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Abstract: One of the relevant factors in smart energy management is the ability to predict the
consumption of energy in smart households and use the resulting data for planning and operating
energy generation. For the utility to save money on energy generation, it must be able to forecast
electrical demands and schedule generation resources to meet the demand. In this paper, we
propose an optimized deep network model for predicting future consumption of energy in smart
households based on the Dipper Throated Optimization (DTO) algorithm and Long Short-Term
Memory (LSTM). The proposed deep network consists of three parts, the first part contains a single
layer of bidirectional LSTM, the second part contains a set of stacked unidirectional LSTM, and the
third part contains a single layer of fully connected neurons. The design of the proposed deep network
targets represents the temporal dependencies of energy consumption for boosting prediction accuracy.
The parameters of the proposed deep network are optimized using the DTO algorithm. The proposed
model is validated using the publicly available UCI household energy dataset. In comparison to the
other competing machine learning models, such as Random Forest (RF), Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), Multi-Layer Perceptron (MLP), Sequence-to-Sequence (Seq2Seq),
and standard LSTM, the performance of the proposed model shows promising effectiveness and
superiority when evaluated using eight evaluation criteria including Root Mean Square Error (RMSE)
and R2. Experimental results show that the proposed optimized deep model achieved an RMSE of
(0.0047) and R2 of (0.998), which outperform those values achieved by the other models. In addition,
a sensitivity analysis is performed to study the stability and significance of the proposed approach.
The recorded results confirm the effectiveness, superiority, and stability of the proposed approach in
predicting the future consumption of energy in smart households.

Keywords: machine learning; energy consumption; smart household; long short-term memory;
dipper throated optimization; meta-heuristic optimization
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1. Introduction

Building energy use is a major factor in the need for energy efficiency projects in many
countries [1,2]. Inefficient regulation of thermal comfort, improper electrical equipment
sequencing and start-up time, and overuse of appliances consuming energy, such as air
conditioning systems, ventilation, heating, and exhaust fans, all contribute significantly to
the waste of energy within buildings. To this end, the development of smart households
equipped with a variety of control methods, measuring devices, and sensors [3] is crucial
for the efficient management of building energy use. Predicting the energy consumption
of individual homes is a crucial part of the management process required to actualize the
response of the demand side. To better manage the operation and maintenance of electrical
systems, utilities need accurate and precise forecasting of energy load in the short term at
the household level. This would allow utilities to better plan and schedule their energy
resources to coordinate power generation with load demand.

At the building level, the energy consumption profile [4] is made up of the following
elements. There are three types of energy usage patterns: (1) variable consumption due
to changes to the weather that may occur daily; (2) noise, which is hard to be physically
represented; and (3) predictable consumption based on the building’s historical load
patterns. Energy usage at the residential level is very variable and erratic because of the
varying nature of the weather. Customers’ spending patterns may also shift due to other
causes, such as the weather. Therefore, consumption is very unpredictable because it is
based on the choices of individual consumers. Predicting the unpredictable patterns while
also considering the stochastic nature of the behavior of customer consumption and the
weather changes, is difficult in forecasting household-level energy consumption in the
short term. For this reason, it is simpler to make very accurate predictions when looking
at aggregated short-term load forecasts, as the overwhelming component corresponds to
standard consumption patterns.

Since building energy usage is notoriously difficult to anticipate, cutting-edge deep
learning algorithms have emerged as the method of choice for creating reliable forecasting
tools. Recently, Much work has gone into developing strategies for aggregative load
forecasting [5–7]. In [5], the historical yearly energy consumption estimates are used
to distinguish aggregate sub-zones into clusters. Households were grouped, aggregate
estimates were calculated for each cluster independently, and then the projections were
aggregated in [6] to account for differences in household consumption patterns. In [7],
a method for residential load aggregation was developed, and it was established what
fraction of a cluster’s customers would benefit most from having smart meters with sub
metering capacity installed. Nonetheless, there has been little progress in energy forecasting
for the short term at the level of individual households. Time series analysis, ensemble
and deep learning models, machine learning approaches, binary backtracking search
algorithms, and metaheuristic optimization algorithms are all practical tools for forecasting
and managing energy consumption in smart households [8–12]. Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) are two common models in the
deep learning field that are usually employed for forecasting energy consumption. CNN is
denoted by a neural network with feed-forward connections, whereas the time series RNN
is denoted by cells in which the changing behavior of the feature across time is illustrated
by its internal states. The RNN type known as Long Short Term Memory (LSTM) uses three
gates to determine which inputs should be used in further processing and which should
be discarded. Researchers have discovered that RNN models are less precise than LSTM
models [13–16]. To achieve exact performance without a feature extraction step, CNNs have
been used in early iterations of hybrid models [17,18]. However, the convolution procedure,
the number of kernels, and the amount of memory used all have a role in the overall
difficulty of CNN models. LSTM networks, on the other hand, are spatial and temporal,
and their resource needs do not increase exponentially as the input size grows. As a result
of these considerations, we employ a bidirectional LSTM layer to extract information from
features rather than a sophisticated CNN layer, and we estimate energy usage by stacking
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LSTM layers atop dense layers. The proposed model is compared to another ensemble
model and other popular hybrid models based on LSTM, ConvLSTM, and CNN-LSTM, to
assess the overall performance.

A smart household consumes energy actively and is fitted with a sophisticated home
energy management system [10]. Energy companies and homeowners alike can keep tabs
on energy use with the help of smart meters that update in real-time. Using an ideal
consumption plan, users may lower their energy bill with the help of a smart metering
system and Home Energy Management Systems (HEMS) [9]. The HEMS can plan the
consumption of household-controlled loads and storage units to achieve maximum effi-
ciency. In addition, it may calculate the amount of excess energy generated by customers’
Distributed Generation (DG) units that can be sold back to the grid. The architecture of a
typical household is depicted in Figure 1.

Figure 1. Smart household with potential power consumption devices.

Nature frequently serves as an inspiration for metaheuristic optimization techniques.
Different types of metaheuristic algorithms can be identified based on their respective
inspirations. Primarily, we may classify algorithms that take cues from biological processes,
such as evolution or animal social behavior. Many of the metaheuristics ideas come from
scientific research. Physicists and chemists often provide inspiration for these algorithms.
Additionally, artistically-motivated algorithms have proven effective in global optimization.
They get inspiration for their own artistic endeavors mainly from the ways in which artists
act (such as architects and musicians). Another type of algorithm that draws its motivation
from social phenomena is one whose solutions to optimization problems are based on a
simulation of collective behavior.

It is essential to consider the potential effects of the so-called “No free lunch theorems”
while working with optimization problems. According to one of the theories, some opti-
mization functions may be better served by Algorithm A than by Algorithm B. Algorithms
A and B will, on average, yield the same result throughout the whole function space. Thus,
there are no unquestionably superior algorithms. On the other hand, one may argue that
averaging across all feasible functions is unnecessary for a particular optimization issue.
The primary goal here is to identify optimal solutions that have nothing to do with arith-
metically averaging across the range of feasible functions. While some scientists insist on a
single, all-encompassing method, others argue that different optimization problems call for
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different approaches and that specific algorithms are more effective than others. Therefore,
the primary goal would be to select the optimal algorithm for a particular problem or
improve algorithms for most situations.

Among this work’s most significant contributions are understanding the correlations,
complex patterns, and the high non-linearity in data that are inaccessible to traditional
unidirectional architectures, a unique model based on hybrid deep learning is developed
by stacking bidirectional and unidirectional LSTM models. A real-world case study shows
how well the proposed model can predict appliance energy consumption in smart house-
holds. The performance of the proposed model is shown in contrast to the other recent
methodologies via quantitative evaluations performed via score metrics. The impact of
including lag energy aspects is analyzed, along with the architecture of the proposed model,
the implications of the hyperparameters of the developed model, and the overall perception
of doing so. Additionally, competing deep learning models are compared to the proposed
model across the dataset to prove its superiority.

What follows is the outline for the rest of the paper. The literature overview on
the machine learning applications and bidirectional LSTM models in residential energy
forecasting are discussed in Section 2. The methods and materials utilized in this work
are explained in Section 3. The details of the proposed optimized deep learning approach
come in Section 4. Section 5 compares the results achieved by the proposed technique to
those obtained by the baseline models. Section 6 concludes the findings of this work and
presents the potential perspectives for future work.

2. Literature Review

Scientific interest in short-term load forecasting at the residential level has increased
significantly due to the introduction of renewable energy sources to smart households [19].
It is crucial to properly assess the unexpected patterns of load demand at the consumer level
to effectively balance loads and make optimal use of renewable energy sources. Initially,
efforts to forecast short-term residential loads relied on standard statistical approaches
and time series research. As curiosity in Artificial Intelligence (AI) has increased, several
machines and deep learning methodologies have been introduced to forecasting households’
energy usage. Support Vector Regression (SVR) models and Multilayer Perceptron (MLP)
trained with data on the structural features and elements of households are recommended
by the authors of [20] for predicting cooling and heating loads in dwellings. A correlation
of 0.99 was discovered between their proposed models and the data. The authors of [16]
presented a two-stage forecasting technique. Initial procedures involved making load
forecasts for the following day using standard time forecasting techniques. In the second
step, they used quadratic models, linear regression, and Support Vector Machines (SVMs)
to predict outliers, increasing our forecasts’ precision. When the estimates from the second
stage were added to these outliers, the MAPE of the resulting projected values was 5.21%.
A significant drawback of the SVM model is that its training time scales linearly with the
number of data records, making it inappropriate for large datasets.

In [21], the authors proposed several methods for improving training data analysis,
including generalized Extreme Learning Machines (ELMs) and improved wavelet neu-
ral networks. In these methods, predicted loads were presented as intervals due to the
uncertainties inherent in the forecasting algorithms and the underlying data. ELMs are
just neural networks with one hidden layer. Since ELMs’ generalization is poor and their
reliance on prediction accuracy is improved, their activation function is generally ineffec-
tive. Wavelets, utilized as activation functions in their method, helped overcome these
limitations. However, ELM-based techniques are limited in their ability to deeply extract
the underlying information and features associated with data on energy use because they
rely on a single layer of modeling.

Models of Elman and backpropagation neural networks were developed mathemati-
cally in [22]. The models were employed to handle the energy consumption time-varying
aspects, and they learned at slow rates and store internal states through the model layers.
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Based on their findings, Elman neural networks are superior to backpropagation neu-
ral networks for predicting future dynamic loads. These neural network-based models,
however, will invariably gravitate to suboptimal solutions. Consequences include vague
generalization and overfitting.

Deep learning models have recently been the topic of extensive study because of their
potential to rapidly and accurately identify patterns in data relating to energy consumption
and make predictions about future usage. In most cases, deep learning models experience
either bursting gradients or disappearing gradients. LSTM networks, which implement
memory cells and computation gates, solve this issue. LSTMs have been used for load
forecasting and time series analysis. Recent research in [23,24] employed extreme learning
machines, ensemble models, LSTM networks, dimensionality reduction approaches, and
deep neural networks to create a suite of energy consumption forecasting models that are
both efficient and accurate.

Following the deep learning methodology, the authors of [25] developed hybrid se-
quential learning. CNNs are used to extract features from a dataset of energy consumption
records, and subsequently, Gated Recurrent Units (GRUs) are used for the gated structure
in making predictions. While LSTM-based models tend to be more unstable than GRU-
based ones because of their complexity, the former is more stable because of their intrinsic
simplicity and fewer gates for the gradient flow. Using Discrete Wavelet Transforms (DWT)
and LSTM layers, in [12], the authors presented a CNN-based domain fusion strategy that
could construct features in the frequency and time domains as a reflective of dynamic
energy consumption patterns. The authors calculated a Mean Absolute Percentage Error
(MAPE) of about 1% based on datasets of two case studies that contain aggregated data
on energy usage measured in Megawatts (MW). No evaluation of the method’s efficacy
was performed on the amount of use by particular families or the energy consumption of
specific equipment.

Short-term household energy forecasting was proposed using an LSTM memory-
based architecture by the authors of [13]. As an example of how effective their deep
learning architecture is, they used data on the energy use of a Canadian family’s appliances.
Although data at the minute level were accessible, they averaged results over a duration of
30 min. However, only data on the energy use of six different appliances were included in
the analysis. As a means to enhance the precision of predictions, the current study uses
a hybrid model based on a bidirectional LSTM. KNN models and Feed Forward Neural
Networks (FFNN) served as benchmarks against which their findings were evaluated (k-
NN). The LSTM-based model demonstrated its better performance, with a MAPE of 21.99%.

The use of hybrid models for accurate energy forecasting has been the subject of much
research because they may leverage the best features of various models and the knowledge
representations they use. To predict power consumption at the distribution transformer
level, Ref. [26] proposes an ensemble model based on four learning algorithms: the k-NN
regressor, the support vector regression, the XGBoost, and the Genetic Algorithm (GA).
Using an LSTM and auto-encoder persistence model to account for uncertainties and
make predictions for complicated meteorological variables [27], successfully forecasted
photovoltaic electricity for the following day. To enhance prosumer energy management,
an air conditioner’s energy usage was estimated using a machine learning model with
meta-ensemble and stacked auto-encoders [28,29]. Using a mixed ensemble deep learning
model based on a deep belief network, the authors of [30] could predict low-voltage loads
with high certainty and uncertainty. When doing so, we employed the KNN method to
determine an accurate estimate for the ensemble’s sub-model weights and the bagging and
boosting methods to improve the networks’ regression performance.

Recent papers have employed LSTM models that were trained using historical data.
These invariants are concerned with previous inputs, whereas other LSTM invariants also
consider future context values [31,32]. In the proposed approach, bidirectional LSTMs
convey the results of several hidden layers through connections to the same layer in
both directions. A bidirectional LSTM may utilize the features of the data and remember
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previous and hidden states’ future inputs to help extract the bidirectional temporal connec-
tions from the data. The proposed model in this work forecasts future energy use better
than the model provided in [33]. This article and the referenced study [33] employ the
same dataset. Models for multiple linear regression, radial basis functions, support vector
machines, random forests, and gradient boosting machines were developed by the authors
of [33]. Model predictions were shown to be most accurate when using random forests, as
discovered by the authors (with a MAPE of 13.43%). Despite the widespread development
of deep learning and hybrid models for estimating residential energy use, the error rate is
still relatively high. Therefore, to boost the overall performance of the prediction models,
we propose in this work a hybrid model consisting of bidirectional and unidirectional
LSTMs in a stacked topology along with completely connected dense layers to increase the
models’ predicting accuracy with the minimum error rates.

3. Backgound

This work is based on a set of methods that are introduced in this section. These methods
include unidirectional and bidirectional LSTM topologies and the Dipper Throated Optimiza-
tion (DTO) algorithm.

3.1. Unidirectional Long Short-Term Memory (LSTM)

In machine learning modeling, Long Short-Term Memory (LSTM) networks are a form
of Recurrent Neural Network (RNN) traditionally developed to process, evaluate, and
predict sequential data [34,35]. RNN models make predictions using data from both prior
and current time steps as input. LSTMs can solve the vanishing gradients problem since
they have gates and complicated units of a recurrent structure, allowing them to regulate
the data fed through [36]. When it comes to long-term dependence tasks such as forecasting
energy consumption, LSTMs are superior because they include memory cells that aggregate
steps throughout prediction sequences and can use the outputs of the recurrent connections
from earlier time steps.

Each time step t in an LSTM network results in a set of vectors in the space Rd. Figure 2
illustrates the LSTM cell architecture. Based on the following formulas, the memory cell
(mt) is defined [37,38].

mt = it.ct + ft.mt−1 (1)

where the value of ct is defined as follows.

ct = Tanh(Wm.[bm + ht−1, yt]) (2)

where the previous and current time steps are denoted by t− 1 and t. The weight matrix
for neurons that Wm denotes store memories, and ht−1 stands for the state which is hidden
at step t− 1. For step t, the input is referred to as yt, and bm stands for the bias for memory
cell units. The following equation describes the input gate it:

it = σ(bi + wi
h.ht−1 + wi

1.xt+) (3)

The old memory is reset using the forget gate ft, and it is defined as follows.

ft = σ(b f + w f
h .ht−1 + w f

1 .xt) (4)

The LSTM unit output ot is defined as:

ot = σ(bo + wo
h.ht−1 + wo

1.xt) (5)

The following equation describes the hidden state ht of LSTM.

ht = Tanh(mt)× ot (6)
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Based on the previous formulation, at each time step, an input is received, the cell’s
internal state is updated based on the new information and the previous input, and the
cell’s outputs are used as inputs for the following time step.

Figure 2. The typical architecture of the long short-term memory.

3.2. Bidirectional LSTMS

A step forward from traditional one-way LSTM models, bidirectional LSTM allows for
two-way communication between hidden layers. The inputs are processed in two directions
by the bidirectional LSTMs: forward direction, in which the signal moves from the past
to the future nodes, and backward direction, in which the signal moves from the future
to the past nodes. Both past and future inputs may be preserved via two hidden layers
thanks to the fusion of forwarding pass and backward pass hidden states. There is only
one output layer, and it receives all the data from the concealed levels. As a result, the
bidirectional LSTMs can better retain data patterns along with the context from past and
future inputs. In several applications, such as voice recognition, bidirectional LSTMs
have been shown to outperform their unidirectional counterparts in terms of accuracy of
predictions and accuracy of classifications [39,40]. In the context of smart grids, energy
consumption forecasting is a relatively new area; hence, little research has been conducted
on the benefits of bidirectional LSTMs.

Figure 3 shows the LSTM units of forward and backward navigation that make up the
bidirectional LSTM model’s architecture when it is unfurled. Inputs in the positive time
sequence from T− k to T− 1 are used to successfully identify the forward pass output (

−→
h ).

In contrast, the output (
←−
h ) of the backward pass may be computed with accuracy from

inputs in the opposite temporal order, from T + k to T + 1. Forward LSTM units are not
connected to backward LSTM units via the connections from the hidden layer to another
hidden layer. The output from the pass of forward to backward propagation is computed
using the standard LSTM functions. ZT = [zT−k, zT−k+1, . . . , zT−1] representing the output
from the bidirectional LSTM layer. The following expressions describe each component of
the final output vector:

zt = σ(
−→
h t,
←−
h t) (7)

where σ is an integration function between forward pass and backward pass results.
These operations, plus addition and multiplication, may be performed using the σ function.
What follows is the output from the forward pass (

−→
h ) and the output from the backward

pass (
←−
h ).

−→
h = H

(
W

y
−→
h

yt + W−→
h
−→
h

−→
h t−1 + b−→

h

)
(8)
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←−
h = H

(
W

y
←−
h

yt + W←−
h
←−
h

←−
h t−1 + b←−

h

)
(9)

where yt represents the input sequence and H represents the hidden layer function.

Figure 3. A Bidirectional LSTM (BiLSTM) with three unfolded consecutive steps.

3.3. Dipper Throated Optimization (DTO)

The Dipper Throated Optimization (DTO) algorithm is based on a novel assumption
in which there are two groups of birds, the first group contains the swimming birds and
the second group contains the flying birds. These two groups cooperate to search for food.
This assumption is mapped to exploration and exploitation groups for searching the search
space to find the best solution. The birds in these groups are characterized by positions
and velocities. The following matrices can be used to depict the birds’ positions (P) and
velocities (V).

P =


P1,1 P1,2 P1,3 . . . P1,d
P2,1 P2,2 P2,3 . . . P2,d
P3,1 P3,2 P3,3 . . . P3,d
. . . . . . . . . . . . . . .

Pm,1 Pm,2 Pm,3 . . . Pm,d

 (10)

V =


V1,1 V1,2 V1,3 . . . V1,d
V2,1 V2,2 V2,3 . . . V2,d
V3,1 V3,2 V3,3 . . . V3,d
. . . . . . . . . . . . . . .

Vm,1 Vm,2 Vm,3 . . . Vm,d

 (11)

where Pi,j, refers to the jth dimension and the ith position of the bird, for i ∈ [1, 2, 3, . . . , m]
and j ∈ [1, 2, 3, . . . , d], and its velocity in the jth dimension is indicated by Vi,j. The
fitness functions for birds in the search space in terms of their positions are determined by
f = f1, f2, f3, . . . , fn, which is defined using the following matrix.

f =


f1(P1,1, P1,2, P1,3, . . . , P1,d)
f2(P2,1, P2,2, P2,3, . . . , P2,d)
f3(P3,1, P3,2, P3,3, . . . , P3,d)

. . .
fm(Pm,1, Pm,2, Pm,3, . . . , Pm,d)

 (12)

In a fitness evaluation where the success rate of each bird in finding food is considered,
the fitness score of the mother bird is the highest possible. When sorting, numbers are
placed in descending order. We now know that Pbest is the best possible answer. Common
birds Pnd are ideal for the role of followers. The PGbest solution has been recognized as the
best in the world. The first DTO approach used by the optimizer to track the swimming
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bird relies on the following equations to account for changes in the location and velocity of
the population’s members:

X = Pbest(i)− K1.|K2.Pbest(i)− P(i)| (13)

Y = V(i + 1) + P(i) (14)

P(i + 1) =

{
X if R < 0.5
Y otherwise

, (15)

V(i + 1) = K3V(i) + K4r1(Pbest(i)− P(i))

+ K5r2(PGbest − P(i))
(16)

where the index of the current iteration is denoted by i and the index of the next iteration is
denoted by i + 1. The best bird’s position is denoted by Pbest(i). V(i + 1) is the velocities
of birds at iteration i + 1. The K1, K2, and K3 are weight values and, K4, and K5 are
constants. The values of R, r1, and r2, are selected randomly from the range [0, 1]. The DTO
algorithm (Algorithm 1) is used to optimize the parameters of the long short-term memory
for boosting the prediction accuracy of energy consumption in smart households.

Algorithm 1 The dipper throated optimization (DTO) algorithm.

1: Initialize birds positions Pi(i = 1, 2, . . . , n) with n birds, birds’ velocity
Vi(i = 1, 2, . . . , n), objective function fn, iterations Tmax, parameters of t = 1, r1, r2, R,
K1, K2, K3, K4, K5

2: Calculate fn for each bird Pi
3: Find best bird position Pbest
4: while t ≤ Tmax do
5: for (i = 1 : i < n + 1) do
6: if (R < 0.5) then
7: Update the position of the swimming bird as:

P(i + 1) = Pbest(i)− K1.|K2.Pbest(i)− P(i)|
8: else
9: Update the velocity of the flying bird as:

V(i + 1) = K3V(i) + K4r1(Pbest(i)− P(i)) + K5r2(PGbest − P(i))
10: Update the current flying bird’s position as:

P(i + 1) = V(i + 1) + P(i)
11: end if
12: end for
13: Calculate fn for each bird Pi
14: Set t = t + 1
15: Update R, K2, K1
16: Find the best position Pbest
17: Set PGbest = Pbest
18: end while
19: Return the best solution PGbest

4. The Proposed Methodology

The overall architecture of the proposed optimized hybrid bidirectional and unidi-
rectional LSTM model with fully linked dense layers is shown in Figure 4. The layers
in this model fall into three categories: First, a layer composed of bidirectional LSTMs;
second, layers composed of stacked unidirectional LSTMs; and third, layers composed of
fully linked nodes or dense nodes. Bidirectional LSTMs, as was said before, may leverage
dependencies in both directions. During the feature learning procedure, the first layer
of bidirectional LSTM extracts the temporal long-term relationships of the energy con-
sumption numbers. After gaining knowledge from the extracted all-encompassing and
complicated characteristics, the next layer incorporates LSTM layers, which are effective in
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the forward dependencies and receives the outputs from the bottom layer. One of the most
effective methods is regularizing and preventing overfitting in neural network designs by
the dropout mechanism [41,42]. A dropout occurs when a portion of the neuron units are
removed, along with their associated incoming and outgoing connections, resulting in a
weaker network. The hybrid model has dropout layers within its stack of unidirectional
LSTM layers to mitigate overfitting. Avoiding overfitting is made more accessible by early
halting, leading to improved model generalization. As the last phase, we use fully con-
nected dense layers to learn the representations retrieved up to that point, and this dense
layer predicts energy use at future time steps. To effectively learn long-term dependencies
and model implicit representation hidden in the sequential input, the amalgam model
uses a bidirectional LSTM layer and stacks of unidirectional LSTM layers. Applications
that require predictions of future energy use or loads can immediately obtain the neces-
sary past consumption data. Therefore, there is no need to separate the use of future and
historical dependencies simultaneously at any moment in time while training machine
learning models.

Figure 4. The proposed optimized LSTM model for energy forecasting.

The number of neurons of the hidden layer, the number of stacked layers, the opti-
mization technique, the number of training iterations, and other parameters and hyper-
parameters of the model are all subject to optimization using the DTO algorithm. Using
predefined parameters in a dictionary and their allowed values range, cross-validation
with randomized search is used to conduct a search for optimal values of the parameters.
In addition, the batch size refers to the total number of training samples used in a single
training cycle. Batch size optimization is very important for recurrent networks such as
CNN, LSTM, etc. In addition, low value to batch size has its benefits and drawbacks.
Traditionally, networks can be trained more quickly using mini-batches, and a low batch
size number uses less memory. However, the accuracy of the gradient estimate degrades as
the batch size decreases. Initial training was carried out with a significant number for the
maximum number of epochs and early stopping with the patience of 10 epochs in order to
optimize the number of epochs. This approach produced a model free of overfitting and
gave a rough range for the initial number of epochs.
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Data Acquisition

The efficiency of the proposed model is measured by its ability to predict future
electric energy usage for a collection of unique residential households. The dataset may
be found in the dataset archive of the UCI Machine Learning repository [43,44]. There
are 2,075,259 records in the database, and they are organized into 9 different qualities.
From December 2006 to November 2010, a total of 4 years’ worth of measurements are
taken at minute-by-minute intervals. Table 1 lists the varied characteristics of the energy
usage statistics. Sub metering values, active power, reactive power, and minute-average
voltage and current readings are all obtainable electrical numbers. A total of 1.25% of
the measurement records had no values. To account for the missing values, imputation
techniques have been applied [45,46]. When feeding the raw data into the proposed model,
it was first scaled using a minimum-maximum scaler, as per the following equation [47].
Scale values were set to a range from [0, 1] that covers both ends of the spectrum.

x̂j
m =

xj
m − xm,min

xm,max − xm,min
(17)

where x̂j
m and xj

m are the normalized and raw values for feature m at time j. Maximum
and lowest values for feature m that can be seen are also indicated by the notation xm,max
and xm,min.

Table 1. Description of the dataset features.

No. Features Units Description

1 Global active power kW global minute-averaged active power of a household
2 Global reactive power kW global minute-averaged reactive power of a household
3 Voltage V minute-average voltage
4 Global recurrent intensity amps household global minute-average current intensity
5 Sub metering 1 Wh of active energy energy consumed by devices in the kitchen
6 Sub metering 2 Wh of active energy energy consumed by the laundry room devices
7 Sub metering 3 Wh of active energy energy consumed by other devices

It is assumed in regression models that the values for the following time step’s tempera-
ture and humidity will be available, and use these values to make predictions. Additionally,
modern weather predictions have a remarkable track record of precision. Table 2 provides
a summary of the descriptive statistics for the various data aspects. Variables are measured
and summarized for their standard deviation, mean, maximum, and lowest values. The sig-
nificant standard deviation in appliance energy use in the table further proves that energy
usage in the home is very variable. Data distribution of the desired attribute, appliance en-
ergy usage, is shown in Figure 5. A long tail is a visible sign of the distribution’s significant
variance. Outdoor conditions (such as wind speed, temperature, relative humidity, etc.)
significantly impact the energy consumption of inside appliances. These meteorological
phenomena also tend to appear in unexpected places. This is demonstrated in the plots of
Figure 5 which shows the distribution of various features of the dataset.

Table 2. Descriptive statistics of the dataset features.

Features Mean Std. Dev. Min Max

Global active power 1.091 1.057 0.076 11.12
Global reactive power 0.123 0.112 0.000 1.39
Voltage 240.8 3.239 223.2 254.1
Global recurrent intensity 4.627 4.444 0.200 48.40
Sub metering 1 1.121 6.153 0.000 88.00
Sub metering 2 1.298 5.822 0.000 80.00
Sub metering 3 6.458 8.437 0.000 31.00
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Figure 5. Distribution of the various features of the UCI household energy dataset.

The formulation of the forecasting of short-term energy is represented by the follow-
ing formulas. Assume that the time series E provides the measurements of the energy
consumption values for j time steps in the past.

E = e1, e2, e3, . . . , et, . . . , ej, 1 ≤ t ≤ j (18)

Using a machine learning model denoted by f , we may predict our energy consump-
tion at time step t + 1 based on past consumption at time steps t− l and other outdoor and
interior environment variables. et stands for the energy used during time interval t. The
maximum number of time steps is j, and each time step lasts k minutes.

et = f
(

e1+t−l , e2+t−l , e3+t−l , . . . , et, Mt+1
)

(19)

where Mt+1 is the feature value at the t + 1 time step (representing both the outdoor and
interior environment variables).

5. Experimental Results

In this section, we provide the results of a series of experiments designed to test
the efficacy of the proposed model in predicting future energy consumption in smart
households and to compare the model’s results to those of several industry standards and
popular machine learning approaches. SVR, KNN, Random Forest (RF), MLP, Sequence-to-
Sequence (Seq2Seq), and LSTM are considered as base models in the conducted experiments.
Furthermore, four optimization methods are tested and compared to the proposed approach
to validate its superiority.

The experimental results were generated by running the conducted experiments on a
computer with the following specifications: Core i7, 16 GB of RAM, 8 GB Nvidia RTX2070,
and a Python development environment. For the training dataset, we utilized 80%, and
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for the test dataset, we used 20% of the full dataset. Using a k-fold cross-validation
re-sampling process, we created the training and testing datasets. The value of k was
determined to be 5 since this has been shown empirically to prevent excessive model bias
and variation while yet providing adequate generalization [48]. Energy consumption lag
values are introduced as additional features to the dataset before k-fold cross-validation
is performed to account for the temporal dependencies of energy consumption on the
DateTime feature. Keras (version 2.4.3), a deep learning framework, is used to configure
models, with Tensor-Flow (2.2.0), an open-source software library, serving as the backend.
The Keras functional Application Programming Interface (API) is used to construct the
proposed model architecture.

5.1. Metrics for Performance Evaluation

The proposed approach’s performance is evaluated in terms of the metrics listed
in Table 3. In these metrics, (Vn) and (V̂n) refer to the observed and estimated energy
consumption. In addition, ( ¯̂Vn) and (Vn) refer to corresponding mean values. N refers to
the data points count in the dataset. The evaluation metrics employed in this work include
the mean coefficient of determination (R2), Mean Bias Error (MBE), Determine Agreement
(WI), Root Mean Error (RMSE), Absolute Error (MAE), Pearson’s correlation coefficient (r),
Relative RMSE (RRMSE), and Nash Sutcliffe Efficiency (NSE).

Table 3. List of metrics used in performance evaluation.

Metric Value

RMSE =
√

1
N ∑N

n=1(V̂n −Vn)2

RRMSE = RMSE
∑N

n=1 V̂n
× 100

MAE = 1
N ∑N

n=1 |V̂n −Vn|

MBE = 1
N ∑N

n=1(V̂n −Vn)

NSE = 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(Vn− ¯̂Vn)2

WI = 1− ∑N
n=1 |V̂n−Vn |

∑N
n=1 |Vn−V̄n |+|V̂n− ¯̂Vn |

R2 = 1− ∑N
n=1(Vn−V̂n)2

∑N
n=1(∑N

n=1 Vn)−Vn)
2

r = ∑N
n=1(V̂n− ¯̂Vn)(Vn−V̄n)√(

∑N
n=1(V̂n− ¯̂Vn)2

)
(∑N

n=1(Vn−V̄n)2)

After preprocessing, the dataset is split into training (80%) and testing (20%). The
training set is used to train the parameter optimization of the LSTM using the DTO algo-
rithm. The parameters of the training process are set as follows. The number of populations
is set to 30, the maximum number of iterations is set to 20, and the number of runs is
set to 20. In addition, the same training set is used to train the other six base models for
comparison purposes.

5.2. Evaluation Results

To assess the proposed approach, the criteria presented in the previous section are
employed, and the results recorded by the proposed methodology are compared to those
achieved by the six base models. The results and comparison are listed in Table 4. In this
table, the results of the proposed approach denoted by DTO + LSTM outperform those of
the other models. For example, the value of the RMSE criterion achieved by the proposed
approach is (0.005), and the value of WI is (0.976), which is lower than the corresponding
values achieved by the other methods. Similarly, the measured criteria of the achieved
results confirm the superiority of the proposed optimized model.
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Table 4. Comparison between the proposed approach and other regression models based on the
adopted evaluation criteria.

SVR KNN RF MLP Seq2Seq LSTM DTO + LSTM

RMSE 0.053 0.017 0.031 0.014 0.009 0.008 0.005
RRMSE 70.56 22.05 41.01 11.19 12.59 11.19 6.232
MAE 0.053 0.011 0.026 0.013 0.008 0.006 0.003
MBE −0.053 −0.004 −0.011 −0.012 0.001 −0.003 −0.002
NSE 0.651 0.966 0.882 0.975 0.989 0.991 0.997
WI 0.609 0.918 0.806 0.906 0.943 0.959 0.976
R2 0.995 0.968 0.904 0.993 0.991 0.993 0.998
r 0.998 0.984 0.951 0.997 0.996 0.996 0.999

From the optimization algorithms perspective, the proposed approach based on the
DTO algorithm is compared to four other optimization approaches. The four optimiza-
tion algorithms incorporated in the conducted experiments are Particle Swarm Optimizer
(PSO) [49], Genetic Algorithm (GA) [50], Grey Wolf Optimizer (GWO) [51], and Whale
Optimization Algorithm (WOA) [52]. These optimizers are used to optimize the parameters
of the proposed hybrid LSTM model. The statistical difference between every two methods
is measured to find the p-values between the proposed DTO + LSTM method and the
other methods to prove that the proposed method has a significant difference. To real-
ize this test, Wilcoxon signed-rank test is employed. Two main hypotheses are set in
this test, namely the alternate hypothesis and the null hypothesis. For the null hypoth-
esis denoted by H0, the mean values of the algorithm are set equal (µDTO + LSTM
= µGWO + LSTM, µDTO + LSTM = µPSO + LSTM, µDTO + LSTM = µWOA + LSTM,
µDTO + LSTM = µGA + LSTM). Whereas in the alternate hypothesis denoted by H1,
the means of the algorithms are not equal. The results of Wilcoxon’s rank-sum test are
presented in Table 5. As shown in the table, the p-values are less than 0.05 when the
proposed method is compared to other methods. These results confirm the superiority and
statistical significance of the proposed methodology.

Table 5. Results of the Wilcoxon signed-rank test.

DTO + LSTM GWO + LSTM PSO + LSTM WOA + LSTM GA + LSTM

Number of values 17 17 17 17 17
Theoretical median 0 0 0 0 0
Actual median 0.004698 0.005842 0.007731 0.008 0.006345
Sum of negative ranks 0 0 0 0 0
Sum of signed ranks (W) 153 153 153 153 153
Sum of positive ranks 153 153 153 153 153
p value (two-tailed) <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
Exact or estimate? Exact Exact Exact Exact Exact
How big is the discrepancy?
Discrepancy 0.004698 0.005842 0.007731 0.008 0.006345
Significant (alpha = 0.05)? Yes Yes Yes Yes Yes

In addition, the one-way Analysis-of-Variance (ANOVA) test is performed to study
the effectiveness of the proposed method. Similar to the Wilcoxon signed-rank test, two
main hypotheses are set in this test, namely null and alternate hypotheses. For the null
hypothesis denoted by H0, the mean values of the algorithm is set equal, µDTO + LSTM
= µGWO + LSTM = µPSO + LSTM = µWOA + LSTM = µGA + LSTM). Whereas in
the alternate hypothesis denoted by H1, the means of the algorithms are not equal. The
results of the ANOVA test are listed in Table 6. The expected effectiveness of the proposed
algorithm s confirmed when compared to the other methods based on the results of
this table.
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Table 6. Analysis-of-variance (ANOVA) test results.

SS DF MS F (DFn, DFd) p Value

Treatment 0.0001133 4 0.00002834 F (4, 80) = 188.6 p < 0.0001
Residual 0.00001202 80 1.5× 10−7

Total 0.0001254 84

One of the first steps in doing an ANOVA is establishing the null and alternate
hypotheses. Assuming there is no discernible distinction between the groups is what the
null hypothesis is testing for. A significant dissimilarity between the groups is the premise
of the competing hypothesis. Once the data has been cleaned, the data is checked to verify
if it meets the conditions. To determine the F-ratio, they must perform the appropriate math.
After this, the researcher checks the p-value against the predetermined alpha or compares
the crucial value of the F-ratio with the table value. We reject the null hypothesis and accept
the alternative if the estimated critical value is larger than the value in the table. In this
case, we will infer that the means of the groups are unequal and reject the null hypothesis.

The descriptive analysis of the proposed approach’s prediction results of energy
consumption is presented in Table 7. There are 17 samples total in this table’s analysis.
The proposed method is superior to the alternatives as shown by the table’s lowest, mean,
maximum, and standard deviation of recorded error values. From the perspective of
visual representation of the prediction results using the proposed method, Figure 6 shows
four plots to illustrate the model performance. The residual plot and the homoscedasticity
show the mapping between the predicted energy consumption versus the residual error. It
can be noted in these plots that the residual errors are minor, which indicates the robustness
of the predicted values. The QQ plot shows the fitness of the actual and predicted values.
In this plot, it can be noted that the results approximately fit a straight line, proving the
proposed model’s accuracy. The heatmap presented in the figure is used to show the
prediction errors. In this heatmap, the proposed model gives the minimum error compared
to the other approaches.

Table 7. Descriptive analysis of the proposed and other competing methods results.

DTO + LSTM GWO + LSTM PSO + LSTM WOA + LSTM GA + LSTM

Number of values 17 17 17 17 17
Maximum 0.004698 0.006784 0.008731 0.008 0.007345
Median 0.004698 0.005842 0.007731 0.008 0.006345
Minimum 0.004698 0.004984 0.006731 0.006 0.005345
Mean 0.004698 0.005847 0.007672 0.00777 0.00641
Std. Error of Mean 0 0.00007725 0.000104 0.0001345 0.00009661
Std. Deviation 0 0.0003185 0.0004287 0.0005544 0.0003983
25% Percentile 0.004698 0.005842 0.007731 0.008 0.006345
75% Percentile 0.004698 0.005842 0.007731 0.008 0.006345
Range 0 0.0018 0.002 0.002 0.002
Geometric SD factor 1 1.056 1.059 1.081 1.065
Coefficient of variation 0.000% 5.447% 5.588% 7.135% 6.215%
Geometric mean 0.004698 0.005839 0.007661 0.007749 0.006398
Sum 0.07987 0.0994 0.1304 0.1321 0.109

The accuracy of the power consumption forecast using the suggested method is
reflected by the minimum value of Root-Mean-Square-Error (RMSE). A comparison of the
RMSE between the suggested approach and the other methods is shown in Figure 7. The
suggested model has the lowest RMSE values, as seen in the image. The distribution of
the mistakes in the predictions is shown in a histogram in Figure 8. Compared to the other
techniques, the error values of the predictions provided by the proposed model are the
least, as shown in the picture. These numbers highlight the excellence of the suggested
strategy in accurately estimating energy use. Figure 9 also displays the correlation between
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actual and expected energy usage. An illustration of the suggested method’s reliability,
whereby anticipated energy usage is superimposed over observed use.

Figure 6. Visualizing the results of the ANOVA test.

Figure 7. Root Mean Square Error (RMSE) values achieved by the proposed approach compared to
the other approaches.
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Figure 8. Histogram of the error values of the energy consumption prediction results.

Figure 9. The future versus predicted energy consumption through time. The dot points refer to the
past values, the X-points refer to the future values, and the green dots refer to the prediction values.

5.3. Sensitivity Analysis

Sensitivity Analysis (SA) determines how much of an impact each model parameter
has on the overall system behavior. There are two types of SA, namely global and local
SA. In contrast to a global analysis, which looks at sensitivity concerning the complete
distribution of parameters, the local SA deals with sensitivity concerning the change
of a particular parameter value. Global SA, on the other hand, analyzes the impact of
input parameters on model outputs by focusing on the variance of those results. As it
gives a quantitative and thorough picture of how many inputs impact the result, it is an
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essential tool in SA. While global SA is frequently preferable when available because of
its higher information, running it on a big system is quite computationally costly. The
local SA approach should be chosen when possible because it uses less processing time.
In this section, we conducted a parameter-based sensitivity analysis of some parameters
of the proposed DTO, namely R-parameters, exploration percentage, and C-parameters.
These features are used to determine how much an algorithm can predict future energy
consumption. A change can influence the optimization process in a single parameter.
Therefore, a sensitivity analysis of these parameters is carried out to obtain the data that
can be used to make the algorithm more effective in future iterations. The following
sections present and discuss the results of three types of experiments. These experiments
are one-at-a-time SA, regression analysis, and statistical significance analysis.

5.3.1. One-at-a-Time Sensitivity Analysis

We used the One-at-a-Time (OAT) sensitivity measure to carry out the sensitivity
analysis [53]. The OAT method is widely regarded as one of the simplest ways to perform
a sensitivity analysis. When conducting OAT, one parameter is adjusted while the others
remain fixed, and the algorithm’s performance is measured in real-time. The fitness values
of DTO and how they changed over time when their settings were adjusted are shown in
Tables 8 and 9. Twenty values within the interval of each parameter were chosen for analysis,
with additional values obtained by adding 5% to the existing interval. The algorithm was
run 10 times for each variable, and the average running time and fitness are shown in the
tables. The DTO algorithm is run 200 times with each parameter setting. Figure 10 shows
convergent time and fitness curves for all parameters. Convergence time and fitness curves
for each parameter are displayed in the figure. In terms of influencing the algorithm’s
convergence time, the number of iterations and the population size were shown to be the
most influential parameters. This is demonstrated by the fact that a larger population size
or more iterations will result in more frequent calls to the objective function, raising the
convergence time and the overall computing cost. However, with increasing vector K, the
time required to converge decreases little. In addition, the algorithm’s convergence time is
improved with exploration percentages over 20.

Table 8. Results of convergence time (in seconds) for different values of DTO’s parameters.

R-Parameter Exploration Percentage C-Parameter

Values Time Values Time Values Time

0.05 6.683 5 6.587 0.1 6.701
0.10 6.475 10 7.047 0.2 6.658
0.15 6.348 15 6.772 0.3 6.592
0.20 6.833 20 6.579 0.4 6.576
0.25 6.581 25 6.378 0.5 6.632
0.30 6.444 30 6.379 0.6 6.589
0.35 6.401 35 6.374 0.7 6.619
0.40 6.390 40 6.411 0.8 6.55
0.45 6.367 45 6.369 0.9 6.615
0.50 6.371 50 6.369 1.0 6.634
0.55 6.358 55 6.389 1.1 6.589
0.60 6.367 60 6.397 1.2 6.538
0.65 6.459 65 6.388 1.3 6.608
0.70 9.671 70 6.364 1.4 6.607
0.75 9.602 75 6.371 1.5 6.556
0.80 9.412 80 6.378 1.6 6.543
0.85 7.609 85 6.372 1.7 6.548
0.90 7.900 90 6.390 1.8 6.541
0.95 6.670 95 6.388 1.9 6.525
1.00 7.124 95 6.372 2.0 6.516
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Table 9. Results of minimization process for different values of DTO’s parameters.

R-Parameter Exploration Percentage C-Parameter

Values Fitness Values Fitness Values Fitness

0.05 −18.7216 5 −16.5786 0.1 −15.5056
0.10 −18.7216 10 −16.5776 0.2 −15.5056
0.15 −19.2586 15 −18.7246 0.3 −14.4326
0.20 −19.2606 20 −18.1886 0.4 −15.5026
0.25 −18.7236 25 −18.7206 0.5 −15.5056
0.30 −18.7246 30 −18.1886 0.6 −14.4326
0.35 −18.1876 35 −18.1886 0.7 −15.5056
0.40 −18.7256 40 −18.7256 0.8 −15.5016
0.45 −18.1886 45 −18.7246 0.9 −14.4326
0.50 −18.7246 50 −17.6526 1.0 −15.5056
0.55 −18.7246 55 −18.7256 1.1 −15.5056
0.60 −19.7956 60 −19.2606 1.2 −15.5056
0.65 −18.7246 65 −18.7236 1.3 −16.5786
0.70 −18.1876 70 −18.7246 1.4 −17.6516
0.75 −18.1866 75 −18.7256 1.5 −18.7236
0.80 −19.7946 80 −18.1876 1.6 −16.5786
0.85 −18.6766 85 −19.7956 1.7 −17.6516
0.90 −19.2496 90 −18.7116 1.8 −19.7976
0.95 −19.7596 95 −18.7146 1.9 −18.7246
1.00 −19.7706 95 −19.2496 2.0 −19.7986

Figure 10. Convergence of the DTO parameters.

5.3.2. Regression Analysis

To learn more about how the algorithm’s parameters might account for its varying
performance, a regression analysis was conducted. When we want to base our prediction
of a dependent variable (the algorithm’s output) on the value of a known independent
variable, regression analysis is a suitable tool (parameter). The parameters of DTO + LSTM,
convergence time, and fitness were subjected to regression analysis, the results of which are
presented in Table 10. How much of the overall variation in time or fitness can be accounted
for by the values of the parameter is represented by the value of R Square. The greatest
R Square value for convergence time is found for R-Parameter in Table 10. This suggests
that this variable adequately describes the wide range of convergence times. Results from
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the regression model are statistically significant in predicting the algorithm’s performance,
as shown in Table 10 significance F column, where values below 0.05 indicate significance.

Table 10. Regression analysis results for convergence time and fitness of the DTO algorithm.

Convergence Time Minimum Fitness

Parameters R Square Significance F R Square Significance F

R-Parameter 5.04× 10−1 2.56× 10−3 8.85× 10−1 6.33× 10−4

Exploration Percentage 3.24× 10−1 7.25× 10−5 6.40× 10−1 5.73× 10−3

C-Parameter 2.94× 10−1 4.18× 10−6 6.81× 10−1 6.33× 10−4

5.3.3. Statistical Significance Analysis

When comparing the data in Tables 8 and 9, we wanted to see if there was a discernible
difference in their respective means, so we ran an analysis of variance. Two independent
analyses of variance tests were performed on the system’s convergence time and fitness
values as we tweaked DTO’s parameters. Table 11 shows the outcomes of an ANOVA
test for the least fitness of DTO and the convergence time. p-values are less than 0.05,
and F is more than F-critical, as shown in Table 11. To infer that there is a statistically
significant difference between the five groups of convergence periods, we note that their
averages change dramatically when the values of the parameters are changed. In addition,
exploring a range of parameter values discovered a statistically significant difference in the
mean values of the five subsets of least fitness. The ANOVA analysis shows no statistically
significant differences between the groups. Thus, a post hoc test is executed after data
from all feasible groupings have been collected. For this reason, we relied on a one-tailed
t-Test with a significance level of 0.05. Tables 12 and 13 illustrate the outcomes of a t-Test
conducted on each set of parameters, including the convergence time and minimal fitness
of DTO, respectively. In the table, p-values below 0.05 indicate statistically significant
differences between the groups. The p-value for convergence time is greater than 0.05
according to the t-Test comparing the proportion of time spent investigating and the
percentage of time spent evolving. The sensitivity analysis, however, is graphically shown
in Figure 11. The residual and homoscedasticity plots, as well as the QQ and heatmap plots,
all exhibit minimum values between the residual and the projected values, demonstrating
the stability of the proposed methodology. The proposed approach is shown to be resilient
via the QQ and heatmap plots, which remain accurate even after varying some of the
input values.

Table 11. Results of the ANOVA test for time and fitness convergence analysis of the parameters of
DTO algorithm.

SS DF MS F (DFn, DFd) p Value

Treatment 6.57 5 1.314 F (5, 114) = 24.10 p < 0.0001
Residual 6.216 114 0.05452
Total 12.79 119

Table 12. Statistical analysis of the results achieved by sensitivity analysis of DTO parameters, part 1.

Minimum Fitness Exploration% Convergence Time C-Parameter Minimum Fitness C-Parameter

Actual mean 0.1705 0.3326 0.3204
Number of values 20 20 20
95% confidence interval 0.03315 to 0.3078 0.3026 to 0.3626 0.1101 to 0.5306
t, df t = 2.598, df = 19 t = 23.24, df = 19 t = 3.189, df = 19
p value (two-tailed) 0.0177 <0.0001 0.0048
SEM of discrepancy 0.06562 0.01431 0.1004
SD of discrepancy 0.2935 0.06402 0.4492
R squared (partial eta squared) 0.2621 0.966 0.3487
Discrepancy 0.1705 0.3326 0.3204
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Table 13. Statistical analysis of the results achieved by sensitivity analysis of DTO parameters, part 2.

Convergence Time R-Parameter Min. Fitness
R-Parameter

Convergence Time Exploration%

Actual mean 0.5998 0.89 0.3888
Number of values 20 20 20
95% confidence interval 0.5355 to 0.6641 0.8795 to 0.9005 0.3300 to 0.4475
t, df t = 19.54, df = 19 t = 178.0, df = 19 t = 13.85, df = 19
p value (two-tailed) <0.0001 <0.0001 <0.0001
SEM of discrepancy 0.0307 0.005 0.02808
SD of discrepancy 0.1373 0.02236 0.1256
R squared (partial eta squared) 0.9526 0.9994 0.9098
Discrepancy 0.5998 0.89 0.3888

Figure 11. Visualizing the ANOVA test results applied to the sensitivity analysis outputs.

5.4. Linear Regression Analysis

The standardized residual quantifies the extent to which actual data deviates from
predicted results. In relation to the chi-square value, it indicates the relative importance
of the results. Using the standardized residual, it can be easily shown which results are
making the most and smallest contributions to the total value. In this work, linear regression
analysis is used to compare the results of the proposed approach and the other approaches
to detect the outliers. Figure 12 shows the regression analysis plot. In this plot, it can be
noted that the residual values are tiny, and thus indicates no outliers. In addition, Table 14
presents the detailed results of the linear regression analysis. In this table, it can be noted
that the p-value is less than 0.05 and the value of the z-score is greater than 0.5 which also
proves the significance of the proposed approach with no outliers.
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Figure 12. The regression analysis of the achieved results.

Table 14. Results of the linear regression analysis applied to the proposed approach records and
compared to the other four competing approaches.

Linear Regression GWO + LSTM PSO + LSTM WOA + LSTM GA + LSTM

Std. Error
Slope 0.01644 0.02213 0.02862 0.02056
Best-fit values
Slope 1.245 1.633 1.654 1.364
1/slope 0.8035 0.6123 0.6046 0.733
Y-intercept
95% Confidence Intervals
Slope 1.210 to 1.279 1.586 to 1.680 1.593 to 1.715 1.321 to 1.408
Y-intercept 0.000 to 0.000 0.000 to 0.000 0.000 to 0.000 0.000 to 0.000
X-intercept −infinity to +infinity −infinity to +infinity −infinity to +infinity −infinity to +infinity
Data
Total number of values 17 17 17 17
Number of X values 17 17 17 17
Maximum number of Y replicates 1 1 1 1
Z-Score 0.557186 0.557186 0.557186 0.557186
Number of missing values 0 0 0 0
Goodness of Fit
Sy.x 0.0003185 0.0004287 0.0005544 0.0003983
F 5729 5444 3340 4402
DFn, DFd 1, 16 1, 16 1, 16 1, 16
Deviation from zero? Significant Significant Significant Significant
Equation Y = 1.245*X + 0.000 Y = 1.633*X + 0.000 Y = 1.654*X + 0.000 Y = 1.364*X + 0.000
p-value <0.0001 <0.0001 <0.0001 <0.0001

6. Conclusions

Increased precision in building-level energy consumption forecasting has significant
implications for energy resource development and scheduling and for making the most
of renewable energy sources. To improve the accuracy with which energy consumption
can be predicted, this research proposed a novel approach based on an optimized hybrid
deep learning model that combines the benefits of traditional unidirectional LSTMs and
bidirectional LSTMs. The optimization of this deep learning model is performed in terms
of the DTO algorithm. The bidirectional LSTMs are employed to accurately predict future
energy consumption levels by recognizing underlying trends in energy use. To test the
effectiveness of the suggested methodology, we used data on smart home energy use.
The proposed model has also been compared against several other regression models and
optimization methods, including the SVR, KNN, RF, MLP, Seq2Seq, and LSTM, as well
as the GWO, WOA, PSO, and GA algorithms. The findings demonstrated the large gains
made by the suggested method compared to the benchmark regression models. The
robustness of the proposed method is evaluated using statistical analysis, with results
highlighting the anticipated outcomes. The proposed optimization method’s optimization
parameters’ relevance is further demonstrated by sensitivity analysis. The experimental
findings showed that the proposed method was superior to the alternatives, with RMSE
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of 0.0047 and R2 of 0.998, respectively. The study’s long-term goals include testing the
proposed method’s scalability by applying it to bigger datasets with various use cases.
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