day. The average
consumption pattern for 24 h in a day of residential load is shown in Figure 5. It can
be observed from Figure 5 that maximum electricity consumption occurred around the
19th hour of the day. The minimum consumption occurred between the first and fourth
hour of the day. Likewise, the average monthly and yearly total electrical load served at
the selected location is provided in Figures 6 and 7, respectively. It was observed that the
electricity consumption in March and August was highest compared to other months.

Table 1. Estimated electrical load in the residential community of Turtuk village, Ladakh.

Load Power (Watts) Quantity Usage Hours Total Load (kWh)

TV 70 1 3 0.21

CFL light 25 1 9 0.225

LED light 10 2 10 0.2

Mobile charging point 3 1 6 0.018

Radio 2 1 6 0.012

Total load for one household 0.665 kWh/day

Total load for 300 households 199.5 kWh/day
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2.2. Simulation Tool for Hybrid Power Plant—HOMER Software

Various optimization approaches are available for conducting technical and economic
analyses of hybrid power plants. They can be broadly classified into deterministic, stochas-
tic, and hybrid approaches [50]. The deterministic approach, which includes linear pro-
gramming, may not converge to a global solution because of the local optima entrapment
problem. This problem of local optima entrapment can be resolved by a stochastic ap-
proach like genetic algorithm-based particle swarm optimization and iHOGA [51]. Such
methods are computationally expensive and require significant memory space to store
results. Hybrid approaches, such as simulated annealing-harmony search and simulated
annealing-chaotic search techniques solve complicated real-world problems. HOMER uses
grid search algorithms to simulate all feasible solutions, which is a hybrid approach.

Different software programs are available for finding the optimal solution [52]. General
algebraic modeling systems can perform analyses for electrical and combined heat and
power (CHP) systems to study and plan for hybrid power systems, as per government
policy. Hybrid2, RAPSim, and HYBRIDS are very user friendly and easy to utilize computer
software programs to assist with long-term forecasts of hybrid power energy system
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performance, but these do not provide economic analyses [51]. Technical and economic
analyses of hybrid power systems can be compared with conventional power systems
using RETScreen 8.0 software.

In this article, the chosen optimization tool for simulating hybrid power plants was the
Hybrid Optimization of Multiple Energy Resources (HOMER) software. This software can
simulate several available technologies with varying costs and variations in the availability
of renewable energy sources. It includes optimization and sensitivity analysis algorithms to
ease decision-making [53]. The software conducts several simulations to evaluate optimized
solutions that can balance demand and supply of electricity. It provides the technical and
economic perspective of different renewable energy sources by evaluating the loads served
by the projected technology. Figure 8 shows the step-by-step chart of HOMER software.
The algorithm used by HOMER software is provided as Figure A1 in Appendix A.
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3. Configuration of Hybrid Power Generation System

The components included in the HPG system included a solar photovoltaic (PV) array
system, battery storage system (BSS), wind turbine, and DG. The PV array system, BSS,
and wind turbine were connected to DC bus, while DG was connected to AC bus, as shown
in Figure 9. The load connected to the HPG system required an AC power supply, while
BSS required DC power to charge, so a converter was added to this hybrid system. The
converter’s function was to optimize conversion from AC power to DC power and vice
versa, depending on the direction of energy flow [54]. As power output from renewable
resources depends on weather conditions, DG provided a necessary backup to the load in
case of a shortfall from these resources. The proposed HPG system was expected to supply
electricity to a residential community in Turtuk village, with an average and peak load of
200 kWh/day and 37.13 kW peak, respectively. These details and their related diagrams
were acquired from HOMER software.
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3.1. PV Array

Turtuk is a high-altitude cold village in the rain shadows of the Himalayas with more
than 300 days of sunshine and only 100 mm of precipitation annually [55]. The daily
monthly average of radiation is 6–7 kWh/m2/day in summer and 3–4 kWh/m2/day,
as presented graphically in Figure 2. Solar photovoltaic cells convert solar radiation
into electrical power. The power produced by the PV array was computed through the
specifications given by the manufacturer. The generic flat-plate PV was used to assess
the proposed HPG system. The capital cost of solar panels was $470 per kW and O&M
cost was $2.66 per year. The other technical specifications of this module are provided in
Table 2. HOMER software has applied Equation (1) to calculate power output from the PV
array [56]:

Poutput = Ypvfpv

(
GT

GT,STC

)[
1 + αp(Tc − Tc,STC)

]
(1)

where YPV (kW) is the output power from PV array at standard test conditions (STC), fPV
(%) is the derating factor of PV array, GT (kW/m2) is the solar radiation (which is incident
on PV array), GT,STC (1 kW/m2) is the incident radiation from sun at STC, αP (% per ◦C) is
the power temperature coefficient, Tc (◦C) is the temperature of PV cell in the current time
step, Tc,STC is temperature of PV cell under STC (25 ◦C). In case the effect of temperature
on the PV array was not considered, HOMER assumed αP to be zero, and Equation (1) was
simplified, as presented in Equation (2) [57].

PPV = YPVfPV

(
GT

GT,STC

)
(2)

Table 2. Technical specifications of the PV module.

Description Value

Type of panel Flat plate

Rated capacity (kWp) 1

Capital cost ($/kW) 470

Replacement cost ($/kW) 470

O&M cost ($/year) 2.66

Lifetime (years) 25

Derating factor (% assumed) 80

3.2. Wind Turbine

The considered location experienced an average wind speed of 7.26 m/s over the
entire year. This became another renewable energy resource to generate electrical energy.
The wind speed of a particular region is responsible for the amount of power produced
by the wind turbine. HOMER calculates wind turbine output using the following three
steps—(i) the wind speed is calculated at a particular hub height of wind turbine, (ii) the
amount of power produced by a wind turbine at the wind speed, calculated in step (i), at
standard air density, and (iii) finally, this output power value is attained for actual density
of air. HOMER used Equation (3) to calculate output power from wind turbines [58].

PWTG =

(
ρ

ρ0

)
PWTG,STP (3)

where PWTG (kW) is output power from wind turbine, PWTG,STP (kW) is output power from
wind turbine at standard temperature and pressure (STP), ρ (kg/m3) is the actual density of
air, ρ0 is density of air at STP (1.225 kg/m3). It is essential to be familiar with the frequency
distribution of wind in the selected site, which aids calculation of the amount of power
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generated by the wind turbine. In other words, the power generated by a wind turbine
depends on the wind speed at hub height. Wind power is calculated using Equation (4). In
this equation, v(z) represents the average wind speed at a new level, z, v(za) is the average
wind speed at anemometer level za, and α is the power index [59]. The power curve of
the wind turbine is presented in Figure 10, which shows the amount of power produced
at different wind speeds. The power generated by a wind turbine depends on the new
hub-height wind speed at standard environmental conditions.

v(z)
v(za)

=

(
z
za

)α

(4)
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To assess the proposed HPG system at the location, a generic 1 kW wind turbine
was considered. The capital cost of the wind turbine is $5000 per kW and O&M cost is
$50 per year. The other technical specifications of this module are given in Table 3. As
shown in Figure 10, the power curve of the wind turbine was drawn based on three
parameters: (1) the cut-in speed of the selected wind turbine was approximately 4 m/s,
which meant that the turbine generated power up until this point; (2) the rated speed of
this wind turbine was approximately 14 m/s, and generated 3 kW at this speed; and (3) the
cutoff speed was approximately 15 m/s. If the cutoff speed were to be exceeded, the wind
turbine would feather its blades, and its rotor would stop working. Hence, it would not
generate power after exceeding the cut-off point. In this case, the turbine monitored wind
speed. The turbine was designed to resume operation once the speed fell below the cutoff
point for a specified duration [58].

Table 3. Technical specifications of the wind turbine.

Description Value

Manufacturer Generic

Rated capacity (kW) 1

Hub height (m) 17

Capital cost ($/kW) 5000

Replacement cost ($/kW) 5000

O&M cost ($/year) 50

Lifetime (years) 25
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3.3. Battery Storage System

The excess energy generated from renewable energy sources can be stored in devices
like batteries. Whenever power from the grid is not available, the load can be powered
using this stored energy. Moreover, it is beneficial to increase the renewable penetration
in the HPG system in order to permit turning off the DG during the daytime. Another
benefit is that the BSS stores the excess power produced and prevent edit from going to
waste. This ensures a consistent power supply in case of a shortfall from renewable energy
sources. As BSS forms an essential component of the HPG system, monitoring the battery
state-of-charge (SOC) becomes vital. It protects the battery from overcharge and improves
its life. In other words, the SOC of a battery is defined as the ratio of its current capacity
(Q(t)) to the nominal capacity (Qn) (refer Equation (5)) [59].

SOC(t) =
Q(t)
Qn

(5)

The batteries become useless either from use in the system or from aging. In other
words, the lifetime of batteries may be limited by two independent factors: lifetime pro-
ductivity and float life of storage. HOMER calculated the life of the battery bank using
Equation (6) [60].

Rbatt =


NbattQlifetime

Qthrpt
Iflimitedbyproductivity

Rbatt,f Iflimitedbylifetime

MIN
(

NbattQlifetime
Qthrpt

, Rbatt,f

)
Iflimitedbyproductivityandlifetime

(6)

where, Rbatt (year) is life of storage bank, Nbatt is number of batteries used in storage bank,
Qlifetime (kWh) is lifetime productivity of a single battery, Qthrpt (kWh/year) is annual
storage productivity, Rbatt,f (year) is storage float life. To assess the proposed HPG system,
generic 1 kWh Li-Ion batteries were used. The capital cost of the module was $500 per kWh
and estimated throughput was 3000 kWh. The technical specifications of this battery are
given in Table 4.

Table 4. Technical specifications of the battery.

Description Value

Nominal voltage (V) 6

Nominal capacity (kWh) 1

Maximum charge current (A) 167

Estimated throughput (kWh) 3000

Capital cost ($/kWh) 500

Replacement cost ($/kWh) 455

Lifetime (years) 10

3.4. Diesel Generator

DG provides an optimal solution for captive power generation due to diesel engines’
high efficiency and low initial investment compared to steam turbines. Mainly, generators
of sizes ranging between 4 to 15 MW are used in micro-grids. Low-speed diesel generators
are more cost-effective than high-speed diesel generators [61]. The fuel consumption of
the diesel generator per hour varies with load demand. HOMER software plotted a fuel
curve, as shown in Figure 11, representing the fuel consumption based on the generator’s
output power. HOMER software uses the linear least-squares method to fit a line to the
data points. The intercept on the y-axis represents “no-load fuel consumption”. In other
words, this intercept represents the amount of fuel consumption when the generator is
idling (producing no electricity). The slope of this fuel curve is known as “marginal fuel
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consumption”. HOMER used Equation (7) to calculate the fuel consumed by the generator
based on the electrical power generated [59].

F = F0Ygen + F1Pgen (7)

where F0 (L/h/kW) is coefficient of intercept of fuel curve, F1 (L/h/kW) is slope of fuel
curve, Ygen (kW) is the generator rated capacity, Pgen (kW) is generator power output.
HOMER calculated the generator’s efficiency at different points between zero and rated
output and plotted the results as the efficiency curve, shown in Figure 12. For assessing the
proposed HPG system, a generic small diesel generator was considered. The capital cost
of this component was $665 per kW and O&M cost was $0.027 per hour. The price of fuel,
accessed on 26 November 2021, was $1.18 per litre [62].The other technical specifications
are provided in Table 5.
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Table 5. Technical specifications of diesel generator.

Description Value

Fuel Diesel

Capacity (kW) 1

Capital cost ($/kW) 665

Replacement cost ($/kW) 535

O&M cost ($/hour) 0.027

Fuel price ($/litre) 1.18

Lifetime (hours) 15,000

3.5. Converter

The proposed HPG system consisted of both AC and DC buses. A bidirectional con-
verter was used to regulate the current flow direction during BSS charging and discharging.
The size of this converter depended on the SOC level of the battery. The capacity of the
converter was 1 kW. The capital cost of this converter was estimated to be $195 per kW,
with an O&M cost of $4 per year, and the replacement cost was estimated to be $195. It was
rated for a lifetime of 15 years.

3.6. Economic Analysis

The feasibility of the simulated HPG system was assessed using LCOE. It was calcu-
lated as the ratio of the sum of the capital, operation and maintenance expenditure, and
other related costs, estimated for the project’s lifetime to the electrical energy generated in
the entire lifetime of the hybrid power plant. A discount of 8% and an inflation rate of 2%
were considered in the calculations. LCOE was calculated using Equation (8) [63].

LCOE =
∑n

t=1
It+Mt+Ft
(1+r)t

∑n
t=1

Et
(1+r)t

(8)

where It ($) is the capital expenditure, Mt ($) is expenditure for operation and maintenance,
Ft ($) is expenditure of fuel, Et (kW) is the electrical energy generation, r (%) is rate of
discount and n (years) is lifetime of the system. The obtained values of LCOE can be used
to compare different technologies like wind, solar, generator, or combination, concerning
life spans, capital cost, and ROI. In this article, the layout of the proposed HPG system
was considered based on the optimal NPC. It was defined as the current value of the total
cost minus the present value of total revenue over its life span [64]. Total costs included
capital investment, cost for replacement, operation and maintenance (O&M) costs, fuel
costs, penalties paid for emissions, and the costs of purchasing electricity from the grid.
Total revenue included salvage cost and grid sales revenue. HOMER software calculated
total NPC for all the system layouts during optimization. This value became the economic
base for calculating the total annualized cost of the components and LCOE.

The salvage value is also an important economic parameter to assess the economic
performance of a hybrid system. During NPC calculation, the remaining value of the
components of the proposed HPG system, at the end of the project’s life span, called
the salvage value, was also considered. HOMER made two assumptions during calcu-
lation of salvage value: first, that (a) components depreciate linearly, meaning that the
salvage value of components was directly related to their remaining life spans, and (b)
that salvage value depends on the cost of replacement. HOMER calculated salvage value
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using Equation (9) [59]. In the various cost calculations, HOMER applied an annual rate of
interest because it presumed that all prices rose at the same rate.

S = Crep
Rrem

Rcomp
(9)

where, Crep ($) is replacement cost of component, Rrem (years) is remaining life span of
component (t) and Rcomp (years) is life span of component (t).

3.7. Optimization Problem, Objective Function, Constraints

In the current study, the optimization problem was to analyze the HPG system and
obtain minimum NPC, minimum COE, and minimum emission of pollutants in the atmo-
sphere, along with maximum renewable resource fraction, for 24 h uninterrupted power
supply. As such, the objective function of this problem was to minimize NPC and LCOE; in
other words, Equation (8) was optimized to obtain the minimum value. The constraints
considered in this analysis were: (1) derating factor of PV array was 80%, (2) hub height of
wind turbine was 17 m, (3) for BSS, SOC ranged between 20 and 100%, and (4) minimum
load ratio was 25% for DG. The lifetime of the HPG system was assumed to be 25 years.

4. Results and Discussions

The simulation was done considering a project lifetime of 25 years in HOMER software.
The results obtained from the simulation assisted in choosing an optimal configuration
for the HPG system. A total of 133,156 solutions were simulated by HOMER software,
out of which nine optimized configurations of HPG system were obtained for attaining
the minimum cost of energy, as presented in Table 6. The HOMER software performed
simulations for all combinations, using PV array system, wind turbine, DG, and BSS.
The PV-Wind-BSS-DG configuration attained the minimum cost of energy, considered
the optimal low-cost solution with respect to the other solutions. In this study, the load-
following (LF) control strategy was also considered. In this strategy, the generator operates
only enough to meet the demand of the primary load. The charging of battery is done
when renewable sources of energy like solar panels and wind turbines operate. In the
LF control strategy, the generator can still produce more electricity to sell to the grid, if
it has economic benefits. In simulations performed by HOMER, the program considered
a shortfall occurring between the required operating capacity and the actual amount of
operating capacity the system can provide. This figure is represented as capacity shortage
constraint [64]. The sensitivity analysis was also conducted. These comparisons helped to
determine the economic viability of the project. The average daily residential load for the
considered location was predicted to be approximately 200 kWh/day. The average load
was 8.33 kW/day, and the peak load was 37.13 kW. The daily consumption pattern of the
residential load is shown in Figure 5.

Table 6. Optimized response from the HOMER software.

Architecture Cost

PV Array
(kW)

Wind Turbine
(kW)

Diesel
Generator

(kW)

Li-Ion Battery
(kWh)

Converter
(kW)

NPC
($)

Cost of
Energy

($/kWh)

Operating
Cost

($/year)

Initial Capital
($)

115 1 50 164 32 278,176 0.29 7542 180,672

369 219 42 384,750 0.40 7253 290,983

370 1 218 42 389,860 0.41 7275 295,818

50 60 39 629,078 0.66 43,186 70,786

1 50 58 41 634,618 0.67 43,275 75,176

253 50 21 874,726 0.92 55,580 156,220

216 1 50 21 880,339 0.93 56,969 143,870



Energies 2022, 15, 9126 15 of 25

Table 6. Cont.

Architecture Cost

50 1,081,468 1.14 81,084 33,250

1 50 0 1,087,169 1.15 81,134 38,307

Total solutions simulated: 133,156

Feasible solutions 98,110
Infeasible solutions due to capacity shortage constraint 35,046

4.1. Technical and Economic Analysis

The proposed configuration for the HPG system consisted of PV (115 kW)/Wind
(1 kW)/BSS (164 strings of 6 V each)/DG (50 kW). It had LCOE, NPC, and operating costs
of $0.29 per kWh, $278,176, and $7542, respectively. The cost summary of the components
for this configuration is indicated in Table 7. BSS made up 49.96% of the capital cost in this
configuration, while the PV array system constituted 20.91%. The wind turbine comprised
only 2.02% due to high capital and replacement cost. The DG made up 23.50% of the
total cost, and the system converter was only 3.59% of the capital cost. The NPC and
annualized cost of the above mentioned components are compared in Figure 13. NPC
provide estimation of cash flow, showing the present value of installation and O&M over
the lifetime of the component, while annualized cost differentiated the components as
(1) low capital and high O&M and (2) high capital and low O&M costs. DG fell under the
former category, while PV, wind turbine and BSS fell under the latter. In this layout of the
HPG system, renewable energy sources constituted 22.94% of the total cost. In contrast,
DG, BSS, and converter constituted 77.06% of the total cost.

Table 7. Component-wise cost summary of the low cost PV-Wind-BSS-DG hybrid configuration.

Component Capital Cost
($)

Replacement
Cost ($)

O&M Cost
($/year)

Fuel Cost
($)

Salvage Cost
($)

Total Cost
($)

Battery 82,000 65,922 0 0 −8937 138,984

Wind turbine 5000 0 646 0 0 5646

PV array 54,209 0 3966 0 0 58,175

Diesel Generator 33,250 0 6335 28,316 −2531 65,370

Converter 6212 2635 1647 0 −496 9999

System 180,671 68,557 12,595 28,316 −11,965 278,176
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The simulation results from HOMER software showed that the PV-Wind-BSS-DG
configuration could generate 184,689 kWh per year of electrical energy. This total electricity
generation is the summation of 180,030 kWh per year from the PV array, 53.3 kWh per
year from the wind turbine, and 4606 kWh per year from DG. In other words, the PV
array produced 97.5%, wind turbine produced 0.0288%, and DG produced 2.49% of total
electricity produced. Electricity generated from DG was the lowest because it was intended
to only be operated when renewable sources failed to serve the load. Figures 14 and 15
present power output from PV array and wind turbine, respectively. Figure 16 indicates the
electricity generated by DG. The monthly generation of electricity from the wind turbine,
PV array, and DG is shown in Figure 17.
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Figure 17. Monthly electricity production of PV-Wind-BSS-DG configuration.

In the simulation performed by HOMER software, the wind turbine was operated for
2413 h in a year. The electricity generated by the wind turbine was 53.3 kWh per year. The
feasibility of the HPG system could be improved by optimally utilizing the weather condi-
tions of the concerned location. DG served as a captive power generating source, available
if renewable sources failed to generate sufficient electricity due to weather conditions or
maintenance work.

It is imperative to determine the SOC level of a battery before it is put into operation.
SOC refers to the amount of electric charge in a battery relative to its capacity. The SOC
level of BSS for the proposed PV-Wind-BSS-DG configuration is shown in Figure 18. The
batteries were charged between 54% to 72%, depending upon their usage and the weather
conditions of Ladakh. The monthly profile of battery SOC is shown in Figure 19.
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Figure 20 presents the 24-h time series curve for 1st January, to understand the rela-
tionship between supply and demand of electricity for the selected site. The individual
contributions for electricity production from PV array, wind turbine, and DG are also
presented. The following points were observed from the time-series curve:

i. From hour 0 to the 7th hour, the entire load was served through the energy stored
in BSS. PV array, wind turbine, and DG did not operate during this time.

ii. From the 7th hour to the 17th hour, the load was served through electricity generated
from the PV array and the energy stored in BSS. Arise in demand for electricity was
experienced during this time. The wind turbine and DG were not operated during
this time.

iii. From the 17th hour to the 20th hour, as PV array could not generate electricity
during the evening and night hours, the electricity demand was fulfilled through
the operation of DG. The BSS supplied electricity until the 19th hour, and then it
discharged. The SOC level of BSS remained at zero from 19th to 20th hours.

iv. From the 20th hour to the 23rd hour, the demand for electricity decreased, but the
load was served through DG only. During this time, the BSS also charged.
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4.2. Sensitivity Analysis

Sensitivity analysis is an economic model which gives an idea about the behavior of
the variables under consideration, based on changes in other input variables. Another
name of this model is what-if or simulation analysis. The NPC of a component is the
current value. It includes the component’s installation cost and operating cost; thus,
NPC is also known as life-cycle cost. The cost of energy assessment is the average NPC
of electricity generation from a power generating plant over its life span. This article
considered three sensitivity variables: inflation, discount, and project lifetime. These
variables were varied as (i) inflation rate: 2%, 4%, and 6%; (ii) discount rate: 6%, 8%, and
10%; and (iii) project lifetime: 20 years, 25, years and 30 years. However, the analyses
used the noble single fix duo vary approach to investigate the impact of variation of these
variables on system performance.

An optimization plot was plotted, keeping the project lifetime constant and varying
cost of energy and renewable fractions, as presented in Figure 21, for the project lifetime of
25 years. Every point in the optimization plot was a feasible solution for that particular
sensitivity case. As observed, most obtained solutions had a high renewable fraction with a
low cost of energy.
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Figure 21. Optimization plot between renewable fraction and cost of energy with project lifetime of
25 years.

The cost of energy and NPC are affected by sensitivity variables. On the surface,
NPC was plotted to have a clear overview, and the corresponding cost of energy was
superimposed, as shown in Figure 22a–c. In this plot, the project lifetime was kept constant,
and the inflation rate and discount rate were varied. This way, three surface plots were
plotted for a project lifetime of 20 years, 25 years, and 30 years. It can be observed from
these plots that as the inflation rate increased and the discount rate decreased, the cost of
energy decreased.
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Figure 22. Variation in NPC as per inflation rate and discount rate with project lifetime of (a) 20 years,
(b) 25 years, and (c) 30 years.
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4.3. Comparison of Proposed HPG System with the Base Case

A DG-based power plant was taken as the base case, where HOMER software calcu-
lated a DG of 50 kW. A comparative study of PV-Wind-BSS-DG configuration was done
with the base case, as shown in Table 8. The simulation performed by HOMER software for
the base case calculated LCOE at $1.14/kWh, operating cost at $81,084/year, initial invest-
ment at $33,250 and NPC at $1,081,468. Apart from the high operating cost and NPC of the
base case, the LCOE of this case was much higher than the PV-Wind-BSS-DG configuration.
This was mainly because of the high rates of fuel (diesel) used to operate the generator.
The rate of diesel fluctuates daily and can rise day by day. With the PV-Wind-BSS-DG
configuration, the consumers could generate electricity with affordable low LCOE and low
NPC. This could raise the economic development of this region.

Table 8. Comparative cost summary of the two compared hybrid systems.

Parameter DG Only
(Base Case)

PV-Wind-BSS-DG
Configuration

Initial Capital ($) 33,250 180,672

Operating cost ($/year) 81,084 7542

Cost of energy ($/kWh) 1.14 0.29

NPC ($) 1,081,468 278,176

The world is already facing the challenge of reducing pollution. Different nations have
focused on using renewable sources to generate electricity to aid in these efforts. Thus,
the diesel-based case is not a feasible solution for implementation. The base case’s carbon
dioxide and other harmful gas emissions are 120,788 kg/year and 141,800.16 kg/year,
respectively. On the other side, the proposed PV-Wind-BSS-DG configuration would
emit only 4859 kg/year and 3804.14 kg/year of carbon dioxide and other harmful gasses
emissions, respectively. This way, electricity generation through renewable sources of
energy would help to reduce the emission of such polluting gases in the environment. A
comparison of the emission of different pollutants from the proposed configuration and
the base case is presented in Table 9.

Table 9. Comparison of emission of pollutants from different configurations.

Configuration
Total Fuel (Diesel)

Consumed
(Litre/Year)

Carbon
Dioxide
(kg/Year)

Carbon
Monoxide
(kg/Year)

Unburned
Hydrocarbons

(kg/Year)

Particulate
Matter

(kg/Year)

Sulfur
Dioxide
(kg/Year)

Nitrogen
Oxides

(kg/Year)

DG only
(Base case) 46,140 120,788 754 33.2 4.52 296 709

PV-Wind-BSS-DG
(Proposed) 1856 4859 30.3 1.34 0.182 11.9 28.5

The payback period refers to the time required to recover the investment cost of
components. To calculate the payback period, the PV-Wind-BSS-DG configuration was
compared with a reference system, also known as a conventional base case system. The
DG-based power plant was considered the base case for comparison with the proposed
configuration. The simulation estimated a 1.8-year payback period for PV-Wind-BSS-
DG configuration. This payback period was deemed justifiable because Turtuk village is
located in the Himalaya hilly region, and so the capital cost of installing a transmission and
distribution system would be prohibitively high. In such a case, a renewable energy-based
micro-grid could be an optimal solution to generate electricity in isolated rural regions.

A comprehensive study of the HPG system of different locations is provided in Table 10.
Depending upon the weather conditions and locally available fuels, optimal configurations
of the HPG system were analyzed. Puducherry, India, proposed an HPG system consisting



Energies 2022, 15, 9126 21 of 25

of PV-WT-Biogen, with NPC of $16,365.95 and a cost of energy of $0.19/kWh. An East
African country proposed a Hydro-Solar-Battery configuration as an HPG system with
$41,210.80 NPC and $0.056/kWh cost of energy. A district in Karnataka, India, proposed a
PV-WT-BGG-BMG-FC-Battery to commission their HPG system. It had NPC and the cost
of energy values of $890,013 and $0.214/kWh, respectively. Cities in the Gulf and a village
in Iran have proposed a combination of PV-WT-Battery for HPG systems; NPC and the cost
of energy are presented in Table 10. A configuration of PV-DG-Battery was submitted for a
village in Ethiopia, with $82,734 NPC and $0.207/kWh cost of energy. PV-WT-DG-Battery
was proposed for Ghana, an industrial city in Iran, and Tamil Nadu in India. Its respective
NPC and cost of energy are provided in Table 10.

Table 10. Comparison of stand-alone hybrid systems at different locations.

Sr. No. Location Proposed Hybrid
System

NPC
($)

Cost of Energy
($/kWh) Reference

1 Korkadu, Union territory of Puducherry, India PV-WT-Biogen $16,365.95 $0.19 [17]

2 Rwanda, East African Country Hydro-Solar-Battery $41,210.80 $0.056 [65]

3 Chamarajanagar district, Karnataka, India PV-WT-BGG-BMG-FC-
Battery $890,013 $0.214 [19]

4

Jask (near the Gulf of Oman) PV-WT-Battery $44.1 M $0.219

[66]Genaveh (near the Persian Gulf) PV-WT-Battery $46.9 M $0.233

Anzali (near the Caspian sea) PV-WT-Battery $48.8 M $0.242

5 Golbo II village, Ethiopia PV-DG-Battery $82,734 $0.207 [67]

6 Mankwadze, Ghana PV-WT-DG-Battery $8,649,054 $0.382 [42]

7 Rezwan village, Sudaklen, Iran PV-WT-Battery $24,662 $0.322 [68]

8 Leopard beach, Hongsibao, China PV-WT-BGG-Battery $587,013 $0.201 [69]

9 Industrial city II, Ardabil, Iran PV-WT-DG-Battery $304,380 $0.471 [70]

10 Fouay, Benin republic, Africa PV-DG-Battery $555,492 $0.207 [71]

11 Chikmagalur district, Karnataka, India PV-Hydro-Battery $712,975 $0.16 [72]

12 Singa village, Siang district, Arunachal
Pradesh, India WT-Hydro-DG-Battery $23,808 $0.63 [73]

13 Tamilnadu, India PV-WT-DG-Battery $199,850.80 $0.2492 [74]

14 Ghaziabd, India PV-BSS $639,981 $0.34 [75]

15 Turtuk village, Ladakh, India PV-Wind-BSS-DG $2,78,176 $0.29 Present
study

Legend: PV: Solar photovoltaic, WT: Wind turbine, Biogen: Bio generator, BGG: Biogas generator, BMG: Biomass
generator, FC: Fuel cell, DG: Diesel generator.

A location in China proposed a PV-WT-BGG-Battery HPG system, with $587,013 NPC
and $0.201/kWh cost of energy. An HPG system consisting of PV-DG-Battery was proposed
for a location in Africa, with NPC and cost of energy values of $555,492 and $0.207/kWh,
respectively. A PV-Hydro-Battery combination was proposed for Karnataka, India, and
a WT-Hydro-DG-Battery combination was proposed for Arunachal Pradesh, India. A
PV-WT-DG-Battery was proposed for a location in Tamilnadu, India. Its NPC and cost of
energy values are provided in Table 10.

5. Conclusions and Future Prospects

The purpose of this work was to provide technical and economic perspectives on
a proposed HPG system to generate electricity using renewable sources of energy in
south-central Asia. The optimal solution and operation strategy for an HPG system for
an isolated village in the Ladakh region were evaluated using HOMER software. The
key parameters considered during the feasibility study were NPC, LCOE, and renewable
fraction. According to the simulations performed by HOMER, the minimum cost of energy
was obtained for a PV-Wind-BSS-DG configuration of the HPG system. It was chosen as
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the optimal solution. DG served as a captive power generation system. The following
conclusions were made regarding this work:

i. The configuration of the proposed HPG system had a PV array of 115 kW, wind
turbine of 1 kW, DG of 50 kW, BSS with 164 strings of 6V each, and a converter of
31.85 kW. The base case consisted of an isolated DG of 50 kW.

ii. In the proposed PV-Wind-BSS-DG system, the total net present cost (NPC) of the
system was reduced by 74.27%, from $1,081,468 of diesel-based power generation
system to $278,176.

iii. It was observed that the proposed system reduced the cost of energy from $1.14 per kW
in the diesel-based base case to $0.29 per kW.

iv. It was observed that the proposed system reduced the emission of pollutants up to
94.86%, from 168,724.72 kg/year to 8663.14 kg/year.

v. A sensitivity analysis was performed, varying project lifetime, inflation rate, and dis-
count rate. NPC and cost of energy were analyzed upon these sensitivity variables.

In future prospects, analyses could be further improved by considering government
policies, subsidies, and tariffs. Governments, utility companies, and energy sector players
are expected to make a calculated effort to implement transparent procedures to further
develop the renewable sector.
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