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Abstract: This paper presents a new direct maximum power point tracking (MPPT) with a reference
voltage (Vre f ) based on the metaheuristic earthquake algorithm (EA) where the optimization variable
is the Vre f for hard-switching converters. The efficiency and performance of EA-MPPT-Vre f is
compared with the perturb-and-observe (P&O) counterpart technique due to the fact that it is widely
used for commercial products. Static and dynamic responses for both MPPT strategies are evaluated,
which correspond to steady-state oscillations when they are near the maximum power point (MPP),
and the tracking-speed, respectively. The efficiency was evaluated with the EN 50530 standard.
The results show that the new MPPT proposed is a competitive method using the EA to obtain the
optimal voltage reference. From static results, EA-MPPT VP presented a better efficiency of 5.13%
and 3.23% for European and California energy commission (CEC) efficiency, respectively. Whereas,
from dynamic results, MPPT-Vre f techniques presented an efficiency from 95.13% to 99.91%, and
99.01% to 99.91% of the total power of the PV system for P&O and EA strategies, respectively.

Keywords: MPPT; FPGA; DC-DC converter

1. Introduction

Since 1995, global energy demand has been increasing by 53% (according to the
average annual growth rate of just 1.87∼2.1% of total energy supply and consumption).
This high demand has generated a depletion of fuel resources, which supply about 80% of
total energy consumed [1]. On the other hand, the use of fossil fuels deteriorates air quality,
contributing to the global warming effects. For this reason, renewable energies have been
adopted to reduce the use of fossil fuels to decrease carbon emissions [2].

Therefore, renewable energy has become more necessary than ever to discover the
alternative of energy to supply the total energy demand. Between all renewable energies
such as wind, geothermal, hydro, solar and biomass power, solar power is the most
common for electricity generation, e.g., electric vehicles stations, energy storage systems,
streetlights, heating equipment, home electricity, renewable energy hybrid system, etc. [3].

Generally, photovoltaic (PV) cells are the most used technology to convert solar energy
into electricity due to advantages such as low maintenance cost, no fuel consumption (zero
carbon emission), no moving parts and self-generated noise, and that they can be installed
in many places. However, the limitations of PV system include low conversion efficiency
and the searching for the maximum power point (MPP), determined by the surrounding
environment [4,5]. To deal with the difficulties resulting from low-efficiency conversion,
strategies have been developed to obtain the maximum power from PV systems. There are
two main ways to track the solar energy: (1) mechanical, where the sun position is tracked,
and (2) electrical, where the maximum point of voltage and current is searched for; this
strategy is known as maximum power point tracking (MPPT) [6]. To find the MPP of PV
systems is difficult due to its non-linear voltage-current (V-I) characteristic curve which can
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be modified by solar irradiance, ambient temperature, wind speed and other environment
parameters [7]. Therefore, to operate in the MPP of the PV system, it is necessary to insert
a converter direct current-direct current (DC/DC) or direct current-alternating current
(DC/AC) between the PV and electric load. The MPPT algorithm must be embedded into
the converter in order to continuously adapt the input load impedance of the PV system to
track the instantaneous MPP [8].

According to [9], there are two main categories of MPPT techniques: (1) direct, and
(2) indirect. Direct methods can work without any knowledge of PV system characteristics.
By sensing the voltage and current of the PV system, it is possible to track the MPP. Sampling
and modulation techniques are two kinds of direct control strategy. In sampling techniques,
voltage and current are collected and compared with the present and past values in order
to locate the MPP, while in modulation techniques, automatic oscillations are generated
as a feedback signal to find the MPP. On the other hand, the indirect methods employ
numerical estimation using technical data from the PV array and parameter values. Thus,
they cannot precisely track the MPP of PV array at any irradiance and cell temperature of
PV system given [10]. Similar classifications are presented in [10,11] where MPPT methods
are classified into three groups: (1) conventional and direct control techniques, (2) indirect
control methods, and (3) soft computing-based approaches. In [5], identical classification is
presented: (1) conventional methods, (2) intelligent techniques, and (3) nature-inspired or
metaheuristic algorithms.

Based on conventional/direct methods, the perturb and observe (P&O) technique is
the most used due to its easy structure and implementation; several recent implementations
and improvements are presented in the following studies [12–22]. This algorithm presents
the following behaviors: first, the PV voltage is perturbed; then, the power of PV system
is observed to compare with the previous one. If the power increases, it means that the
operating point has moved toward the MPP, and the perturbation must be continued in
the same direction. Otherwise, if the power from PV system decreases, the perturbation
must be changed and reversed due the operating point moving away from the MPP.
Nevertheless, the disadvantages of this method are: (1) when is near of the MPP presents
steady-state oscillations, (2) poor efficiency in cloudy days, and (3) slow response to rapid
changes in weather conditions. Another direct technique is the incremental conductance
(IC) presented by [23–29] in recent years. This algorithm is based on the incremental
(dI/dV) and instantaneous conductance (I/V) of the PV system in order to detect the slope
of the power-voltage (P-V) curve. If the incremental is equal to the negative instantaneous
conductance, it means that the algorithm reaches the MPP. On the other hand, if the
incremental conductance is greater or less than instantaneous, the operating point is at
the left and right side of the MPP, respectively. The main weakness of this algorithm is
the uncertainties due to the noise of components and when the solar irradiation increases.
For the fractional open-circuit voltage (FOCV) method [30,31], it is based on the relationship
between the open-circuit voltage (Voc) and the voltage at maximum power (Vmp) of the PV
system. Commonly, a constant Kpv is presented which is the voltage factor with the value
in the range 0.7–0.9. The Voc is measured periodically disconnecting the load; then, the Vmp
is estimated using the Kpv which is typically specified in the panel’s datasheet. However,
the frequency and duration to estimate the Vmp can be improved when it is high, but the
power loss is increased.

Regarding the MPPT intelligent/indirect methods, the most used techniques (in
recent years) for MPPTs are fuzzy-logic (FL) [32–51] controller, artificial neural networks
(ANN) [52–60], and Kalman Filter (KF) [61]. In FL, the model of the system is not necessary
and this is an important advantage due to the non-linearities and uncertainties presented in
a model. Therefore, steady state and dynamical performance is improved by FL. However,
the qualitative reaction of the system to different inputs must be prior known by the
designer. Moreover, these implementation methods present lack for adaptivity with various
operating points of PV systems [50]. On the other hand, ANN provides accurate and robust
PV modeling and can deal with uncertain weather conditions if it is well trained. With these
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considerations, ANN provides a very fast and precise MPPT to locate and track the MPP.
Nevertheless, the main drawback is that the ANN needs to be trained recurrently due to
time/temperature variations of the PV arrays characteristics. Thus, the ANN accuracy
depends on the ANN being comprehensively trained [62]. According to KF, this method
applies two steps: (1) prediction and (2) correction. For MPPT application, the first step of
KF is estimate the Vmp. The second step is to correct the estimation by calculating the error
between the PV voltage measured and the estimated Vmp. This process is iterative until the
error is close to 0. However, the main disadvantage is that KF uses the slope of P-V curve,
and it is impossible to estimate the global MPP (GMPP) [11]. Moreover, implementation of
these techniques in large-scale PV systems generates difficulties on the control system when
it is implemented. Furthermore, the implementation of these techniques is very complex
and demands high-level experience of user [63].

In [64], metaheuristic optimization algorithms supply a better switching between find-
ing an approximate optimal solution and convergence speed using less hardware resources.
Besides, these algorithms adopt strategies developed from artificial intelligence (AI), oper-
ation research, and soft-computing, which empower the optimization strategies that are
convenient for conventional or high complex optimization problems [65]. According to [66],
metaheuristic optimization algorithms provide a better trade-off. Moreover, [67] highlights
that metaheuristic algorithms have been implemented to improve the performance to track
the MPP in PV system. This can be useful to reduce the sensitivity of the algorithm to
these parameters that do not allow reaching the global optimum or the solution stuck in a
local optimum. Several metaheuristic MPPT methods are presented in the last year, such
as particle swarm optimization (PSO) [68–77], genetic algorithm (GA) [78–82], differential
evolution (DE) [27,83,84], cuckoo search optimization (CSO) [4,85,86], ant colony optimiza-
tion (ACO) [87–89], firefly algorithm (FA) [90,91], chaotic search (CS) [92], artificial bee
colony (ABC) [93], grey wolf optimizer (GWO) [94], bat algorithm (BA) [95], shuffled frog-
leaping algorithm (SFLA) [96], monkey king evolution (MKE) [97], salp swarm algorithm
(SSA) [98], remora optimization algorithm (ROA) [67], and EA [99]. Generally speaking,
MPPT metaheuristic approach algorithms show improvement in tracking speed, tracking
accuracy, and robustness. In addition, the speed of convergence and tracking accuracy can
be improved by providing compensation using the exploration and exploitation features of
metaheuristic algorithms. Furthermore, these algorithms do not need any pre-set configu-
ration and can be applied directly to any PV system without having information about its
characteristics. However, the main drawback of these algorithms is their higher probability
of falling into a local optimum in the tracking process which results in the inability to reach
the global peak. Figure 1 shows the chronology of the MPPT studies carried out in recent
years, where metaheuristic algorithms were used in most cases.
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Figure 1. Timeline of different MPPT techniques in recent years.
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Therefore, this work presents an MPPT strategy based on the EA metaheuristic opti-
mization algorithm presented in [100]. In addition, to improve performance, a proportional-
integral (PI) controller is integrated. First, the EA-MPPT estimates the optimal voltage that
provides the maximum power of the photovoltaic system. Then, the optimum voltage is
sent to a PI controller as a reference voltage (Vre f ) which modifies the duty cycle of the
DC/DC converter to achieve this voltage. Besides, in order to compare the efficiency of
the proposed EA-MPPT, the P&O-MPPT strategy are implemented due that is the most
MPPT used in commercial products with the IC algorithm, according to [11]. Adition-
ally, when P&O and IC are evaluated with EN50530 standard test, results indicate similar
performance [17,18].

Another key factor to consider from the literature review is that many MPPT algo-
rithms have been proposed with different techniques and strategies in order to improve
the accuracy and performance of static and dynamic response. In addition, in some studies,
different strategies of different classifications have been combined to hybridize the behavior
between them. In these works, authors compared the MPPT algorithms using step changes
in the irradiance or temperature of the PV systems. These steps are not standardized and it
is difficult to compare their performance objectively [8]. Hence, in this work, the proposed
EA-MPPT algorithm is evaluated with the standard test EN 50530 which is composed of
two tests: static and dynamic. This test evaluates the efficiency of the MPPT algorithms
analyzing the dynamic response which correspond to the performance of the tracking speed
and the static response which is determined by the steady-state oscillations when they are
near of the MPP. Moreover, the standard test EN 50530 evaluates the MPPT efficiency ac-
cording to real-world weather conditions from different regions such as: (1) middle-Europe
climate [101] and (2) US south-west regions [102].

The main contribution of this paper can be summarized as follows:

• A new MPPT based on EA algorithm is proposed with an improvement that integrates
a PI controller.

• We evaluate the proposed EA-MPPT strategy with the EN 50530 standard test that
uses real-world weather conditions.

• We implement the proposed EA-MPPT embedded into a LabVIEW-FPGA frame in
order to explore computational parallelism and compare it with the P&O counterpart.

This paper is organized as follows: Section 2 explains the P&O-MPPT strategy with
reference voltage, then Section 3 presents the proposed voltage reference-based MPPT
based on EA. Additionally, Section 4 describes the experimental setup and Section 5 depicts
the EN 50530 test to evaluate the efficiency of MPPT strategies in static and dynamic
responses. Finally, Section 6 presents the results and Section 7 concludes this work.

2. Voltage Reference Based MPPT

Conventional MPPT methods are widely used due their simplicity to implement,
low computational cost, and unnecessary prior knowledge of the PV system. However,
these methods present disadvantages, such as the amount of perturbation which may
produce lost energy when they are near of the MPP (by steady-state oscillations) or decrease
tracking speed (by a small perturb step) when they are in the search of the MPP [11].
Furthermore, their performance decreases when a rapid change in irradiance occurs [62].
Therefore, variable or adaptive perturbance has been proposed to improve the performance
and generate a good trade-off between faster response and steady-state oscillations [103].
Furthermore, P&O could not determine when the MPP is actually reached [104].

Figure 2a presents the basic topology for MPPT controller which is connected directly
to the DC/DC converter. In this case, the duty cycle for pulse-width modulation (PWM)
signal is adjusted by the MPPT controller. In contrast, Figure 2b shows the voltage-based
MPPT method which estimates the voltage reference to be compared with the measured
PV voltage. Then, the result of the comparison is used as an error signal to the PI controller
which adjusts the duty cycle in order to find the MPP from PV system. It is important to
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mention that only the DC/DC converter is presented but it can be combined with more
power electronic components to create specific power electronic devices such as inverters.

(a) (b)

PV array
DC

DC

MPPT

+

-

I V

Vo

-+

I

Duty cycle

PV array
DC

DC

MPPT Control

+

-

I V

Vo

-+

I

Duty cycle

Vref

Figure 2. (a) General topology for conventional MPPT and (b) general topology for voltage reference-
based MPPT.

Voltage Reference Based P&O MPPT Method

The P&O technique is the most well-liked MPPT method due to its simple structure.
Therefore, hardware implementation is easy and has low computational cost. This tech-
nique is an iterative approach, and each iteration perturbs the PV voltage system (Vpv),
and the output power is compared with the previous one. If the power is increasing,
the perturbation will continue, otherwise perturbation is reversed. These perturbations can
be defined as a small variation of duty cycle which generates changes in the response of
the PV system. The use of large or small step-size increases the power oscillations (which
will result in loss energy) or decelerates the tracking speed, respectively, [8]. Another
aspect to be considered is the sampling rate, which also contributes to the performance
of MPPT [105]. In [106], it is suggested that the sampling rate should be selected by the
dynamic response of the DC/DC converter.

According to [107], the issues mentioned above can be improved by implementing a
reference voltage (Vre f ) control. In this case, the MPPT algorithm estimate the disturbance
signal (Vre f ) to send through the PI controller as an input reference which regulates the
manipulation variable (duty cycle) for the DC/DC converter. Moreover, Figure 3 depicts
the flowchart of P&O based on Vre f . The strategy is similar to the original P&O, where
voltage and current of PV system is measured to estimate the present power and compare
it with the previous one. Then, the present PV voltage is compared with the last voltage to
make a decision which consists of increasing or decreasing the Vre f . The Vre f is the input
reference to the PI controller in order to update the manipulation variable (duty cycle) to
change the PV voltage with the DC/DC controller.
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Figure 3. Flowchart of P&O based on voltage referenced for MPPT.

3. MPPT-EA Reference Voltage
3.1. Overview of EA

The EA algorithm is widely presented and implemented in many applications and
platforms (as reported in [65]). Moreover, it is the first geological metaheuristic algorithm
inspired by the earthquake phenomenon. The nature of earthquake is composed of P and S
waves which the P-wave occurs first due to its higher speed than S-wave [100].

The P-wave is transmitted by any medium (solid, gas, and liquid) causing compression
and tension of the medium and their velocity depends on earth material compressibility.
Thus, volume changes occur when these characteristics are presented (Figure 4a). On the
other hand, the transmission of the S-wave depends on rock elasticity. Its movement causes
epicenters which are moved up and down perpendicular to the wave propagation direction
(Figure 4b) [108].
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(a) (b)

Dilatation
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Particle motion
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motion

Figure 4. (a) P-wave and (b) S-wave from earthquake phenomenon.

Hence, mathematical estimation of P and S-wave is made in (1) and (2),

vp =

√
λ + 2µ

ρ
, (1)

vs =

√
µ

ρ
, (2)

where vp and vs are the P- and S-wave, respectively; λ and µ are the ground earth materials
which are called Lamé parameters, and ρ is the density of the earth material (according
to [100]). Furthermore, the selected values from Lamé parameters for optimal performance
are λ = µ = 1.5 GPa. Supplementary to the velocity’s estimation, the densities of earth
materials are taken from a random value in a range between 2200 and 3300 kg m3 [65].

Considering the use of two different velocity equations in EA, in [100] introduces the
concept of S-range (Sr) in order to define whether to use vp or vs. The Sr parameter defines
the range situated near the global best epicenter (solution). Therefore, each epicenter uses
vp (exploration) or vs (exploitation) to update its position depending on which zone (in or
out of Sr range) is located previously.

3.2. Proposed EA-MPPT-Vre f

In [99], a first MPPT adaption based on EA metaheuristic optimization was presented.
The authors extrapolated the dynamic optimization behavior from original EA to generate
a MPP tracker with the EA feature. In simple terms, to find the MPP, it is necessary that the
epicenters are moving around to provide a good optimal solution near the MPP. Hence,
in order to ensure this dynamic, a searching flag (S f lag) was implemented to introduce the
duty cycle (the one that collects the most power) to the searching positions, achieving a
trade-off between tracking speed and steady-state oscillations when the MPP is reached.
Another important aspect for this adaptation is the use of the vs that is estimated with (2),
to update the epicenter’s position which is the reference voltage (Vre f ).

Regarding what is proposed in this work, the MPPT-EA algorithm estimates the op-
timal voltage located in Vmp which, later, is the input for the PI controller as Vre f . The PI
controller then modifies the duty cycle of the PWM signal which is the manipulation vari-
able to eliminate any errors. Figure 5 depicts the flowchart of the proposed MPPT which
estimates the Vre f with the behavior of EA algorithm that is adapted to PV system require-
ments. Then, this algortihm returns the best global epicenter (Vre f ) after evaluating the
epicenter and analyzing the response of the PV systems before exploring the next epicenter.
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Figure 5. Flow chart of the Earthquake Algorithm-based Voltage Referenced MPPT.

4. Testbed System

The testbed system used for this work uses the platform for a request paten in [109].
This research facility was created to analyze energy consumption, storage, and generation
patterns by conventional methods (i.e., fossil fuels) and renewable energies. Therefore,
any energy consumption pattern can be reproduced and analyzed for distributed genera-
tion systems.

The experimental system for this work consists of four main blocks: (1) panel system,
(2) DC/DC converter, (3) dynamic load, and (4) control and acquisition system. The PC
host interacts with the acquisition and control systems, besides, sends virtual instrument
software architecture (VISA) through standard commands for programmable instruments
(SCPI) in order to change the parameterization of panel system (for the photovoltaic array
simulator) and dynamic load. This interaction is achieved through a managed Ethernet
switch which all devices are connected (as shown in Figure 6). The acquisition system
captures five signals from the process system. The signals are: (1) voltage of the PV
system, (2) current of the PV system, (3) voltage of load, (4) current of load, and (5) duty
cycle. Moreover, the photovoltaic array simulator, when in the EN50530 test, storages the
following data: (1) voltage at maximum power (Vmp), (2) current at maximum power (Imp),
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(3) maximum power (Pmp), (4) PV voltage, (5) PV current, (6) PV power, (7) measured
energy, (8) MPP energy, and (9) MPPT efficiency.

PWM signal

PC host

NI 9401NI 9242 NI 9227

 FPGA
cRIO 9030

Dynamic Load

Switch

2461 Sourcemeter
Photovoltaic Array Simulator

DC/DC Buck Converter

N8937APV

Cisco Catalyst 3750 V2

Vpv

-

Ipv

Vload
+

-

Iload

Ethernet signal

Monocrystalline Solar Panels
5V-1A 5V-1A

+

VISA SCPI

VISA SCPI

EA-MPPT-PI

Figure 6. Testbed components interaction.

4.1. Solar Panel System

The experimental panel system is divided into two parts: (1) two monocrystalline
solar panels and (2) photovoltaic array simulator. The monocrystalline solar panels consist
of two-panel solar in series array of 5W each panel, with the following characteristics:
open-circuit voltage (Voc) = 6 V, short-circuit current (Isc) = 1.1 A, voltage at max. power
(Vmp) = 10 V, current at max power (Imp) = 1 A, and maximum power (Pm p) = 10 W.

Figure 7 shows the implemented testbed to characterize the panel solar system. Four
halogen lamps of 500 W each were used to emulate the solar irradiance. Moreover, a dy-
namic load was configured to sweep the load voltage to find the curves (I-V and P-V).

4.2. PV Array Simulator

To standardize the experiments, the photovoltaic array simulator (N8937APV, Keysight
Technologies, Santa Rosa, CA, USA) was used to reproduce the output characteristics of
a photovoltaic array allowing test maximum power point tracking (MPPT) algorithms
and inverter efficiency (Figure 8). The photovoltaic array simulator has characterizations
of photovoltaic panels with different standards such as: IEC60904, IEC61727, EN50530,
and Sandia National Laboratories Photovoltaic Systems. Moreover, the software Keysight
SAS control was used to manipulate the photovoltaic array simulator to evaluate the MPPT
algorithms with the EN50530 dynamic and static test. In Section 5, the EN50530 standard
test will be explained.
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Two-panel solar (series array)

4 halogen lamps

of 500 W ea.

Figure 7. Solar panel experiment to obtain the V-I and V-P curves.

Figure 8. Photovoltaic array simulator N8937APV.

For this project, European Standard EN 50530 for solar array terrestrial model was
selected to reproduce in the PV array simulator with the real characteristics from PV real
system. This model is estimated by (3)–(5) and it can be found in [110]:

I0 = Isc(1 −
Imp

Isc
)

1

1−
Vmp
Voc , (3)

Caq =

Vmp
Voc

− 1

ln(1 − Imp
Isc

)
, (4)

I = Isc − I0(e
V

VocCaq − 1), (5)

where I0 and Caq are parameters used for this model and V and I are the estimated voltage
and current of the PV system model. Isc, Voc, Vmp, Imp are parameters of the aforementioned
characteristics of the PV system.

Figure 9a,b shows the comparison between the solar panel system (two monocrys-
talline solar panels) and the photovoltaic array simulator (PVsim).
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Hence, Figure 10 presents the I-V and P-V curves from PVsim with different irradiances
and temperatures.
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Figure 10. V-I and V-P curves representation of model from PVsim.

4.3. DC/DC Converter

For this work, a DC/DC buck converter was used to evaluate the Vre f MPPT. This
buck converter was designed in [111] using EA optimization to generate a novel design
methodology for inductance selection. The novel methodology and the implementable
solution showed the feasibility of this approach. Moreover, the proposed solution reached
the expected performance for fast voltage response with a low current slope with a low
ripple inductor’s voltage and current.

4.4. LabVIEW FPGA

To understand the results and the implementation limitations from Vre f MPPT-oriented
study, it is important to emphasize the main features from the selected hardware for the
embedded MPPT. Figure 11 depicts the main components of the cRIO-9030 hardware.
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To exploit the parallel processing of FPGA, four loops were used
(Figures 12–15): (1) PWM signal generation, (2) data acquisition and MPPT-Vre f execution,
(3) PI controller for Vre f , and (4) sending data for data collection through FIFOs (First-In,
First-Out).

Clock

40 MHz

CPU

Intel Atom E3825

1.33 GHz

2 Ethernet Port

10, 100, 1000

Mbps

2 Serial Port

(RS-232 & RS-485)

115,200 bps

3 USB Port

(Device & Host)

480 Mb/s

FPGA

Xilinx Kintex-7

7K70T

Flip-flops

(Slice register)

82,000

6-input

LTUs

41,000

DSP slices

240

RAM

4,860 kbits

DMA

channels

16

Logical

interrupts

32cRIO-9030

National Instrument

Figure 11. cRIO-9030 LabVIEW FPGA features.

Figure 12 shows the while loop used for PWM signal generation. In this case, a signal
generation function from LabVIEW FPGA features was used for the PWM signal. Then,
the signal value was transformed into Boolean value to send into one Digital Output (DO)
channel from NI 9401 digital module.

frequency (periods/tick)

Duty

Loop for PWM signal

Figure 12. Loop for PWM signal creation.

Regarding data acquisition and MPPT-Vre f execution, NI 9242 module was used to
read the current from PV array or PV simulator and DC/DC buck converter output. The NI
9227 module reads the voltage from PV array or PV simulator and DC/DC converter
output. Both modules have 24-bit ADC resolution and 50 kS/s sampling rate. In addition,
for each signal, root mean square (RMS) function was applied to send to the MPPT-Vre f .
When the MPPT starts, all variables are initialized to start the estimation of the first Vre f .
The estimation begins when RMS function sends a boolean signal that its process has
finished and Vre f is estimated according to the MPPT algorithm flowchart (P&O and EA)
as seen in Figure 13.

VrefMPPT

10000000000

J

0000000000

Sflag

10000000000

2222222222

EpicVrefs

S-vel

0000000000

GlobalBest

Epicenters

2222222222

BestVref

10000000000

0000000000

2222222222

Pk-1

1111111

2222222222

DeltaVrefs

 True 

J

Epicenters
MPPT

UpdtMeasure

StartMPPT?

TickMPPT

Vpv

Ipv

Vload

Iload

Ppv

Pload

UpdtMeasure

TicskReadV&I

StartMPPT&PI?

StartMPPT?

MAN/AUTO

 True 

Read signal from Buck Converter and Estimate RMS

Update the global best

 True 

 1 

 True 

 True 

If StartMPPT? changes its state, 

then resets P&O and EA parameters

If UpdtMeasure has been done, 

then MPPT-Vref executes

If MPPT =    1  means 

that EA    -  Vref
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EpicVrefs
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0000000000

GlobalBest

GlobalBest

BestVref

 True 

 0 [0..3]

Figure 13. Loop for Data Acquisition and MPPT-Vre f execution.

Once the Vre f is estimated, the PI controller is responsible for rectifying the PV voltage
with the Vre f . Figure 14 depicts the loop for control of referenced voltage. The duty cycle is
estimated by the PI controller and send it to the loop for PWM signal generation.
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Duty

TickControl

PI

VrefMPPT 2
Vpv

gains

output range

reset? (F)

errorExt

 True MAN/AUTO

TickControl Loop for PI control

Figure 14. Loop for Vre f control.

Finally, a loop is necessary for sending data through FIFOs (LabVIEW FPGA) to the
PC host in order to storage the following data: (1) PV voltage, (2) PV current, (3) load
voltage, (4) load current, and (5) duty cycle.

TicksWriteData

Vload

Vin

Write

Element

Timeout

Timed Out?

Iin

Write

Element

Timeout

Timed Out?

Vout

Write

Element

Timeout

Timed Out?

Iout

Write

Element

Timeout

Timed Out?

DC

Write

Element

Timeout

Timed Out?

Iload

Vpv

Ipv

100

100

100

100

Duty
100

Loop for Send Data through FIFOs

Figure 15. Loop for sending data through FIFOs.

5. EN50530 Test

To evaluate the performance of MPPT-Vre f algorithms, an EN 50530 test was performed
using the PV simulator and Keysight SAS Controlr software (Version 2021, Keysight
Technologies, Santa Rosa, CA, USA). Figure 16 shows the interface for dynamic testing,
which consists of 16 sub-tests with separate times of ramps and slopes; the total duration of
the test is 6 h.

Regarding the static EN 50530 test, Figure 17 visualizes the interface where the current
I-V and P-V curves and the present MPP is represented in a red circle. The total evaluation
is composed of 24 sub-tests, which are divided by 3 MPP voltages: (1) 12.5 V, (2) 10 V,
and (3) 8.4 V. These MPP voltages were selected according to the curves obtained in Figure 6,
where irradiance is from 200 to 1000 W/m2. The total duration of the static test is 6 h.



Energies 2022, 15, 8971 14 of 24

Figure 16. Keysight SAS Control Interface for Dynamic Test.

Figure 17. Keysight SAS Control Interface for Static Test.

5.1. Dynamic Test

Figures 18 and 19 depict the dynamic test for different ranges of irradiance. Each test
starts with a waiting time of 300 s. After, a different number of ramps with dwell time
of 10 s (up and down) and different slopes are defined as shown in Figure 18 where the
irradiance range is from 100 to 500 W/m2.

The second group for dynamic test is described by Figure 19, the irradiance range is
from 300 to 1000 W/m2. They have 10 ramps and dwell time is 10 s with different slopes.

Finally, Figure 20 depicts the last dynamic test, which is defined by one ramp with
dwell time of 30 s, and slope of 0.1 W/m2 per second.
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Figure 18. Dynamic test representation from 100 to 500 irradiance.
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Figure 20. Dynamic test representation from 10 to 100 irradiance.

5.2. Static Test

From the static test, Table 1 shows the MPP voltages selected (12.5, 10.0 and 8.4 V) for
every test. Each MPP voltage is evaluated at different irradiances: 5, 10, 20, 25, 30, 50, 75,
and 100%; and each sub-test has a duration of 600 s, with a setup time of 300 s.
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Table 1. Statistic test parameters.

MPP Voltage (V) Irradiance (%)

12.5
5, 10, 20, 25, 30, 50, 75, 10010.0

8.4

6. Results

To compare both MPPT-Vre f algorithms from EN 50530 standard test,
Tables 2 and 3 present the MPPT efficiency for P&O and EA based on referenced volt-
age. In addition, Figures 21–23 present the density plot for P&O and EA MPPT-Vre f which
represents the steady-state oscillations when the MPPT is near of the MPP.

Table 2. EN 50530 static test report.

MPPT
Algorithm

MPP
Voltage

Irradiance (%) European
Efficiency

CEC
Efficiency5 10 20 25 30 50 75 100

P&O 12.5 97.671 76.264 92.949 94.356 94.383 94.813 99.319 99.252 94.402 96.536
EA 98.489 98.095 96.813 99.743 99.774 99.689 99.975 99.868 99.249 99.652

P&O 10.0 91.469 77.385 75.210 81.177 97.992 99.392 98.901 97.325 94.452 96.771
EA 98.855 99.578 99.656 99.760 99.774 99.890 99.936 99.918 99.807 99.878

P&O 8.4 99.227 99.130 99.307 99.344 99.265 99.556 99.367 92.557 99.421 99.042
EA 99.117 99.499 99.812 99.859 99.840 98.948 99.704 99.962 99.340 99.572

6.1. Static Report

The static test evaluates the MPPT performance by measuring two efficiencies: Euro-
pean and CEC. The European efficiency is an averaged operating efficiency over a yearly
power distribution corresponding to middle-Europe climate [101]. Meanwhile, CEC ef-
ficiency models the climates of higher isolations for US south-west regions, according
to [102].

In the case of 12.5 V for MPP, EA-MPPT presents a better efficiency of 5.13% and 3.23%
for European and CEC efficiency, respectively. For the MPP voltage of 10 V, EA-MPPT
enhances the performance in 5.67% for European and 3.21% for CEC efficiency. Finally,
in the specific case of 8.4 V for MPP, both efficiencies are similar (minor variations, <1%).

Density plots for 8.4 Vmp are shown in Figure 21 with the objective of showing the
steady-state oscillations. From the results, the Vre f for each MPPT algorithm presents the
following behavior: mean of 8.48 V and standard deviation of 0.1605 V and mean of 8.74 V
and standard deviation of 0.1860, for EA and P&O, respectively.
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Figure 21. MPPTs behavior in static tests at Vmp = 8.4 V.
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At Vmp of 10 V, steady-state oscillations at low irradiances are more remarkable for
P&O strategy as seen in Figure 22. Results from static test shows that the mean and standard
deviation for Vre f estimation of P&O are 9.99 V and 1.28, respectively. Whereas, the EA
strategy presents 9.98 V and 0.14 V, respectively.
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Figure 22. MPPTs behavior in static tests at Vmp = 10 V.

In the case of 12.5 V for MPP (Figure 23), the average and standard deviation for
P&O are 12.70 V and 1.15 V. On the other hand, EA-Vre f strategy presents 12.32 V and
0.43 V, respectively. Likewise, the density plot depicts more steady-state oscillation for
P&O strategy which is defined by the standard deviation aforementioned.
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Figure 23. MPPTs behavior in static tests at Vmp = 12.5 V.

6.2. Dynamic Report

The dynamic test evaluates the tracking speed for MPP; in this case, Vre f is estimated
by the MPPT algorithm and it is regulated by the PI controller which determined the correct
duty cycle for the DC/DC converter. The results in Table 3 indicate that both MPPT-Vre f
strategies present good performance and efficiency in dynamic responses. Hence, the MPPT
tracking speed is well performed by the PI control loop and the FPGA implementation
strategy.
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Table 3. EN50530 dynamic test report.

Irradiance (W/m2) No. of Ramps Duration (s) P&O Efficiency (%) EA Efficiency (%)

100–500 2 1940 99.905 99.592
3 1560 99.884 99.520
4 1447 99.895 99.824
6 1380 99.892 99.685
8 1374 99.857 99.627
10 1300 99.427 99.630
10 1071 99.129 99.589
10 900 99.039 99.497
10 767 98.755 99.282
10 660 98.325 99.066

300–1000 10 1900 99.571 99.905
10 1500 99.665 99.884
10 1200 99.745 99.895
10 967 99.809 99.892
10 780 99.762 99.857
10 640 99.677 99.427

10–100 1 2320 95.129 99.093

7. Conclusions

In this work, a new direct EA-MPPT strategy based on the EA metaheuristic optimiza-
tion algorithm is used to estimate the optimal voltage to reach the Vmp of the PV system.
Then, to reduce any error, a PI controller is integrated to rectify the optimal estimated
EA-MPPT voltage, which is the Vre f for the PI controller that changes the duty cycle to
achieve this voltage.

To compare and evaluate the performance, the counterpart (direct) method such as
P&O-Vre f MPPT algorithm was implemented and tested because it is the most widely used
for commercial products.

Moreover, a real PV system was experimentally characterized to reproduce the I-V
and P-V curves into the NP8937APV Keysightr PV array simulator to evaluate the MPPT
efficiency using the EN50530 standard test. This standard test was executed to evaluate
the static and dynamic responses of both MPPT direct strategies in real-world weather
condition from different regions.

In addition, these strategies were embedded on an FPGA (cRIO-9030) using LabVIEW
as a programming language and FPGA module to deploy into the device. The main
structure of FPGA implementation consisted of four parallel loops: (1) PWM generation
signal, (2) signal conditioning and MPPT-Vre f estimation, (3) duty cycle estimation from
PI controller, and (4) sending data for data collection through FIFOs.

Overall results show the feasibility of both MPPT-Vre f approach for LabVIEW FPGA
hardware. Meanwhile, from static test results, EA-MPPT presented a better efficiency
of 5.13% and 3.23% for European and CEC efficiency, respectively. Thus, EA-MPPT-Vre f
reduces the steady-state oscillations when it is near of the MPP. On the other hand, dynamic
test results showed that P&O strategy obtained an efficiency from 95.13% to 99.91%, while
EA strategy captured from 99.01% to 99.91% of the total power of the PV system.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial bee colony
ACO Ant colony optimization
ADC Analog-to-digital converter
AI Artificial intelligence
ANN Artificial neural network
BA Bat algorithm
CEC California energy commission
cRIO CompactRIO embedded controller
CS Chaotic search
CSO Cuckoo search optimization
DC Direct current
DE Differential evolution
dI Incremental current
DO Digital output
dV Incremental voltage
EA Earthquake optimization algorithm
FA Firefly algorithm
FIFO First-in, First-out
FL Fuzzy-logic
FOCV Fractional open-circuit voltage
FPGA Field-programmable gate array
GA Genetic algorithm
GWO Grey wolf optimizer
I Current
Imp Current at maximum power
IC Incremental conductance
IEC International electrotechnical commission
Kpv Voltage factor constant
KF Kalman-filter
MKE Monkey king evolution
MPP Maximum power point
MPPT Maximum power point tracking
MPPT-Vre f Reference voltage-based maximum power point tracking
P Power
P&O Perturb and observe
Pmp Maximum power
PC Personal computer
PI proportional-integral controller
PSO Particle swarm optimization
PVsim Photovoltaic array simulator
PWM pulse-width modulation
RMS Root mean square
ROA Remora optimization algorithm
S f lag Searching flag
Sr S-range
SAS Solar array simulator
SCPI Standard commands for programmable instruments
SFLA Shuffled frog-leaping algorithm
SSA Salp swarm algorithm
US United states
V Voltage
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Vmp Voltage at maximum power
Voc Open-circuit voltage
Vpv Voltage of photovoltaic system
Vre f Reference voltage
vp Velocity of P-wave
vs Velocity of S-wave
VISA Virtual instrument software architecture
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