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Abstract: The development of low-cost electrode materials with enhanced activity and favorable
durability for hydrogen evolution reactions (HERs) is a great challenge. MoS2 is an effective elec-
trocatalyst with a unique layered structure. In addition, aluminosilica shells can not only provide
more hydroxyl groups but also improve the durability of the catalyst as a protective shell. Herein, we
have designed a hard-template route to synthesize porous yolk–shell MoS2@void@Aluminosilica
microspheres in a NaAlO2 solution. The alkaline solution can directly etch silica (SiO2) hard templates
on the surface of MoS2 microspheres and form a porous aluminosilica outer shell. The electrocatalytic
results confirm that the MoS2@void@Aluminosilica microspheres exhibit higher electrocatalytic activ-
ity for HERs with lower overpotential (104 mV at the current density of −10 mA cm−2) and greater
stability than MoS2 microspheres. The superior electrocatalytic activity of MoS2@void@Aluminosilica
microspheres is attributed to the unique structure of the yolk@void@shell geometric construction, the
protection of the aluminosilica shell, and the greater number of active sites offered by their nanosheet
subunits. The design of a unique structure and new protection strategy may set up a new method for
preparing other excellent HER electrocatalytic materials.

Keywords: yolk–shell; MoS2@void@Aluminosilica microspheres; hydrogen evolution reaction;
hydrothermal and hard template method

1. Introduction

Over the past few decades, hydrogen, in particular, sustainable hydrogen production
from water splitting, as a clean and renewable energy has received great attention regarding
its potential to solve many environmental problems caused by fossil energy [1–5]. For
an electrochemical hydrogen evolution reaction (HER), an excellent catalyst should possess
lower overpotential and good stability in this important electrochemical process [6,7].
However, highly efficient HER electrocatalysts are Pt-based metals with higher cost and
scarcity on the earth, which limits their widespread application [8–11]. Therefore, it is
urgent to design an inexpensive and earth-abundant electrocatalyst to replace Pt-based
metals and achieve lower overpotential and remarkable reaction kinetics.

In recent years, as an important family of functional materials, nanostructured tran-
sition metal sulfides have received intensive research interest due to their electrical con-
ductivity and rich redox electrochemistry [12,13]. Among them, MoS2, which is one of
the layered transition metals dichalcogenides, has received more and more attention in
diverse applications, such as solar cells [14], homogeneous biomolecules detection [15],
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photodetectors [16], sodium-ion batteries [17], and hydrogen storage [18]. In addition, the
structure of the material is also an important factor affecting its performance. Taking these
two factors (the material of MoS2 and the structure) into account, preparing MoS2 micro-
and nanostructures with controllable morphologies and sizes has attracted lots of atten-
tion. For example, three-dimensional (3D) MoS2 nanoflowers with large stretched “thin
folding leaves” and considerable nanopores were synthesized by a polypyrrole-assisted
one-pot hydrothermal routine [19]; nanostructured MoS2 particles on a 3D carbon fiber
paper substrate with preferentially exposed edge sites were successfully synthesized by
the facile pyrolysis and sulfurization methods [20]; 2D MoS2 monolayers with defect struc-
tures were prepared by direct sulfurization and chemical vapor deposition (CVD) [21];
a type of prickly-pear-like 3D porous MoS2 was hydrothermally synthesized (ZT-MoS2)
with a zinc oxide (ZnO) rod template which deposited on quartz glass substrates [22]; zinc-
doped MoS2 material was prepared by a facile solvothermal method and using (NH4)2MoS4
as precursors in DMF solution [23]; and an edge-rich MoS2 nanoarray grown on an edge-
oriented 3D graphene was prepared via CVD [24]. Although various reasonable progres-
sions have been carried out in designs of the structure, there are still some inadequacies,
such as complicated operation with inefficient catalytic activity and instability. In addition
to the structures above, as a special extension of core–shell systems, the yolk–shell structure
exhibits a distinctive yolk@void@shell configuration with an interspace between the core
and porous shell (in most cases) which can provide a protective route for buffering the
volume change and thus enhance the stability of the material [25]. For example, Wang et al.
reported that yolk–shell ZnS@NC@MoS2 nanoboxes can provide increased active sites and
ion channels among the interfacial boundaries, high conductivity, and a stable structure for
the sodium ion batteries (SIBs) anode [26]. However, MoS2 electrocatalysts with aluminosil-
ica protective shells have not been reported. Therefore, it is highly desirable to develop
a facile and cost-efficient method to fabricate MoS2-based catalysts with efficient catalytic
performance and great stability.

In this work, we report that MoS2@void@Aluminosilica microspheres with porous
shells are prepared by a facile and robust method. In this experiment, SiO2, which is first
modified the surface of MoS2 microspheres assembled by nanosheets, induced preferential
generation and deposition of the porous aluminosilica shell. According to our research, this
is the first report on the fabrication and electrocatalytic activity for HERs of monodispersed
MoS2@void@Aluminosilica microspheres. Most importantly, as an efficient electrocatalyst,
MoS2@void@Aluminosilica microspheres possess the following three features: (1) larger
specific areas offered by their nanosheet subunits can provide more active sites for HER
processes; (2) electrochemical kinetics are enhanced by the short diffusion lengths between
the hierarchical MoS2 microsphere core and the aluminosilica shell; (3) HER stability
benefited from the porous aluminosilica shell.

2. Materials and Methods
2.1. Preparation of Hierarchical MoS2 Microspheres Assembled by Nanosheets

In this experiment, 0.1 g of thioacetamide (TAA, 99%) and sodium molybdate
(Na2MoO4·2H2O, 99%, 0.3 g) were dispersed in deionized (DI) water with continuous
magnetic stirring. After 15 min, 0.2 g of polyethylene-polypropylene glycol, F68 (referred
to as F68) was added to the mixed solution and stirred for 20 min. Then, the above solution
was transferred to the 50 mL Teflon-lined, stainless-steel autoclave and kept at 180 ◦C for
12 h. When the autoclave was cooling down, the powder was washed with DI water and
absolute ethanol three times and finally dried in a vacuum oven at 60 ◦C for 12 h.

2.2. Preparation of MoS2@SiO2 Microspheres

The SiO2 was prepared on the basis of the Stöber method with some modification [27].
Briefly, 0.05 g of as-prepared MoS2 microspheres was dispersed into a mixture solution
including 20 mL ethanol and 4 mL deionized water under ultrasonication for 20 min. Then,
0.2 mL of tetraethyl orthosilicate (TEOS) and 0.25 mL of ammonia solution (25%) were
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added to above solution and stirred for 3.5 h. The obtained products were washed with DI
water and ethanol then dried under vacuum at 60 ◦C for 10 h.

2.3. Preparation of MoS2@void@Aluminosilica Microspheres

The synthesis process of MoS2@void@Aluminosilica microspheres was carried out
according to our previous work [28], which is described briefly as follows: The MoS2@SiO2
microspheres (50 mg) were dispersed in 10 mL of DI water to form homogeneous solution
A. A total of 0.05 g of sodium aluminate (NaAlO2) was dissolved into 20 mL of DI water
to form solution B. Then, solution A was poured into solution B to form a homogeneous
suspension and then transferred to a Teflon autoclave (50 mL) and heated at 140 ◦C for 4 h.
After cooling down to room temperature, the product was washed and dried in a vacuum
oven at 60 ◦C overnight.

2.4. Electrochemical Measurements

The electrochemical property of the as-prepared samples was obtained by using
a three-electrode system connected to a CHI 760E electrochemical workstation (Shanghai
Chenhua Instrument Co., Shanghai, China). A total of 5 mg of as-prepared samples together
with 10 µL of Nafion solution was dispersed into 800 µL of ethanol and 200 µL of distilled
water and sonicated for 30 min to form a homogeneous ink. Then, the ink was pipetted
onto the FTO-coated glass and then used as the working electrodes. The Ag/AgCl electrode
was employed as the reference electrode and a platinum plate as the counter electrode,
and the 0.5 M H2SO4 solution was employed as electrolyte in all electrochemical tests.
All of the electrochemical measurements were performed in a three-electrode system at
room temperature. Linear sweep voltammetry (LSV) was conducted from 0 to −0.4 V
versus (vs.) reversible hydrogen electrode (RHE) with a scan rate of 5 mV s−1 at room
temperature. Electrochemical impedance spectroscopy (EIS) measurement was conducted
at the overpotential of 500 mV with a potential perturbation of 5 mV amplitude in the range
from 106 Hz to 0.1 Hz. All potentials measured vs. Ag/AgCl were converted to RHE using
the following equation:

ERHE = EAg/AgCl + 0.059 pH + Eθ
Ag/AgCl (1)

where ERHE is the converted potential vs. RHE, EAg/AgCl is the measured potential vs. the
Ag/AgCl electrode, and Eθ

Ag/AgCl = 0.1976 V at 25 ◦C.

2.5. Characterization

X-ray diffraction (XRD) patterns were measured on a Philips X’Pert Pro X-ray diffrac-
tometer (Holland Panalytical, Almelo, The Netherlands) with Cu Ka radiation (1.5418 Å).
The main samples were characterized by taking TEM images using a JEOL JEM-2100
microscope (Hitachi Co., Tokyo, Japan). Scanning electron microscope (SEM) images
were carried out at a SEM (Quanta 200 FEG, Tokyo, Japan) with an accelerating voltage
of 10.0 kV. Specific surface areas of the samples were tested by Brunauer–Emmet–Teller
(BET, Micromeritics ASAP 2020 M+C, Micromeritics Instrument Co., Atlanta, GA, USA)
equipped with nitrogen adsorption and desorption. The static water contact angle (CA)
measurement was tested on an optical CA meter system (Data Physics Instrument GmbH,
Filderstadt, Germany).

3. Results and Discussion

The fabrication process for the MoS2@void@Aluminosilica is shown in Figure 1. Firstly,
the reactions of Na2MoO4 and S2− released from the TAA by hydrothermal method treat-
ment at 180 ◦C formed the MoS2 nanosheets. In addition, the MoS2 nanosheets sponta-
neously assembled into MoS2 microspheres with the addition of F68. In our experiments,
it is supposed that the F68 intertwines to form a network structure in the solution and
adsorbs on the surface of MoS2 nanosheets due to the strong interaction between MoS2 and
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F68. Thus, the MoS2 nanosheets encapsulated by F68 assembled to the MoS2 microspheres
in order to decrease the surface energy [29]. Secondly, SiO2 was coated as the shell on the
surface of the MoS2 microspheres (MoS2@SiO2 microspheres) via the Stöber method at
room temperature (TEOS as the SiO2 source in alkaline solution was used in the reaction
process). Finally, NaAlO2 aqueous solution was employed as an alkaline solution to etch
SiO2 hard templates on the surface of the MoS2 microspheres to form the monodispersed
MoS2@void@Aluminosilica microspheres with porous aluminosilica shell structures via
the hydrothermal method at 140 ◦C.
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Figure 1. Schematic illustration for the synthesis of the MoS2@void@Aluminosilica microspheres.

The phase structures of the as-prepared products are tested with XRD (Figure 2).
The XRD pattern of the MoS2 sample shows that all the main diffraction peaks can be
indexed to the (002), (100), (102), and (110) plane of the hexagonal MoS2 phase (JCPDS
No. 37–1492, P63/mmc). The (002) plane located at ~13.9◦ especially indicates that the
MoS2 is the graphene-like structure, and its corresponding d spacing is 0.62 nm, which
was calculated based on Bragg’s equation. However, other peaks that slightly shift toward
a lower angle of the diffraction peaks can be found. The reason for this phenomenon is
caused by lattice strains derived from the folding and bending of the layers [30]. The
typical XRD patterns of the MoS2@SiO2 microspheres and the MoS2@void@Aluminosilica
microspheres show almost the same features as those shown in MoS2. There are no
other diffraction peaks that can correspond to SiO2 and aluminosilica because SiO2 and
aluminosilica are amorphous [28].
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As shown in Figure 3a, as we can see, the MoS2 was assembled by many monodis-
persed spherical particles with an average diameter of ~300 nm, which could work as
seeds for further coating the SiO2 shell on the surface of the MoS2 microspheres to form
core–shell composites [31]. The MoS2 microspheres were further investigated by the TEM in
Figure 3b,c, from which we found that the MoS2 microspheres were assembled by nanosheets
with a thickness of ~5.0 nm. As shown in Figure 3d, the MoS2@SiO2 microspheres possess
a smooth SiO2 shell, and the average particle diameter of the sample increased from 300
to 400 nm, which suggests that the thick shell of SiO2 with ~100 nm was successfully
coated onto the surface of the MoS2 microspheres. TEM images in Figure 3e,f also suggest
that the SiO2 shell was successfully coated on the surface of the MoS2 microspheres. In
addition, the thickness of the shell was about 85 nm (Figure 3f). The aluminosilica shell
and the MoS2 core can be seen clearly in Figure 3g,h; the MoS2@void@Aluminosilica micro-
spheres possess yolk–void–shell structures. It is worth noticing that the SiO2 shell is the key
process for synthesizing MoS2@void@Aluminosilica microspheres because the SiO2 shell
can induce the preferential generation and deposition of porous aluminosilica shells [28].
Compared to the MoS2@SiO2 microspheres with core–shell structure (Figure 3e,f), there is
a clearer boundary between the outer aluminosilica shell, MoS2 core, and the void space
of MoS2@void@Aluminosilica microspheres in the yolk–shell structures in Figure 3i. In
addition, the SEM and TEM images of the SiO2 microspheres are shown in Figure S1, and
the SEM and TEM images of the hollow aluminosilica microspheres are shown in Figure S2.
These aspects can be viewed in the Supplementary Materials.
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Figure 3. SEM and TEM images of (a–c) the MoS2 microspheres, (d–f) the MoS2@SiO2 microspheres,
(g–i) the MoS2@void@Aluminosilica microspheres.

The high-magnification TEM images of the MoS2@void@Aluminosilica microspheres
are shown in Figure 4a,b. In addition, Figure 4b shows that there are many mesopores
(black circles) in the shell of the as-prepared sample. As shown in Figure 4i, the thickness
of the shell of MoS2@void@Aluminosilica microspheres is about 20 nm. Additionally,
Figure 4i further reveals that the outer aluminosilica shell is amorphous, which is consistent
with the SAED pattern (see inset of Figure 4i) and the XRD pattern (Figure 2). The HRTEM
image (Figure 4k) shows that the MoS2 core has a typical layered structure with interlayer
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spacing at 0.62 nm, which corresponds to the (002) plane of hexagonal MoS2 (JCPDS No.
37–1492). In addition, the electron mapping images in Figure 4c–h indicate Si-, O-, Al-, Na-,
Mo-, and S-enriched areas of the MoS2@void@Aluminosilica microspheres, respectively.
The EDS analysis (Figure 4j) of the MoS2@void@Aluminosilica microspheres further reveals
the existence of Si, O, Al, Na, Mo, and S elements.
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As shown in Figure 5, the MoS2 microspheres and the MoS2@void@Aluminosilica micro-
spheres are of type IV isotherms, which indicates that both of them possess meso/microporous
structures. The pore-size distribution curve of the MoS2 microspheres shows a broad peak
from 2–105 nm with a maximum of 90 nm. The MoS2@void@Aluminosilica microspheres
exhibit the same broad peak range but with a maximum of 85 nm. These results in-
dicate that there are many mesopores/macropores in the above two mentioned sam-
ples. In addition, the mesopores may reflect the space between the nanosheets which
assemble the MoS2 microspheres or the MoS2@void@Aluminosilica microspheres, while
larger macropores can be concerned with the space between the MoS2 microspheres or
the MoS2@void@Aluminosilica microspheres. For the MoS2@void@Aluminosilica micro-
spheres especially, larger mesopores may index to the void space between the yolk and
shell of the sample, while the smaller mesopores can reflect the porosity of the aluminosilica
shell. However, the porosity of the MoS2@SiO2 microspheres can be neglected.
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Figure 5. Nitrogen adsorption–desorption isotherms and the corresponding pore-size dis-
tribution curves (inset) of the MoS2 microspheres, the MoS2@SiO2 microspheres, and the
MoS2@void@Aluminosilica microspheres.

The BET surface areas, average pore diameters, and pore volumes of the three main
as-synthesized samples are summarized in Table 1. From the data, it can be clearly seen that
the MoS2 microspheres possess a large specific surface area and a bigger pore volume. After
the SiO2 was coated on the surface of the MoS2 microspheres, the MoS2@SiO2 microspheres
possessed the smallest specific surface area and pore volume, which indicates that solid
SiO2 reduced the amount of exposure active sites and blocked the ion channel. After being
etched by an alkaline solution, the MoS2@void@Aluminosilica microspheres possessed
larger BET and higher pore volume, which indicates the porous aluminosilica shell can
provide more exposure to active sites and more open ion channel.

Table 1. Some physical properties of the three main samples.

Samples BET (m2/g) Average Pore Diameter (Å) Pore Volume (cm3/g)

MoS2 27.35 140.5 0.096
MoS2@SiO2 24.96 40.8 0.025

MoS2@void@Aluminosilica 36.49 110.0 0.100

As shown in Figure 6, a typical three-electrode system was employed to evaluate
the HER performance of the as-prepared samples in the H2SO4 electrolyte. Figure 6a
presents the LSV measurements performed at 5 mV s−1. The MoS2@void@Aluminosilica
microspheres’ electrode showed a lower overpotential of 104 mV at a current density of
−10 mA cm−2 while the MoS2 microspheres were 127 mV. In addition, the SiO2 micro-
spheres, the hollow aluminosilica microspheres, and the MoS2@SiO2 microspheres exhib-
ited negligible electrocatalytic activities for HERs. The results show that the as-synthesized
MoS2@void@Aluminosilica microspheres hold great promise for electrocatalytic hydrogen
evolution. The kinetics of the catalytic HER was commonly investigated and quantified by
the Tafel slope, which can be readily determined from the LSV curves by recasting the data
into the Tafel equation:

η = b× log |j|+ a (2)

with b being the Tafel slope and j being the current density (mA cm−2). A smaller Tafel
slope means a faster-increased rate of the HER with a rising potential [32]. As shown in
Figure 6b, the Tafel slope of MoS2@void@Aluminosilica microspheres was 123 mV dec−1,
which is lower than that of the MoS2 microspheres (169 mV dec−1), the MoS2@SiO2 mi-
crospheres (197 mV dec−1), the SiO2 microspheres (214 mV dec−1), and the hollow alu-
minosilica microspheres (223 mV dec−1), respectively, indicating the outstanding kinetic
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performance of the MoS2@void@Aluminosilica microspheres. The decrease of the Tafel
slope for the MoS2@void@Aluminosilica microspheres may be attributed to the formation
of the aluminosilica shell on the surface of the MoS2 microspheres as evidenced by their
corresponding SEM and TEM morphologies because of the reduced corrosion of MoS2
core. In addition, Table 2 presents a thorough overview of the reporting MoS2-based
materials toward the electrochemical property. Obviously, there are many methods to
prepare MoS2 electrocatalysts; however, the MoS2@void@Aluminosilica microspheres in
this work possess better performance than others. This much-enhanced electrocatalytic
performance is also supported by the electrochemical impedance spectroscopy (EIS) in
Figure 6c; the equivalent circuit diagram is shown in Figure S3. The impedance of the
MoS2@void@Aluminosilica microspheres was found to be much smaller than that of the
MoS2 microsphere and other samples (the SiO2 microspheres, the hollow aluminosilica
microspheres, and the MoS2@SiO2 microspheres, as shown in Figure S4), which is ascribed
to the unique structure of the yolk@void@shell geometric construction, the presence of
aluminosilica shell helps to adsorb the reactants in the solution, the greater number of active
sites offered by their nanosheet subunits, and the enhancement of the hydrophilicity. It can
be concluded that the MoS2@void@Aluminosilica microsphere exhibits superior electrode
kinetics and thus can enhance the electrochemical HER activity. As shown in Figure S5, the
MoS2@void@Aluminosilica microspheres show a capacitance value of up to 0.66 mF cm−2,
which is slightly lower than that of MoS2 electrodes (0.67 mF cm−2). The electrochemical
active surface area (ECSA) of the MoS2@void@Aluminosilica microspheres was 16.5 cm2

while MoS2 was 16.7 cm2, indicating that the Aluminosilica shell cannot decrease the active
surface area of MoS2. To investigate the HER stability of the MoS2@void@Aluminosilica
microspheres, a long-term potential cycling test was performed at a scan rate of 10 mV s−1.
As shown in Figure 6d, only a slight activity loss of the MoS2@void@Aluminosilica mi-
crospheres was observed, even after 500 continuous cycles, while there was a significant
decline in potentials for the MoS2 microspheres, which may be attributed to the MoS2 core
not corroded because it was protected by the aluminosilica shell. In addition, as shown
in Figure 6e, after continuous testing at the static current density of −10 mA cm−2, the
potential of the MoS2@void@Aluminosilica microspheres remained stable for a long period
test and showed excellent stability under acidity conditions.

Table 2. The synthesis method and HER performance of the MoS2-based electrocatalysts.

Catalyst Synthesis Method η10 (mV) * Tafel Slope (mV dec−1) Ref.

MoS2 (activated) Commercial activated method — 180 [18]
3D MoS2 nanoflowers Hydrothermal method 350 95.5 [19]

se-MoS2 Hydrothermal method 104 59
[33]

r-MoS2
Microwave hydrothermal

method 217 121

MoS2 Hydrothermal method
340 105

[34]
Zn-MoS2 290 110

MoS2@3DC Pyrolysis method 252 102.8 [35]
MoS2 Hydrothermal method 400 157 [36]

3D MoS2 Hard template method 270 112 [37]
MoS2 Template sacrificial method 508 136 [38]

MoS2 nanosheets Hydrothermal method 308 201 [39]
MoS2 microspheres Hydrothermal method 127 169

This work
MoS2@void@
Aluminosilica

Hydrothermal and hard
template method 104 123

* HER overpotential at −10 mA cm−2 achieved at a given catalyst loading.

To probe the interface property of the electrocatalyst, the hydrophilicity of the
MoS2@void@Aluminosilica microspheres was investigated. As shown in Figure 6f, the con-
tact angle of the MoS2@void@Aluminosilica microspheres was 10◦, which was smaller than
that of the MoS2 microspheres (27◦), suggesting the former has better hydrophilicity than
the latter. More hydrophilic surface was conducive to contact between the reactants and
active sites, enabling the facile release of evolved H2 gas bubbles and facilitating electron
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transfer to improve water electrolysis [40]. Consequently, all the above results powerfully
confirmed that MoS2@void@Aluminosilica microspheres have greatly optimized the HER
reaction kinetics and thus significantly enhanced the HER catalytic activity. The improved
performance of MoS2@void@Aluminosilica is attributed to the greater number of active
sites offered by MoS2 nanosheet subunits and hydrophilic hydroxyl groups on the surface
of aluminosilica.
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Figure 6. (a) HER polarization curves without iR-compensation; (b) Tafel slopes; (c) EIS;
(d) LSV curves for before and after 500 CV cycles; (e) chronopotentiometry curve of the
MoS2@void@Aluminosilica microspheres at the constant current density of −10 mA cm−2; (f) contact
angle measurements of the MoS2 microspheres and the MoS2@void@Aluminosilica microspheres.

4. Conclusions

In conclusion, MoS2@void@Aluminosilica microspheres have been successfully pre-
pared by hydrothermal and hard template methods. The experimental results illustrate
that MoS2@void@Aluminosilica microspheres display great electrocatalytic activities and
stability for HERs compared with MoS2 microspheres. The excellent HER catalytic per-
formance of MoS2@void@Aluminosilica microspheres is ascribed to the unique structure
of the yolk@void@shell geometric construction, the presence of aluminosilica shell, and
the greater number of active sites offered by their nanosheet subunits. The products with
the yolk@void@shell structures prepared by the simple protocol and unique protection
strategy are prospectively applicable in the fields of electrocatalysis and batteries.
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Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/en15239031/s1, Figure S1: SEM (a) and TEM (b) images of SiO2 micro-
spheres; Figure S2: SEM (a) and TEM (b) images of hollow aluminosilica microspheres; Figure S3:
Equivalent circuit diagram (Rs is the solution resistance; Cdl is the double layer capacitance; Rct
is the charge transfer resistance); Figure S4: Electrochemical impedance spectroscopy of the SiO2
microspheres, the hollow aluminosilica microspheres, and the MoS2@SiO2 microspheres; Figure S5:
Plots of the double-layer capacitances of MoS2 and MoS2@void@Aluminosilica.
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