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Abstract: Load monitoring systems make it possible to obtain information on the status of the various
loads powered by an electrical system. The term “electrical load” indicates any device or circuit that
absorbs energy from the system to which it is connected, and which therefore influences electrical
quantities such as power, voltage, and current. These monitoring systems, designed for applications
related to energy efficiency, can also be used in other applications. This article analyzes in detail
how the information derived from Non-Intrusive Load Monitoring (NILM) systems can be used in
order to create Energy Management Systems (EMS), Demand Response (DR), anomaly detection,
maintenance, and Ambient Assisted Living (AAL).

Keywords: ambient assisted living (AAL); anomaly detection; demand response (DR); energy
disaggregation; energy management; nonintrusive load monitoring

1. Introduction

Load monitoring and identification systems make it possible to determine the
electricity consumption of individual units of equipment connected to the electrical
system of a building. These techniques can generally be grouped into intrusive and
non-intrusive monitoring.

In ILM (Intrusive Load Monitoring) systems, energy consumption is measured by
installing a transducer on each individual load. ILM systems provide high accuracy but
installing sensors on each load is often too complicated and cannot be implemented in an
existing plant. This is mainly because of, but not limited to, the space constraints that make
it difficult to install transduction and communication systems.

In Non-Intrusive Load Monitoring (NILM) systems, on the other hand, energy con-
sumption is measured at the user connection point. Starting from this measure, the individ-
ual contributions relating to each load are obtained by “disaggregating” them.

In this way, the hardware installation is considerably simplified, as it is only necessary
to measure voltage and current, or often even only current. However, considerably more
complex data processing is required to identify the absorptions of the individual devices.

The energy disaggregation problem can be formulated as in (1):

Y(t) = ∑M
n=1yn(t)+ε(t), (1)

where Y(t) is the measured aggregate signal, y(t) is the contribution of the M loads, and
ε(t) is the sum of the noise and estimation error.

Hart proposed the first NILM algorithm in 1985 [1], which used edge detection and
clustering for event identification. Hart classifies household appliances according to their
different operating states:

(I) Electric loads with two operating states (ON/OFF);
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(II) Electric loads with a finite number of operating states, also called finite state ma-
chines (FSM). The switching pattern of these appliances makes it possible for the
disaggregation algorithm to identify their operation;

(III) Electrical loads with continuously variable power absorption, without a fixed number
of states, therefore known as continuously variable devices (CVD). Therefore, it is very
difficult to disaggregate this type of equipment from aggregate load measurements;

(IV) Electric loads that remain active for days or weeks, consuming energy at a constant
rate, and are therefore called “permanent consumption devices” [2].

Hart’s algorithm was viable in some cases; however, it had limitations in the man-
agement of multi-state appliances, as they were managed as a set of distinct ON/OFF
appliances. In addition, the continuously variable and permanently consuming equipment
could not be detected correctly. NILM systems built on the current knowledge of algorithms
represent accurate measurement systems that can be installed both remotely and directly
inside electrical panels. The local installation foresees an embedded microcontroller that
enables the acquisition and processing of the signals locally. The remote installation, on the
other hand, involves the transmission of data to the cloud to be processed and displayed
through a dedicated user interface [2]. In this second case, the system is even less intrusive,
as it does not require the installation of a specific NILM system on the electrical system, as
it uses the measurements transmitted by the smart energy meter. The NILM function can
then be activated without requiring the installation of any specific hardware. The problem
with these systems is that the period with which consumption is acquired is of the order of
a second, or even more. Disaggregation therefore requires different data processing tech-
niques. As an alternative to “traditional” algorithms [1,3], better solutions were proposed
by researchers which involve either the measurement of other quantities in addition to the
real power or the use of different algorithms [4,5]. Machine learning (ML) techniques were
also proposed [6–15]. ML techniques adopt algorithms that use computational methods to
“learn” information directly from available data [16]. Algorithms based on both supervised
and unsupervised learning were proposed. In supervised learning (inside installation),
training is performed with labeled data, that is, with input data whose outputs are known.
In other words, the training data must include examples of the aggregate power (or current)
drawn and the relative power (or currents) drawn by individual loads. Some supervised
training systems classify events by processing the spectrogram of the aggregate absorbed
current [17] or by analyzing generic appliance models on specific appliance instances
using the load signatures extracted from the aggregate current [18]. On the other hand,
unsupervised training-based approaches (remote installation) eliminate the need for prior
knowledge of loads. These systems process sequences of real power measurements mea-
sured at low sampling rates [9]. Recent algorithms are based on source separation through
non-negative tensor factorization, hidden Markov models and hidden factorial Markov
models [9–13]. These techniques learn individual appliance patterns following a training
period based on synchronous measurements of aggregate power and measured power at
the appliance level. Based on the number of appliances to be recognized, these systems will
have different state space sizes to estimate. Hence, the computational overload is directly
related to the complexity of the model.

Deep Learning (DL) is a type of ML that provides computers with the ability to
perform human-like tasks, such as forecasting, speech recognition, or image identification.
In DL applications, algorithms are used that are based on layered models called Artificial
Neural Networks (ANN) [19–22].

In recent years, many characteristic limitations of NILM systems were overcome
thanks to the use of DL algorithms that allow such monitoring systems to adapt to “unseen”
houses in the training phase. DL algorithms have also led to advances in accuracy. The
initially proposed algorithms based on the Factorial Hidden Markov Models [12,17], which
once represented the state-of-the-art of these systems, were replaced by models based on
convolutional neural networks [23]. The possibility of avoiding training on specific users is
obviously a fundamental aspect, as it significantly reduces activation times and costs. In
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some applications, which adopt systems capable of recognizing a wider range of devices, a
short training phase is accepted [5]. In other cases, more than the consumption profile, it is
necessary to detect the real-time status of the loads [24].

An important aspect of NILM systems, in addition to the implementation of algorith-
mic systems, is linked to the application field of these technologies [25]. Having access
to information relating to the energy consumption of individual appliances can help con-
sumers achieve greater awareness of the costs of their bills, which potentially results in a
self-correction of their behavior in order to gradually avoid energy waste [26,27]. However,
the potential applications of NILM systems in residential and industrial settings go beyond
the recommendations aimed at energy saving. Energy disaggregation can also be used
in the management of Smart Grids to monitor the loads connected to a distributed net-
work and predict consumption peaks [28–35]. This allows the electricity distribution body
to propose discount offers or tariff programs based on consumer habits. An interesting
application is to extend NILM systems to the substation level. This provides operators
with a convenient way to understand the status of the network, improving the efficiency
of demand-side management [36]. A well-designed NILM system may be able to provide
timely alarms that allow the user to prevent dangerous failures of their devices [37–48].
Finally, NILM systems and the consumption profiles of the individual household appli-
ances that derive from them were proposed for monitoring the Activities of Daily Livings
(ADL) in order to serve Ambient Assisted Living (AAL) systems [49–54]. Human activity
can be deduced from modeling the use of household appliances, as they are strongly linked
to daily activities.

In this work, some possibilities for integrating NILM systems into the applications that
were introduced above are shown. Our contributions are summarized as follows. First an
analysis of the state-of-the-art NILM technologies is presented, critically illustrating the ad-
vantages and disadvantages of the different solutions and implementation contexts. Then,
various applications of these systems are analyzed, both in the industrial and residential
sectors, illustrating their advantages in different contexts.

The rest of the article is structured as follows. Section 2 will detail proposals for energy
management systems (EMS) that implement NILM systems. Section 3 will introduce the
problem of Demand Response (DR) in distribution networks and illustrate the main works
in which, through NILM systems, the most significant benefits were obtained. Section 4
will focus more attention on the possibility of using energy disaggregation systems for the
detection of anomalies and malfunctions, while Section 5 will analyze the proposed use of
these systems for the detection of ADL. Finally, Section 6 will report the conclusions and
final remarks.

2. NILM for Energy Management Systems

An EMS allows the user to measure and control the use and production of energy
within a plant. Due to the benefits offered to both the consumers and distributors of
electricity, EMSs are becoming increasingly important for reducing consumption. The most
demanding sector, from the point of view of electricity consumption, is represented by
buildings, which consume 40% of the total primary energy [26]. Studies have shown that
the potential bill savings for consumers who are provided with detailed information on the
individual consumption of their devices can exceed 12% [27]. An EMS first and foremost
analyzes the electrical energy consumption of appliances in order to schedule their use. In
addition, it manages the flow of electrical power from renewable sources and storage when
they are locally available.

2.1. EMS for Smart Homes and Microgrids

NILM techniques allow for the real-time detection of devices that are active. They can
be used within EMSs, providing information on the electrical consumption of individual
appliances. To apply these techniques advantageously, it is firstly important to classify the
load devices on the basis of the programmability or, otherwise, of their use. The former
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are devices whose operation cannot be delayed (e.g., lighting, kitchen, or refrigerator).
The latter devices can operate in variable time intervals based on the price of energy
(e.g., washing machines and dryers). Heating, Ventilation, and Air Conditioning (HVAC)
systems are particularly important to this aim.

The EMS allows you to program the switching on of appliances, giving higher priority
to appliances that have a higher energy consumption. In addition to power consumption,
the switching times, operating range, and frequency of use for each class of equipment
are important parameters for load management. These parameters are provided by NILM
systems. In [28,29], the reduction in the cost of electricity is achieved by formulating
the problem as a minimization problem, taking into account the scheduling flexibility of
household appliances by consumers. The results show that the system can reduce the cost
of energy for consumers in a meaningful way. These load scheduling techniques facilitate
the time shift of existing loads in off-peak periods, so costs are minimized.

Çimen et al. [30] propose an NILM-based EMS to manage the operation of household
appliances, in coordination with renewable sources and batteries within a residential
microgrid. Residential grids include energy storage systems, some distributed generation
units and one or more homes. These electrical systems can be used both in connected mode
and in stand-alone mode, thanks to their flexible structure. Figure 1 shows the structure of
the proposed microgrid.
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On the power supply side, the energy sources include the public grid, a photovoltaic
system, a wind turbine, and an energy storage system unit. Each system is managed by a
microcontroller, through the information obtained from a NILM system, such as appliance
activations, turn-on and turn-off times, power absorbed in the various operating conditions,
and periods preferred by the user. The system optimizes the energy supplied by renewable
source plants by minimizing the absorption of electricity from the grid.

In [31], Xia et al. propose an EMS that allows minimization of the cost of domestic
electricity while satisfying the needs of comfort and safety. The system consists of a
first module called the Solar Energy Management System which maximizes solar energy
utilization, and a second module called the Appliances Scheduling System which minimizes
the electricity load during peak hours. Using this EMS, the running time of the appliance
is automatically programmed based on considerations concerning the preferences of the
family, the day-ahead electricity price, and the historical data of electricity use. At the
same time, the system uses the photovoltaic system and the storage systems in order to
consume the minimum amount of energy from the grid. In the two subsystems that make
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up the EMS, a smart meter is used to collect the reading of the household’s overall energy
consumption and transmit it to the energy disaggregation module.

The framework modules, shown in Figure 2, are described below.
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necessary modules.

• Energy generation prediction module: this module generates a forecast based on historical
meteorological data for the considered position.

• Solar energy management module: this module controls the switch starting from the
output of the previous block, the state of the battery, and the price of electricity.
The various loads can be powered by both the solar system and the electricity grid;
therefore, the system will include a controlled switch capable of connecting both
power sources by absorbing energy from one or the other source. Therefore, this
module optimizes the use of the collected solar energy. When the photovoltaic energy
production exceeds the load demand, the photovoltaic energy is used as a priority,
and the surplus energy is stored in the storage system. Only in the event that the
photovoltaic energy (generated during the day or stored during the night) is not
sufficient to support all the appliances in operation, does the system absorb energy
from the grid.

• Energy disaggregation module: in order to implement efficient programming, the EMS
should be aware of the details of the runtime of each device to deduce the activities
of users on an average day. The preferences and habits of users are deduced on the
basis of this detailed information at the appliance-level by imposing a certain level of
priority, so as not to upset their routine too much. Therefore, to obtain appropriate
planning strategies for a certain household, the consumption patterns of each appliance
are key information.

• Classifier module: this module is designed to discriminate between the programmable
and non-programmable devices. The classification process is based on various pa-
rameters such as the flexibility and user preferences for each device. Initially, the
classification module generates a profile of user preferences, preset according to the
varied devices and historical data.

• Appliances scheduling module: this module classifies appliances as programmable
or non-programmable and is responsible for programming the start time of
programmable ones.
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2.2. NILM Systems in EMS

The optimal scheduling of appliances is traced back to an optimization problem,
formulated as (2), solved through dynamic programming algorithms to search for sequences
of states of each appliance that lead to a lower cost of electricity at the end of the day:

min
(

cost = ∑N
i=1∑tn

t=t1
c(t)·pm,i(t)·t

)
, (2)

where cost is the sum of the costs of the energy absorbed by the grid, N is the number of
schedulable appliances, t ∈ {t1, . . . , tn} is a set of discrete time intervals over a whole day
(configurable by each user), and ct is the price of electricity over the interval t.

The problem appears to be a constrained optimization problem since the time intervals
that can be taken into consideration in the search for the minimum must be compatible with
the information on the user behavior of the appliances, obtained from energy disaggregation.

Each appliance is characterized by a working mode m which is associated with both
a specific power absorption, pm, and a different impact on the result. For example, a
dishwasher that performs a wash in eco mode has a reduced energy consumption as it
heats less water, but takes longer to finish the cycle, with a consequent impact on user
comfort. Therefore, the optimization algorithm must find a working mode that minimizes
the cost of the bill while maintaining certain levels of comfort.

To take into account the user’s satisfaction, the parameter s is introduced, which is
equal to one when the appliances work in the period preferred by the user and decreases
as this period varies. Its distribution model can be changed by a factor ξ, depending on the
degree of tolerance. Figure 3 shows the distribution of user satisfaction as a function of a
hypothetical appliance operating time.
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The scheduling algorithm must therefore also try to maximize the user’s comfort level.
This problem can be formulated as in (3):

max
(

com f ort = ∑tn
t=t1

∑N
i=1si(t)

)
, (3)

where si(t) corresponds to the user satisfaction value, introduced above, at time t for
appliance i.

As previously introduced, the parameters necessary for scheduling household appli-
ances can be obtained with the aid of the NILM algorithm. As an example, Figure 4 shows
the power distributions of two appliances over 24 h.
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We obtained these distributions by processing the power measurements available
from the REFIT dataset [32], which provides aggregate and appliance-level power metering
for several homes over a period of approximately two years. The red curve represents the
power distribution, calculated with the power measurements at the appliance level. We
obtained the blue curve by processing the corresponding aggregate power signal through
an artificial Sequence-to-Point neural network, implemented in accordance with [23]. Since
the REFIT dataset contains aggregated power and power supply data at the appliance level
for 21 homes, data from homes that had washing machines and dishwashers were used for
training the model. A house not seen during the training phase was therefore chosen to
obtain the analysis shown in Figure 4. The peaks indicate the periods when the device is
used most frequently. Therefore, if the appliance is scheduled outside the gray dotted lines,
customer satisfaction could be reduced according to the curve in Figure 3.

Similarly, in [33] the authors propose a NILM system based not on DL as in [30], but
on Bayesian theory. The proposed system also provides for the scheduling of appliances in
order to optimize the power flows in a Smart Home. In [34] the IoT criteria for implementing
an EMS based on NILM are outlined. In particular, the cited work refers to FHMM
algorithms, but what was said can also be extended to other approaches such as DL,
Combinatorial Optimization, and event-based.

An NILM system serving an EMS must have a high level of disaggregation accuracy;
therefore, it must be able to determine, as closely as possible, the energy consumption
profiles at the appliance level. It must also be able to provide information on the status
(ON or OFF) in which the devices are positioned in order to guarantee correct feedback
in scheduling. Comparing EMSs based on NILM with those based on ILM, it is clear
that the main drawback linked to the use of NILM systems lies in their lower accuracy in
estimating information, as can also be guessed from Figure 4. In fact, NILM algorithms
will always present greater uncertainty in estimating consumption and appliance status
compared to intrusive systems. However, the use of NILM systems allows one to obtain the
necessary feedback for energy management through a single installation, which represents
a significant advantage, especially for those homes that were not born “smart”.

3. NILM for Demand Response in Smart Grids

The spread of energy production plants from non-programmable renewable sources,
such as wind and sun, requires greater flexibility of the electricity system, to ensure grid
stability. With energy being difficult to store on a large scale, the balance between supply
and demand can sometimes be delicate. To meet these needs, active demand management
programs are created, ensuring greater flexibility and efficiency in the energy infrastructure.

Demand Response (DR) refers to the active management of energy demand, which
involves the modulation of energy demand by commercial and industrial consumers
as market conditions change. For example, in Italy this method was introduced by the
Regulatory Authority for Energy, Networks and the Environment (ARERA) and is used
by the operator of the national electricity transmission grid (Terna). DR mechanisms
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allow commercial and industrial consumers to respond to market signals by increasing or
reducing their energy consumption, with the aim of responding to peaks in the demand or
supply of electricity. This allows for greater flexibility and stability of the grid, and more
efficient use of infrastructure and energy resources.

As an example of the functioning of the DR, we can consider the following steps.

• The network operator foresees a network stability problem and sends a balancing request
to the aggregator (i.e., the intermediary between the dispatcher and the end users).

• The aggregator notifies its customers of the dispatching.
• The customer manually or automatically implements the modulation plan to reduce

the load.
• The customer receives remuneration in exchange for the dispatch capacity.

The DR solution makes it possible to generate revenue for consumers based on their
flexibility. With DR, grid operators can reduce energy consumption at peak times and
consequently, the production of additional energy, improving grid stability. The two forms
of DR already consolidated are:

• DR associated with network interuption tolerance: the consumer voluntarily chooses
to reduce their withdrawals from the grid without notice via disconnection in exchange
for an economic consideration (the minimum power is 1 MW).

• DR linked to multi-hour tariffs: prices change according to the band and day of
withdrawal, thus stimulating users to consume energy in moments of lower load and
less grid congestion.

There is also a third innovative form of DR:

• The Market for Dispatching Services (MDS), a tool through which the national operator
procures the resources necessary to manage and control the system.

In addition to large production plants or industrial loads, even users who have res-
idential energy storage systems can offer balancing services to the electricity grid. It is
therefore also possible for residential users to actively contribute with their energy storage
system, rather than passively with simple connection/disconnection. The end user can
choose, based on the opportunities present in the MDS, whether to withdraw or sell, store,
or consume energy. To manage the storage system, the aggregator installs a communication
and remote-control system.

The Role of NILM in DR Programs

A further step towards an increasingly distributed and sustainable model can be
obtained by integrating NILM systems into DR programs aimed at residential users. As
already discussed for the EMSs, NILM systems allow the aggregator to know the flexibility
parameters of a user, making it possible to formulate an advantageous offer that does not
affect the comfort of families.

Lucas et al. [35] proposed an algorithm for estimating the flexibility of the different
electrical loads for DR purposes. The interactions between the actors are shown in Figure 5.

The request for a DR in a certain time window is reported by the network operator to
the aggregator or to the Balance Service Provider (BSP). The BSP evaluates availability and
flexibility, on the basis of user data, made available by an NILM system. The BSP interacts
with the network operator and subsequently with the users. In particular, the NILM system
provides information about the flexibility of users by analyzing the timestamps relating
to the operating intervals. Figure 6 shows an example of the information supplied by an
NILM system, obtained in a similar way to that described for Figure 4. The figure illustrates
a case relating to the operating cycle of a dishwasher over a 24 h window. It should be
noted that the greater length of the operating cycle, indicated by the actual measurement,
is characterized by very low power consumption, which is therefore negligible. In fact, the
NILM system in this particular case demonstrates an excellent generalization capability.
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The applicability of NILM systems within smart grids was evaluated in [36]. In
particular, the following were evaluated: the opportunity of deferred use of electrical loads
during the handling of consumption peaks; the possibility of proposing discount deals or
time-of-use pricing programs to incentivize customers to postpone part of their energy
demand; and finally, the potential of customers to defer loads.

This study was also conducted using the REFIT dataset [32]. Since the goal is to
simulate a small smart grid, they assumed that the REFIT houses were connected to the
same sub-grid, focusing the analyses over a three-month period (April to June 2014). The
houses were chosen because, being in the same region of England, they are subject to the
same climatic conditions. Therefore, by adding the profiles of total power absorbed by
them, it was possible to simulate a smart grid.

In analyzing the total energy consumption in the different days of the week, some
interesting trends were noted. Weekends have a higher average energy consumption
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than weekdays (which is predictable, as occupants leave for work and/or school reasons).
The energy consumption profile presents peaks during a 5 h block in the evening from
approximately 16:00 to 21:00 and similarly during a smaller 3 h block in the morning from
approximately 5:00 to 8:00 (in line with typical school/working hours). Two energy peaks
also occur on weekends, with an evening peak from around 16:00 to 21:00 and a peak in
the morning from around 7:00 to 11:00. However, although it is lower than in the morning
and evening, energy consumption even remains high during the day.

Based on these models, peak and off-peak hours were defined. Peak periods of
consumption can increase the risk for the grid, so the goal is to find opportunities to level
demand by encouraging customers to change their behavior. The loads that have the
greatest advantage in terms of deferral were identified by carefully examining the energy
consumption of the various houses and appliances during peaks in energy consumption at
the grid level. As previously discussed, appliances such as washing machines, dryers and
dishwashers are potentially deferrable appliances, as they do not have a great impact on
comfort (i.e., they do not affect lifestyle by changing mealtimes or free time), so attempts
are made to postpone these loads at off-peak hours.

Table 1 shows a summary of the power consumption including the total and deferrable
loads (dishwasher, washing machine, dryer, etc.) for each home, during peak and off-peak
periods, and the consequent potential cost savings. In off-peak periods, no distinction
is made between deferrable and non-deferrable loads as there is no need to move them.
The analysis in Table 1 assumes that loads such as dishwashers, washers and dryers are
disaggregated through an NILM system, which produces estimates subject to accuracy
limits. To this aim, they conducted further analysis on the influence of the accuracy of NILM
disaggregation on the total loss of revenue in a variable rate DR program. At the design
stage, it is essential to understand how disaggregation inaccuracies affect the estimation
of results in DR programs, as this allows decisions to be made that take into account the
opportune margin of uncertainty. It is also essential to be able to rely on extremely efficient
NILM systems, which allow one to obtain results that are as truthful as possible.
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Table 1. Potential savings achievable with load deferral.

Peak Periods Off-Peak
Periods % of Total

Load
during
Peak

Periods

% of Total
Load during

Peak
Periods That
Is Deferrable

% of Total Load
during Peak

Periods If All
Deferrable

Load Is Moved
to Off-Peak

Total
Energy

Cost
under Flat
Tariff ($)

Total Energy
Cost Under

Variable
Tariff

without Load
Deferral ($)

Total Energy
Cost under

Variable
Tariff with

Load
Deferral ($)

Potential
Savings

from
Switching
Tariffs ($)

Likely to
Switch

Tariffs and
Change

Behavior?

Total Energy
Cost

Assuming
Cheaper

Option Is
Selected ($)

House
Deferrable

Load
(kWh)

Non-
Deferrable
Load (kWh)

Total
Load

(kWh)

Total
Load

(kWh)

1 11.6 296.9 308.5 376.2 45.1% 1.7% 43.4% 136.9 126.8 123.3 13.6 yes 123.3

2 92.4 370.1 462.5 304.7 60.3% 12.0% 48.2% 153.4 177.1 149.4 4.1 yes 149.4

4 23.8 305.4 329.3 381.2 46.3% 3.4% 43.0% 142.1 134.3 127.2 14.9 yes 127.2

5 189.4 587.3 776.6 562.2 58.0% 14.1% 43.9% 267.8 299.9 243.1 24.6 yes 243.1

6 14.2 412.0 426.2 503.7 45.8% 1.5% 44.3% 186.0 174.3 170.1 15.9 yes 170.1

7 171 350.4 521.4 412.4 55.8% 18.3% 37.5% 186.8 203.1 151.8 35.0 yes 151.8

8 34.8 444.6 479.5 752.5 38.9% 2.8% 36.1% 246.4 205.4 195.0 51.4 yes 195.0

10 112.9 606.2 719.1 624.0 53.5% 8.4% 45.1% 268.6 282.9 249.0 19.6 yes 249.0

12 33.1 345.5 378.6 279.1 57.6% 5.0% 52.5% 131.5 146.5 136.5 -5.0 no 131.5

13 83.7 564.3 648.0 395.8 62.1% 8.0% 54.1% 208.8 246.6 221.5 -12.7 no 208.8

15 43.4 234.8 278.2 288.5 49.1% 7.7% 41.4% 113.3 111.8 98.8 14.6 yes 98.8

16 81 533.3 614.4 558.3 52.4% 6.9% 45.5% 234.5 242.9 218.6 15.9 yes 218.6

17 8.9 300.8 309.7 298.0 51.0% 1.5% 49.5% 121.5 123.3 120.6 0.9 yes 120.6

18 36.4 389.4 425.8 463.6 47.9% 4.1% 43.8% 177.9 172.2 161.3 16.6 yes 161.3

19 3.4 260.6 264.1 270.1 49.4% 0.6% 48.8% 106.8 105.9 104.9 1.9 yes 104.9

20 23.7 309.8 333.5 325.8 50.6% 3.6% 47.0% 131.9 133.0 125.9 6.0 yes 125.9

Total 963.7 6311.4 7275.4 6796.1 2814.2 2886 2597 217.3 2579.3
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4. Anomaly Detection and Maintenance

As previously discussed, NILM systems continuously monitor the absorption of
individual devices connected to the electrical grid. An innovative application is to use these
systems to detect anomalies in electrical loads. To accomplish this task, the NILM systems,
in addition to estimating the energy consumption of the appliance, must also be able to
faithfully determine the power absorption profile over time, which is then analyzed by the
anomaly identification systems.

4.1. Anomaly Detection with NILM

In the works [37–39], the first NILM systems for the detection of anomalies were
proposed. These systems make it possible to identify faults in air conditioners, refrigeration
systems, and waste disposal systems powered by autonomous circuits. Rashid et al. [40]
presented a study on the ability of an energy disaggregation system to identify the anoma-
lies of household appliances inside an apartment. The algorithm, based on a Factorial
Hidden Markov Model (FHMM), starts from the measurement of the aggregate power
supplied by the smart meter and is based on pre-established rules to estimate the type of
anomaly and its temporal position.

The study focuses on the analysis of refrigerators and air conditioners, as common,
high-consumption, compressor-based appliances. Any failure of the compressor, or of any
other part that affects it, is reflected in the profile of absorbed power. Depending on the
type of fault, the durations of the ON and OFF conditions differ significantly from the
nominal ones, although these deviations could also be due to different causes.

For example, an elongated duty cycle may be due to a clogged air conditioner filter, its
incorrect configuration or a failure of the refrigerator door. Similarly, a higher switching
frequency between the ON and OFF states can occur, due to damage in the compressor, short
circuits, or refrigerant leaks. Appliances such as refrigerators have different absorption
profiles depending on the time of day, as shown in the Figure 7.
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Furthermore, a malfunction can result in both higher and lower power consumption.
Therefore, using the total daily consumption to estimate anomalies may not be accurate.
As can be seen from Figure 7, both anomalous conditions result in a daily energy consump-
tion higher than that of normal behavior. An observation based solely on daily energy
consumption does not explain the type of anomaly, i.e., if there was a problem with an
elongated duty cycle or more frequent switching between the ON and OFF state. For these
reasons, the authors have proposed an analysis of the average energy consumption taking
into account the characteristics of the device; the method is called UNUM. UNUM is an
anomaly detection algorithm consisting of a training and a test phase. During the training
phase, the statistical model of the device is built, starting from the profile of the power
absorbed during normal operation. During the test phase, the input is the profile of the
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power absorbed by the device during the day, and the algorithm issues indications on the
presence or absence of anomalies.

The identification of the ON/OFF states of the compressor occurs through a clustering
algorithm known as k-means [41], which provides two clusters corresponding to the states
and the relative power measurements. Note that the power absorbed during the OFF state
is not zero because a device can continue to absorb power even when the compressor
is OFF.

The time of the power measurements at the extremes that define the single state
are identified. From these measurements, we calculate the duration, Ds, and the energy
consumed in each state, Es. For both the ON and OFF states, the means of the Ds and Es
are calculated, associating them with D and E, respectively. Furthermore, the standard
deviation of Es, denoted by σe, is calculated. During the analysis, it was observed that the
air conditioner and the refrigerator draw power differently at different times of the day,
which is logical. Figure 7 shows the signature of the work cycle of the appliance during
the day and night, and significant differences are noticed. Therefore, separate models were
built: one for the day (06:00–18:00 h) and the other for the night.

The algorithm first takes the data on the power profile absorbed by a device and
calculates all the parameters described above. Next, the method described below is used to
decide if the profile has anomalies and, if so, what kind of anomalies they are (increased
duty cycle or switching frequency):

a. If an appliance frequently passes from the ON to the OFF state and vice versa, as
for “abnormal behavior 2” in Figure 8, in an ON/OFF cycle, it will consume less
energy than in the normal case (presenting, however, a higher consumption in the
overall operating time). Therefore, an anomaly associated with “anomalous behavior
2” must be identified as follows:

Ei
test < Ei − n·σi

e, ∀ i ∈ {ON, OFF}, (4)

where {n ∈ R|n〉0} is a control parameter that determines how many standard deviations
from the historical profile should be tagged as an anomaly. Intuitively, n controls the
granularity of the anomaly: a small value of n means that an anomaly is flagged if a minor
deviation is observed and vice versa.
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b. If an appliance remains in its ON state for an excessively long period (prolonged work
cycle), the energy consumed within a cycle will be greater than normal:

EON
test > EON

+ n·σON
e ; (5)

c. If an appliance remains on for a prolonged period and remains off for a longer period
than normal, this is not an anomaly, because it is a condition that occurs when the
appliance is switched on after a long period:
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EON
test > EON

+ n·σON
e Λ DOFF

test > DOFF
+ n·σ(D). (6)

This set of rules allows the UNUM algorithm to indicate the status of the anomaly
in an informative way, so as to allow a quick decision-making process on which type of
anomaly is present and, since two separate models are used for day and night, in which
part of the day the anomaly occurs.

To evaluate the effectiveness of the UNUM algorithm, the data obtained by the NILM
system were processed, comparing the results with those obtained by applying the algo-
rithm to the data measured directly on the appliance.

The following metrics were used to indicate the accuracy of both the NILM and
anomaly detection systems:

Appliance Normalized Error (ANE) =
∑t|ya

t − ŷa
t |

∑t ya
t

, (7)

where ya
t represents the power measured at the appliance level for the appliance a and ŷa

t
represents the corresponding estimate provided by the NILM algorithm. The lower the
ANE value, the more precise the disaggregation algorithm will be for the appliance a:

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1− Score = 2× Precision× Recall
Precision + Recall

. (10)

With precision, the percentage of true anomalies detected is taken into consideration
and compared to the total number of anomalies detected (and therefore alarms triggered).
In addition, the percentage of true anomalies detected is maintained and compared to the
total number of anomalies (detected or not) and compared to the recall. The higher the F1
score’s value, the more accurate the anomaly detection algorithm will be.

The results showed that a good number of abnormal cases for an appliance can be
correctly identified if the ANE is less than 0.1. The choice of the NILM technique is therefore
determined by the ANE value achieved for the household appliances of interest.

It was observed that as control parameter n increases in the UNUM algorithm, the
recall decreases. This is because, as n increases, observations with a lower standard
deviation are treated as normal observations, thus increasing false negative results. At
the same time, an increase in n makes it less likely that small deviations are considered
anomalies, resulting in fewer false positives (and therefore false alarms) and a higher
precision value. An accurate choice of the control parameter n based on the trade-off
between recall and precision is therefore essential.

4.2. Condition-Based Maintenance

Condition-Based Maintenance (CBM) refers to all those activities aimed at mainte-
nance, which are based on the data collected by monitoring the status of the equipment.
This type of maintenance differs from the traditional one, which instead is performed on a
scheduled basis or when faults occur. Failure alerts are provided from the collected data to
help plan equipment repairs or replacements.

The goal of a CBM system is to detect minor failures and take action before they
turn into more dangerous failures. These minor faults are often invisible to operators and
therefore require analysis of the electrical power measurement. An NILM system can allow
CBM to be an effective tool by detecting and identifying both equipment signatures and
their anomalous behaviors. An important feature of these systems is the presence of a
user interface that helps the operator make operational decisions in an intuitive way. An
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NILM system was deployed aboard the United States Navy [42] to monitor energy and
faults in electrical installations with minimal invasiveness, thereby installing a minimum
number of sensors to monitor various loads on board. The loads monitored by the NILM
Dashboard [43] are motors, engines, generators, and pumps. The monitored loads are all
the ON/OFF type (Type I), with the exception of a diesel purifier, which is an FSM and for
which each state is considered separately. The NILM systems installed on ships have two
primary objectives: the first is to detect anomalies to improve the functioning of the system,
and the second is to give operators better awareness by identifying the operating programs
of the equipment. The NILM system used is an event-based system, i.e., a first algorithm is
used to detect events, and then an artificial neural network, trained to identify anomalous
situations starting from the measurement of active and reactive power on the three phases,
is used.

In this way, the NILM system detects all those events that occur as a result of status
changes of the various loads, thus acquiring knowledge on the operating programs of the
individual equipment.

More specifically, there are five parameters for diagnostics:

• The active and reactive power absorbed in stationary conditions;
• The power factor;
• The time between activation and shutdown, indicated as Average Run Duration;
• The total time in which the equipment is operational over 24 h, indicated as the Total

Run Time;
• The number of discrete operations per day, indicated as Daily Actuations.

These metrics help detect degradation in equipment material, such as that which
occurs from mechanical wear and corrosion. The wear of a motor bearing can be reflected
as a change in power consumption [44], while corroded heaters could be reflected as
a change in power factor. The NILM system monitors heaters and pumps which are
controlled by automatic closed-loop systems based on thermostats or tank-level sensors.
Therefore, the Daily Actuations, total run time and average run duration are also useful
in identifying sensor and automation failures that could cause too frequent stimulation or
insufficient operation. In fact, a failed thermostatic controller or a broken tank indicator
can cause excessively long or repeated periods of equipment activation [45]. However, it
is important to note that frequent pump activations or even a single long activation are
not necessarily cause for alarm. This is taken into consideration by monitoring the 24 h
average of the Average Run Duration, power, and power factor parameters, and taking
into account the Daily Actuations and Total Run Time. The 24 h evaluation prevents false
alarms following brief anomalies. Depending on whether the loads are activated less or
more frequently, stricter controls are necessary, so the period can be easily adjusted for
various applications.

In [46], techniques were presented to identify progressive failures starting from mea-
surements obtained through a NILM system and provide analysis of vibrations, materials,
and the analyzed electrical signatures. In the work presented in [38], performances obtained
using FHMM are shown, and in [47] the authors propose a similar system for the detection
of anomalies on the consumption patterns of household appliances, but instead based on
an autoencoder.

The CBM parameters described above are communicated on the NILM dashboard
through diagnostic indicators divided into three levels of signaling, namely, healthy op-
eration, fault warning, and definitive fault alarms, as shown in Figure 9. Establishing the
correct threshold for each region of the indicators is critical in order to be usable by the
ship’s crew. Several techniques were proposed to determine the failure thresholds related
to industrial applications. In [48], the authors proposed a statistical process control (SPC)
method, where an NILM system collects data that are used for SPC analysis. The deviation
in parameters from historical data is an indication of a possible failure. SPC allows for
the exact determination of when a deviation should determine a fault warning and how
much deviation is acceptable. The system defines a center line, a lower control limit (LCL),
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and an upper control limit (UCL). If a parameter reaches the lower or upper control limits,
warnings are issued. SPC analysis defines the center line as the arithmetic mean of the
various parameters considering a standard normal distribution for each parameter. In this
application, a normal distribution does not adequately fit the data. The best results are ob-
tained using a Weibull distribution, typical of many machinery reliability applications [48].
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An interesting consideration is that if an operator knows that some piece of equipment
should be in operation, but the NILM-based CBM system shows no activity, i.e., the daily
actuations have dropped to zero, there is evidence of a failure. This can happen for several
reasons and is not necessarily indicative of equipment failure. First, it could indicate a
complete failure of some piece of equipment. Second, it could be due to a broken sensor, as
a result of which the load does not turn on, even when it should. Alternatively, it could be
due to a degraded part of the equipment, which causes a change in absorption compared
to the value considered normal by the NILM, so the load is actually functioning but the
NILM does not consider it to be so.

However, to help a user identify abnormal behavior, an NILM-based CBM system
should track changes not only in the behavior of the equipment in terms of the number
of starts and stops but also in the power draw of the device. The problem lies in the im-
practicability of training NILM systems on all anomalous signatures because the variations
depend on the type of anomaly. Therefore, the NILM identification algorithms are trained
on the data obtained during correct operations. Nevertheless, a priori knowledge of the
operation of the equipment can help define the equipment even in its degraded state. CBM
and electromechanical fault detection systems can be developed cost-effectively and quickly
through the use of NILM systems. The load analysis discussed in [40] shows that through
a selection of statistical parameters, these systems can analyze a wide range of system
anomalies and assess the health of individual equipment.

5. Ambient Assisted Living

The concept of Ambient Assisted Living (AAL) represents a set of technological
solutions (including home automation systems) designed to make the home environment
active, smart, and collaborative. It must be effective in supporting independent living and
be able to provide greater safety and well-being in carrying out the ADL. These solutions go
beyond the technological content, but also include aspects of design and the analysis of the
needs of society, psychology, and medicine. This differentiates AAL from home automation,
which is specifically focused on technology and automation in the home environment.
Despite this, both technologies have something in common. Almost all AAL projects are
focused on home automation. Knowing a person’s ability to undertake normal ADL is an
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essential part of the AAL, as it allows for the diagnosis to be made. There are several ADLs
that can be deduced from the data obtained with smart meters or sensors installed in the
home, using NILM algorithms [49]. The following list highlights the main ADL that can be
detected through a patient’s interaction with their electrical devices:

• Eating patterns: for the purpose of detecting abnormal or altering changes in eat-
ing habits. These types of behavioral changes provide key indicators regarding the
patient’s overall health.

• Sleep Patterns: changes in sleep patterns can provide insight into a patient’s mental
and physical well-being. Sleep disturbances are often key indicators of various mental
health problems.

• Routine alterations: it is vital for detecting changes in a patient’s behavior and forms
a fundamental part of the AAL system, in order to facilitate an independent life.
Identifying a change of course, especially in more serious conditions such as dementia,
may indicate the need for immediate intervention.

Nory et al. [50] proposed an NILM system that monitors the ADL starting from the
identification of active electrical devices within the home. The algorithm identifies the
various powered devices, recording information on their switching ON or OFF, from which
it obtains useful information for the AAL purposes. For example, detecting a light turning
on indicates that someone is entering a room. Consequently, every device in the house is
virtually transformed into an additional sensor, without disturbing the user’s privacy.

Specifically, the authors analyzed four activities (preparing and consuming food,
hygiene, dressing, and grooming) in four periods (i.e., morning, day, evening, and night)
and two additional activity levels (day and night).

Table 2 shows the relationships between rooms, appliances, and ADL. However,
the relationship between individual appliance activation and ADL is not inductive. To
this aim, a factor pij was defined that determines the weight of an appliance i in ADLj.
If the appliance is very representative of an activity, this will have a high weight for
the classification of the activity; therefore, this weighing process allows one to take into
account the functionality of each appliance. For example, the coffee machine, which is
used frequently in the morning, receives the maximum weight in the “breakfast” ADL. On
the contrary, the kitchen light receives the minimum (not zero) because there is a lower
ratio between the “feeding” activity and the kitchen light. In the event that a room is
only equipped with lighting, the room lights will have the higher weight in detecting
this activity. As an example, for “hygiene” activity detection, the bathroom light will be
the main indicator, unless another appliance such as a hair dryer is currently being used.
Downstream of this, if at a certain moment a certain subset of active devices is detected,
the activity carried out at that moment will be the one that maximizes the weight factors, in
accordance with (11):

ADL(t) = arg max
ADLj

(
∑N

i=1 pij·ri(t)
)

, (11)

where N is the number of appliances and ri is equal to 1 if appliance i has occurred,
otherwise it is 0.

Table 2. Relationships between rooms, appliances, and ADL.

Room Appliance ADL

Kitchen Kitchen light, fridge, furnace, boiler, dishwasher Cooking, eating
Toilets Toilet light, heater Continence

Bathroom Bathroom light, hairdryer, heater Grooming
Other room Light of the room Other

Zhang et al. [51] used a Latent Dirichlet Allocation (LDA) algorithm [52] to create a
model of the use of household appliances that allowed them to deduce the activities carried
out by the occupants, starting from their absorption profiles. It is a probabilistic model
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used mainly for text processing, which deduces the semantic meaning of a document by
analyzing the similarity between the distribution of the terms of the document with that
of a specific topic. In a similar way, given a certain time interval, the states in which the
appliances are found in that time interval are used to infer the activity (or activities) in
progress. A system of this type can be created using the information of an NILM system,
allowing the costs and intrusiveness of the sensors to be minimized.

An AAL system makes the home smart by digitizing it through smart sensors and
appliances that form a network capable of providing automated services to the user based
on their lifestyle. To provide these services, the house equipped with an AAL system
can use information from NILM systems, such as those described above, to primarily
monitor the resident’s activities. A general scheme of the system is shown in Figure 10. The
system is therefore able to analyze the data collected on the activities of the resident in his
environment. Based on this analysis, the digital environment can offer tailor-made services
for the resident and assist them in their daily life. Data from the NILM-based AAL system
are transmitted over Wi-Fi to the homes of family members, friends, healthcare assistants,
and doctors. In this way, it is possible to constantly monitor the health of the resident. In
the event of an accident or emergency, rapid assistance can be provided through direct
communication between the participants. It is evident that an NILM system designed for
AAL applications must be able to determine the state (ON or OFF) of the various monitored
devices. In this case, it is no longer necessary to know the absorbed electrical quantities.
For example, in [53,54], systems are proposed that are able to infer the ADLs starting from
the power profile of each appliance, identifying normal and anomalous patterns. This
type of approach is limiting compared to the systems described previously as it would
not allow reactive interventions in a short time. Therefore, an easy-to-install system that
allows the status of the various electrical loads to be analyzed is ideal for an application of
this type [15].
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6. Conclusions and Final Remarks

The technology of NILM systems was mainly developed to achieve different forms of
energy saving. These systems can be used efficiently for other purposes as well. The work
presented allows the reader to understand how NILM systems can be used in measurement,
diagnostics, and automation systems.

In this work, the advantages and disadvantages of the various NILM applications, in
both the residential and industrial sectors, were critically analyzed. The most significant
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works for each application were introduced, their objectives were defined, and the specific
characteristics required for the NILM system were identified. In particular, in energy
management and DR applications, the importance of high precision in reproducing the
power consumption profiles of the different loads that the NILM must have was discussed.
The NILM for energy management should also give precise indications on the status of
the devices in order to allow correct scheduling. In anomaly detection applications, it is
essential that the NILM system reproduces the profile of the power absorbed by the load
as faithfully as possible, even (or above all) when this profile presents anomalies. In CBM
applications, it is important that the system correctly detects all events, corresponding to
the switching ON and OFF of the monitored loads, and correctly measures the electrical
quantities involved. On the other hand, applications for AAL do not require a precise
determination of the consumption of the various devices and appliances, but rather it is
more important that their status is reported in a relatively short time.
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