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Abstract: Hydrogen is a promising future fuel to enable the transition of transportation sector toward
carbon neutrality. The direct utilization of H2 in internal combustion engines (ICEs) faces three major
challenges: high NOx emissions, severe pressure rise rates, and pre-ignition at mid to high loads.
In this study, the potential of H2 combustion in a truck-size engine operated in spark ignition (SI)
and pre-chamber (PC) mode was investigated. To mitigate the high pressure rise rate with the SI
configuration, the effects of three primary parameters on the engine combustion performance and
NOx emissions were evaluated, including the compression ratio (CR), the air–fuel ratio, and the spark
timing. In the simulations, the severity of the pressure rise was evaluated based on the maximum
pressure rise rate (MPRR). Lower compression ratios were assessed as a means to mitigate the auto-
ignition while enabling a wider range of engine operation. The study showed that by lowering CR
from 16.5:1 to 12.5:1, an indicated thermal efficiency of 47.5% can be achieved at 9.4 bar indicated
mean effective pressure (IMEP) conditions. Aiming to restrain the auto-ignition while maintaining
good efficiency, growth in λwas examined under different CRs. The simulated data suggested that
higher CRs require a higher λ, and due to practical limitations of the boosting system, λ at 4.0 was
set as the limit. At a fixed spark timing, using a CR of 13.5 combined with λ at 3.33 resulted in an
indicated thermal efficiency of 48.6%. It was found that under such lean conditions, the exhaust
losses were high. Thus, advancing the spark time was assessed as a possible solution. The results
demonstrated the advantages of advancing the spark time where an indicated thermal efficiency
exceeding 50% was achieved while maintaining a very low NOx level. Finally, the optimized case
in the SI mode was used to investigate the effect of using the PC. For the current design of the
PC, the results indicated that even though the mixture is lean, the flame speed of H2 is sufficiently
high to burn the lean charge without using a PC. In addition, the PC design used in the current
work induced a high MPRR inside the PC and MC, leading to an increased tendency to engine
knock. The operation with PC also increased the heat transfer losses in the MC, leading to lower
thermal efficiency compared to the SI mode. Consequently, the PC combustion mode needs further
optimizations to be employed in hydrogen engine applications.

Keywords: hydrogen combustion; spark ignition; pre-chamber combustion

1. Introduction

The transportation sector is one of the main contributors to greenhouse gas (GHG)
emissions, which has promoted substantial research and development. The demand
for passenger and cargo transport is increasing rapidly, while the net zero emission by
2050 scenario requires a 20% decrease in the transport sector emissions by 2030 [1]. As a
result, research efforts are now focused on employing renewable fuels and more efficient
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engines to reduce the carbon footprint. The hydrogen-powered internal combustion engine
is gaining popularity due to its potential to achieve high brake thermal efficiencies of
over 45% with emissions less than the EURO 6 standards without any after-treatment by
utilizing lean (λ > 2.5) operation [2–11]. The high auto-ignition temperature and Research
Octane Number (RON ≥ 130) [12] of hydrogen compared to standard fuels make it a
promising candidate fuel to mitigate the knocking tendency. However, its minimum
ignition energy is lower than most hydrocarbon fuels, implying that hydrogen can be easily
ignited by hot spots or residues in the combustion chamber. Studies with a pressure in
the range of 0.2–1 atm and temperatures varying between 273–373 K have shown that the
minimum ignition energy of hydrogen–air mixtures has an inverse relation with the square
of pressure and with temperature [13]. If these trends are extrapolated to higher pressure
and temperature, the minimum ignition energies of hydrogen–air mixtures will likely be
significantly lower than reported for normal engine temperatures and pressures.

Having low minimum ignition energy may result in pre-ignition, which is defined
as combustion during the compression stroke before the desired ignition timing. This
may lead to a loss of control over combustion phasing, heavy knocking, and in extreme
cases, mechanical failure of the engine. Although knock and pre-ignition have a nearly
indistinguishable global impact, the causes of the two phenomena are vastly different [2].
Unlike knock, pre-ignition can be prevented with the proper engine design but knock
mostly depends on the maximum compression ratio that can be used with a certain fuel [14].
Another difference is that knock can be mitigated by retarding the spark timing, while
pre-ignition cannot be controlled in such a way.

The minimum ignition energy for hydrogen is highly sensitive to the air–fuel ratio as
the stoichiometric condition (λ = 1) is approached from the lean side (λ > 1). This tendency
is responsible for the experimentally observed fact that operating an H2-ICE at or near the
stoichiometric state in the absence of pre-ignition events is extremely challenging. As a
result, for practical reasons, the minimum λ and peak power output can be restricted by the
pre-ignition limit. The pre-ignition limit depends mainly on the engine specifications and
operational conditions, of which consistent patterns have been discovered. For instance, it
has been reported that the λ limit to prevent pre-ignition grows monotonically when the
compression ratio (CR) [15–17] and mixture temperature are increased [16]. Moreover, the
engine speed has also been demonstrated to influence [15,17], although the trend is more
complicated owing to the associated effect of the residual mass fraction.

Hydrogen has a large flammability range of 0.14 ≤ λ≤ 10 at 1 atm and 298 K, compared
to that of gasoline in the range of 0.25 ≤ λ ≤ 1.42, implying that a hydrogen internal
combustion engine will have more stable operation in a highly diluted environment,
potentially leading to lower emissions and fuel consumption. One of the most researched
modes of H2-ICE is the port-fuel injection spark ignition (PFI SI) engine. Das [18] and
White et al. [2] examined the performance and control techniques of this engine mode
in depth, and reported that operating the engine under ultra-lean conditions (λ ≥ 2) can
reduce NOx emissions to less than 100 ppm without the need for after-treatment. When
operating at supercharged intake pressures of 2.6 bar, Nagalingam et al. [19] published data
indicating values below 100 ppm for λ > 2.5. Natkin et al. [20] found 90 ppm emissions at
λ = 4, which is similar. Ford’s supercharged engine was operated at a leaner conditions
of λ = 4.34 to achieve emissions of 3–4 ppm [20]. The use of pure H2 in SI engines have
been extensively studied in literature [21–24]. Moreover, H2 is also used to guarantee stable
operation for different fuels such as, gasoline and compressed natural gas [25,26]. The H2
addition lowers cycle-to-cycle variability and increases the lean-burn limit because of its
low ignition energy and rapid flame speed. Thus, the use of pure H2 permits high dilution
rates, achieving very low NOx emissions at lean and ultra-lean mixtures while keeping
acceptable combustion stability.

The use of H2 in a homogenous charge compression ignition (HCCI) mode was
investigated thoroughly by [27] where high compression ratios ranging from 20:1 up to
45:1 under various air–fuel ratios was studied. It was found that with no charge preheating,
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a very high compression ratio was required to reach the auto-ignition temperature of
H2. Under ultra-lean conditions (λ ≥ 2), it was not possible to reach the auto-ignition
temperature of H2 using a CR < 26:1.

The use of an ultra-lean mixture is an effective strategy to further reduce emissions
and improve fuel consumption. It has also been proven that lean mixtures will improve
the indicated thermal efficiency by increasing the specific heat ratio, reducing heat transfer
losses, and allowing for higher compression ratios to be used. Nonetheless, the ultra-lean
mixture makes it challenging to ignite the charge, which could result in high incomplete
combustion losses or misfires in more severe cases. In such a situation, pre-chamber
combustion is considered a suitable solution to achieve stable combustion [28–30].

The pre-chamber (PC) consists of a spark plug that ignites the mixture in a small
cavity, resulting in high temperature and pressure jets, which in turn travel through orifices
to the main chamber leading to spatial ignition [31,32]. The flame propagation distance
is shortened by the rapid penetration and dispersion of the hot turbulent jet. The main
chamber (MC) combustion process is improved by the unburned intermediate products as
well as the enhanced turbulence level resulting from the hot jet [33–36].

Depending on how the fuel is supplied, PCs are classified as active or passive. In
the passive system, all the fuel is provided through the intake port into the MC, while in
the active PC, an additional fuel injector provides a fraction of fuel into the PC to create
local stratification [37–41]. Passive PCs have been used in gasoline engines in favor of
simplicity, as a means to increase the combustion speed, reduce knocking tendency, and
allow for higher compression ratios. However, one of the major limitations of the passive
PC is that the lean burn limit cannot be significantly extended compared to conventional SI
engines [38,42,43]. The active PC is thus considered to achieve the lean limit extension by
the enrichment in the PC [44].

The objective of the present study was to identify the optimal operation modes to
enable hydrogen-fueled engines by employing various lean-burn strategies. Starting with
the SI engine mode as the baseline case, the effects of the overall air–fuel ratio, compression
ratio, and spark timing on the auto-ignition tendency were numerically investigated in
terms of combustion, thermal efficiency, and NOx emissions. Subsequently, the use of
pre-chamber under the same load conditions was assessed in comparison. Both active
and passive PCs were used and investigated with different compression ratios, and their
relative performance metrics were examined.

2. Numerical Setup and Model Validation

CONVERGETM 3.0 [45] was used to conduct three-dimensional CFD simulations.
For turbulence modeling, the original formulation of the RNG k-ε model was used [46].
The O’Rourke and Amsden [47] model was used to predict the heat transfer process. A
real-fluid equation of state (Redlich-Kwong-Soave) combined with the gas species’ critical
properties consisting of pressure, temperature, and acentric factor for precise prediction of
the Joule–Thomson effect with hydrogen [48] was used.

The SAGE detailed chemical kinetic solver with a detailed kinetic mechanism for
H2 combustion. Through the literature search, we adopted the mechanism developed by
Park et al. [49], which was an optimized version of the original mechanism by Burke et al. [50]
to improve the prediction at ultra-lean H2 combustion conditions, in terms of ignition
delay time and laminar flame speed validated against the experiment conducted by
Bradley et al. [51].

Full-cycle simulations starting from the exhaust valve opening timing were conducted.
The computational domain and mesh details are seen in Figure 1. A base grid of 4 mm was
adopted, with both fixed embedding and adaptive mesh refinement (AMR) in the regions
of interest, with the smallest grid size of 0.125 mm. In addition, three levels of dynamic
refinement were used in the main chamber based on the gradients of velocity, temperature,
and H2 species mass fraction. Additional details on mesh and grid scaling can be found
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in [52], including the detailed geometry of the PC that replaces the spark plug in the
subsequent study. Considering the small volume, the interior of PC is sufficiently resolved.
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The engine specifications used in the simulations are listed in Table 1. The geo-
metrical compression ratio corresponds to the standard bowl piston mounted on the
Volvo D13C500 engines; details on engine setup and specifications are found in previ-
ous works [53]. This reference configuration was considered as we aimed to assess the
utilization of hydrogen fuel in this engine with minimal modification of the geometry.

Table 1. Engine specifications.

Engine Type 4-Stroke

Bore/stroke (mm) 131/158

Connecting rod length (mm) 255

Displacement volume (L) 2.13

Geometric compression ratio 17:1

Intake valve open (◦aTDC) 347

Intake valve close (◦aTDC) −167

Exhaust valve open (◦aTDC) −140

Exhaust valve close (◦aTDC) 352

H2 injected mass (mg/cycle) 38.2

The fidelity of the current modeling approach was verified in previous studies using
methane as a fuel with in-house data [54–56], which is briefly discussed in the current
work. The selected cases refer to the equivalent experimental data with the maximum break
torque. The initial and boundary conditions were further calibrated using 1D GT-Power;
details on the methodology for calibration are shown in previous work [53]. The input
parameters for the model have been experimentally measured, including the valve lift
profiles, intake, exhaust, and pre-chamber fuel line pressure traces. For the pressure traces
on both the pre-chamber and main chamber, the ensemble average of 500 experimental
cycles is considered. The parameter Pre-chamber fueling ratio (PCFR) is the fraction of
total fuel injected through the pre-chamber and more details can be found in Figure 2. The
conditions for the validation are shown in Table 2. It should mentioned that the simulated
engine could withstand an in-cylinder peak pressure up to 220 bar.
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Table 2. Specifications of load and boundary conditions [57].

Load (bar IMEP) 9.5

Engine speed (RPM) 1200

Effective compression ration 11.1

Intake pressure (bar) 1.5

Intake temperature (K) 303

Exhaust pressure (bar) 1.7

Exhaust temperature (K) 800

Total fuel mass (mg) 94

Global-λ 1.8

Pre-chamber fueling ratio (PCFR) (%) 3

Spark timing (CAD aTDC) −13

The in-cylinder trapped fuel and total gas amounts are the key quantities to be matched
between 3D CFD and 1D GT-Power solutions. For the 3D CFD, the field is initialized
quiescently with the major species (CO2, CO, O2, N2, and H2O), pressure, and temperature.
Since the simulations ran for a full cycle starting at the exhaust valve opening, it allows for
minimizing the field initialization before the combustion stroke. For the current simulations,
the effective compression ratio was set to be 11.1, instead of the geometrical value of 11.5 in
order to reproduce the experimental pressure trace. The PC fueling was performed during
the intake stroke, as shown in Figure 2. Additional details on the injection strategy can be
found in [53].

The validation of the pressure curve in Figure 3 showed satisfactory agreement be-
tween the experiment and the simulation. Further comparison of the engine performance
parameters complemented the validation in Figure 3b. Small differences are inevitably
caused by uncertainties in the employed physical and chemical models, but overall good
prediction capability was demonstrated.
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3. Results and Discussion

The baseline case corresponded to a mid-load operation of a single-cylinder version
of the Volvo D13C500 engine, which was extensively validated against experiments in
previous studies [58,59]. The current investigation started with assessing the feasibility of
converting this compression ignition (CI) diesel engine into operation with hydrogen in SI
or PC modes. The practical goal was to implement a retrofit solution with minimal changes
to an existing commercial engine architecture. The investigated controlling parameters
included the compression ratio (CR), overall air–fuel ratio (λ), and spark timing (ST). In
simulations, a maximum pressure rise rate (MPRR) of 1.5 MPa/deg, as suggested in [60],
was used as the onset of abnormal combustion behavior. The calculated engine thermal
efficiency, heat transfer loss, incomplete combustion loss, exhaust loss, and NOx emissions,
were collected and evaluated.

3.1. SI Combustion

The baseline case of H2 spark ignition combustion is presented here as a reference
case where the compression ratio was adjusted to 16.5:1 to account for the crevice volume
which is not considered in the simulation as it would add unnecessary calculation cost and
has negligible effect on the results. A lean mixture with λ = 2.85 was used to reduce the
laminar flame speed and increase the minimum ignition energy to avoid auto-ignition and
pre-ignition, respectively.

Figure 4 shows the pressure trace and heat release rate (HRR) of the baseline case where
an abrupt pressure rise and HRR are observed. The MPRR, in this case, is 28.9 MPa/deg,
which is considered too high for normal operation. This suggests that the mixture is
highly reactive to yield nearly a HCCI mode of combustion. Based on the experimental
work done by [27], it was not possible to reach the auto-ignition temperature of H2 under
lean conditions using a CR < 26:1 which raises some uncertainties about the chemical
mechanism used in this study. The lack of the experimental data for H2 combustion makes
it a challenging task to validate this work. On the other hand, this study can provide
general trends about the use of pure H2 in CI diesel engines.
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Figure 4. Predicted pressure and heat release rate traces for the baseline case.

Figure 5 shows the effect of using the spark plug as an ignition source. A slightly
advanced combustion phasing is observed when the spark plug is used, while subsequent
auto-ignition is evident from the steep MPRR in both cases (with and without spark
ignition). This indicates that the spark plug assists in igniting the mixture leading to a
spark-assisted compression ignition (SACI) combustion mode. Unlike in SI mode, knock
in HCCI is mainly due to premature combustion in which ignition takes place before the
desired time. It is challenging to control the ignition in such a combustion mode, which
may limit the engine’s operating range. It was observed that the HRR was slightly faster in
the HCCI mode compared to the SACI mode.
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Figure 5. Effect of the spark plug on the predicted pressure and heat release rate traces for the
baseline case.

Figure 6 shows the iso-surfaces of temperature at different times, where the occurrence
of the auto-ignition is clearly seen. With SI, the auto-ignition was detected at 1.37 CAD
bTDC (before the top dead center). As the flame propagated from the central position where
the spark was located, a hot spot was observed near the cylinder walls. Without SI, the hot
spot was observed at the same location at 1.47 CAD bTDC. It was thus concluded that in



Energies 2022, 15, 8951 8 of 21

the baseline case with a high CR, the combustion is primarily dominated by auto-ignition
rather than flame propagation.

Energies 2022, 15, x FOR PEER REVIEW 8 of 21 
 

 

Figure 5. Effect of the spark plug on the predicted pressure and heat release rate traces for the base-
line case. 

 

Figure 6. Comparison of temperature iso-surface (1600–3000 K) for spark vs. no-spark cases. 

3.1.1. Effect of Compression Ratio 
Engine CR is a critical factor directly affecting engine thermal efficiency and combus-

tion. It is expected that the combustion duration decreases and the knocking tendency 
increases with an increased CR [61]. In the baseline case, a high MPRR was observed with 
an effective compression ratio of 16.5:1 even at very lean conditions (λ = 2.85). At high 
CRs, the compression temperature increased, which increased the reactivity of the fuel/ox-
idizer mixture. Thus, lowering the compression ratio may suppress the undesired auto-
ignition/pre-ignition phenomena, making the combustion phasing easier to control with 
SI.  

In this parametric study, at a fixed λ of 2.85, five CRs were selected ranging from 16.5 
to 11.5 to investigate the effect on combustion performance and NOx emissions. Figure 7 
shows that as the CR is reduced, the combustion phasing becomes retarded, and the 
MPRR is mitigated. The heat transfer loss is also reduced due to the lower combustion 
temperature. Of these cases, a maximum indicated thermal efficiency (ITE) of 47.5% was 
obtained at the CR of 12.5.  

Figure 8a shows the combustion duration, defined as the time interval between 5% 
(CA5) and 90% (CA90) of the total heat release, for different CRs at λ = 2.85. The results 
indicated that combustion duration is reduced almost linearly with an increased CR. As 
expected, the CR had a direct impact on the in-cylinder temperature, which explains the 
retarded combustion phasing and the lower NOx emissions, as seen in Figure 8b. Note 
that the intake temperature and pressure remained constant as the CR was varied. With a 
CR below 12.5, the MPRR wwas kept under the threshold of 1.5 MPa/deg. For higher CRs, 
the rapid combustion over a short period indicated an auto-ignition event, as demon-
strated by the iso-surfaces of temperature illustrated in Figure 9. 

 

Figure 6. Comparison of temperature iso-surface (1600–3000 K) for spark vs. no-spark cases.

3.1.1. Effect of Compression Ratio

Engine CR is a critical factor directly affecting engine thermal efficiency and combus-
tion. It is expected that the combustion duration decreases and the knocking tendency
increases with an increased CR [61]. In the baseline case, a high MPRR was observed
with an effective compression ratio of 16.5:1 even at very lean conditions (λ = 2.85). At
high CRs, the compression temperature increased, which increased the reactivity of the
fuel/oxidizer mixture. Thus, lowering the compression ratio may suppress the undesired
auto-ignition/pre-ignition phenomena, making the combustion phasing easier to control
with SI.

In this parametric study, at a fixed λ of 2.85, five CRs were selected ranging from 16.5
to 11.5 to investigate the effect on combustion performance and NOx emissions. Figure 7
shows that as the CR is reduced, the combustion phasing becomes retarded, and the MPRR
is mitigated. The heat transfer loss is also reduced due to the lower combustion temperature.
Of these cases, a maximum indicated thermal efficiency (ITE) of 47.5% was obtained at the
CR of 12.5.
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Figure 8a shows the combustion duration, defined as the time interval between 5%
(CA5) and 90% (CA90) of the total heat release, for different CRs at λ = 2.85. The results
indicated that combustion duration is reduced almost linearly with an increased CR. As
expected, the CR had a direct impact on the in-cylinder temperature, which explains the
retarded combustion phasing and the lower NOx emissions, as seen in Figure 8b. Note that
the intake temperature and pressure remained constant as the CR was varied. With a CR
below 12.5, the MPRR wwas kept under the threshold of 1.5 MPa/deg. For higher CRs, the
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rapid combustion over a short period indicated an auto-ignition event, as demonstrated by
the iso-surfaces of temperature illustrated in Figure 9.
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3.1.2. Effect of Air–Fuel Ratio (λ)

The effect of air–fuel ratio on auto-ignition was studied in this subsection. The previous
case with a CR = 13.5 and λ = 2.85 was used as the baseline case. Two additional λ of 3.33
and 4 were also investigated. Note that the total injected fuel mass was kept constant by
adjusting the intake pressure. For instance, the intake pressure was increased at a higher λ.
It should be mentioned here that an intake pressure of 2.7 bar was used to reach a λ of 4.
A further increment in λwould meet some challenges for practical limitations, such as a
special boosting system, particularly at high engine loads.

The operation of the engine at leaner conditions would increase the minimum igni-
tion energy, thus preventing pre-ignition events. In addition, it would mitigate the high
reactivity of the hydrogen/air mixture resulting in lower laminar flame speed and longer
auto-ignition delays. Moreover, the lean operation also leads to lowered adiabatic flame
temperatures, reducing NOx emissions and heat transfer losses. An almost zero NOx level
was achieved with leaner operation which was similarly reported by [62].

Figure 10 shows the pressure and HRRs traces at different λ with two CRs of 13.5 and
14.5. The results indicate that increasing λ beyond 2.85 effectively suppressed unexpected
auto-ignition, as seen in Figure 10 (MPRR below 1.5 MPa/deg). However, increasing λ
also resulted in a retarded combustion phasing and thus the higher incomplete combustion
and exhaust losses. Of these cases, the case with a CR of 13.5 and λ= 3.33 achieved the
highest ITE. The other cases suffered from misfire or auto-ignition issues. Therefore,
further optimization by adjusting the spark timing should be performed to extend the high-
performance operating range. The results obtained are consistent with what is reported
by [63] where a CR = 10 and λ > 2.5 were used. The study showed that it was not feasible
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to operate the engine with a λ < 2.5 due to the high-pressure rise rate, which is generated
because of the ultra-fast flame speed.
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3.1.3. Effect of Spark Timing

In this subsection, the effect of spark ignition timing was evaluated. The above cases
with a CR of 13.5 and λ of 3.33 and 4 were used as the baseline cases. The spark timing
(ST) sweep results are shown in Figures 11 and 12. By advancing the spark timing, the
combustion and exhaust losses were reduced, while the heat transfer losses were increased
due to the earlier combustion phasing. Within the limit of MPRR of 1.5 MPa/deg, the
highest ITE of about 50% was obtained at a spark timing of 15 CAD bTDC with a CR of
13.5 and λ of 4.

In general, the advancement of the spark timing caused an increase in the MPRR
due to near-TDC combustion heat release, which led to a shorter combustion duration.
Comparing Figures 11 and 12 shows that it is preferable to go higher in CR as long as the
mixture is lean enough to avoid auto-ignition. A higher achievable ITE was obtained at the
higher CR (14.5) owing to the more isochoric combustion heat release near the TDC.

In addition, a high NOx emission was generated when the spark time was advanced
as the combustion temperature was increased. The overall level was always far below the
Euro-6 limit (0.46 g/kW-h). In some cases, advancing the spark time may lead to lower NOx
emissions, but considering that NOx emission has the unit of g/kWh, the total absolute
NOx in kg was higher when the spark time was advanced.
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Figure 12. Comparison of: (a) pressure and heat release rate traces; and (b) efficiency for CR = 14.5
and λ = 4 using different STs.

The results obtained agree with [15] in terms of the optimized CR of 14.5 as they
achieved a brake thermal efficiency of 38% for a 2 L four-cylinder engine. On the other
hand, they used a λ = 1.81, while the optimized λ in this study was 4.



Energies 2022, 15, 8951 12 of 21

3.2. Pre-Chamber (PC) Combustion

The PC design was adopted based on the experiment done using methane as fuel [64].
The same engine configuration as in the SI mode was used, and the PC was mounted on
the top of the cylinder head as indicated in Figure 1. Table 3 shows the PC specifications.

Table 3. PC specifications.

PC Throat Diameter (mm) 3.3

PC nozzle layer number 2

PC total nozzle number 12

PC nozzle diameter (mm) 1.5

PC nozzle angle (◦) 134

3.2.1. Passive PC

First, a passive PC was used where all the fuel was supplied through the intake port,
which is defined as PCFR of 0%. A baseline case with λ = 4 and CR = 14.5 was adopted
as an optimum case in which the high MPRR was suppressed, and the highest efficiency
was achieved in the SI mode. Note that as the PC was installed, the total chamber volume
was increased, but the squish height remained the same, causing a slight drop in the
compression ratio by about 0.5.

The ST was adjusted to reduce the MPRR and optimize the combustion performance.
Figure 13 shows the predicted pressure trace, HRR, and efficiency analysis for using a
passive PC with different spark timing. As seen in Figure 13a, when the spark time is
advanced, the predicted peak pressure and heat release rate are elevated as the combustion
duration is shortened, which in turn results in a higher MPRR, as seen in Figure 14. On the
other hand, advancing the ST generally results in higher ITE due to the more advanced
combustion phasing. However, an excessively early ST results in the over-high heat transfer
loss and, thus, a declining ITE. The simulations show that with the current PC setup, it is
easy to trigger an extreme MPRR within the PC, even at a near-TDC ST like 4 CA bTDC.
Therefore, other solutions like optimizing the PC geometries, control strategies, and lower
CRs should be used.
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Figure 14. Predicted MPRR for PCFR = 0%, CR = 14, and λ = 4 using different STs.

As in the SI combustion mode, lowering the compression ratio from 14.5 to 13.5 can
result in mitigating the high MPRR inside the PC and MC. Lowering the compression ratio
also leads to lower combustion temperature and pressure, making both the MC and PC
less prone to pre-ignition and knocking. As seen in Figure 15, at a lower compression ratio
of 13, the ST needs to be advanced to increase efficiency. Note that as the ST is advanced,
the combustion duration is shortened, resulting in faster and more abrupt combustion.
This has a positive effect of lowering incomplete combustion losses. On the other hand,
it has a negative effect of increasing heat transfer losses. It is also seen in Figure 15b that
the reduction in the combustion losses resulted in an optimal ITE of about 47% at a ST of
5 CAD bTDC. Figure 16 shows the MPRR, and it indicates that the excessive pressure rise
was significantly mitigated, as shown where the MPRR was still under the critical limit
(1.5 MPa/deg).
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Figure 15. Predicted: (a) in-cylinder pressure and heat release rate traces; and (b) efficiency for
PCFR = 0%, CR = 13, and λ = 4 using different STs.
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Figure 16. Predicted MPRR for PCFR = 0%, CR = 13, and λ = 4 using different STs.

3.2.2. Active PC

To assess the benefit of active PC, different values of PCFR were considered as the main
parameter to control the combustion characteristics (including performance and emissions).
The baseline case with a PCFR of 0% refers to a passive PC, while other PCFR values
correspond to an active PC where a small percentage of the total fuel is provided through
the PC while the majority is going through port injection. Figure 17 shows the predicted
pressure and HRR traces with PCFR ranging from 0% up to 1.5% with an increment of
0.5%. As the PCFR is increased, so did the pressures in both MC and PC. Moreover, the
combustion duration in the MC is also reduced, resulting in a more abrupt and higher heat
release rate. However, the more advanced combustion phasing, and the resulting higher
combustion temperature leads to a higher heat transfer loss and NOx emissions, as seen
in Figure 17b. Due to the increased pressure difference between PC and MC, the faster
and more intensely reacting jets are generated, as seen in Figure 18, which promotes the
turbulent combustion within the MC and thus reduces the incomplete combustion loss, as
indicated in Figure 17b. Nevertheless, as shown in Figure 19, the MPRR was overly high
(>1.5 MPa/deg) with a non-zero PCFR.
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Figure 18. Comparison of ϕ and iso-surface (1600 K) of temperature using CR = 14, λ = 4, and
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3.3. Comparison between SI and PC Combustion Modes

A comparison between the SI and PC modes at similar operating conditions was
summarized in this section. Figure 20 compares the pressure trace and HRR for λ = 4 in the
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SI and PC modes. Compared to the SI mode, the PC mode resulted in a lower efficiency,
which was mainly attributed to the significantly higher heat transfer losses. Figure 21
compares the rate of heat transfer for the optimized cases in the SI and PC. In both cases,
the largest fraction of heat transfer losses was through the piston. In addition, the heat
transfer losses through PC contributed to about 14.5% of the total heat transfer losses in the
PC mode, while such a loss did not exist in the SI mode. As a result, the PC mode exhibited
significantly higher heat transfer through the piston as the reactive turbulent jets from
the PC enhanced the heat transfer rate through the piston, as seen in Figure 22. Despite
the lower combustion temperature, the turbulent convection enhanced the heat transfer,
yielding a higher total heat loss. The higher combustion temperature in the SI mode due to
the higher CR does lead to higher NOx emissions, although the NOx emissions for both
cases were low enough to raise practical concerns.
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4. Conclusions

In the current work, comprehensive CFD simulations of a heavy-duty engine converted
to operate with pure H2 under SI configuration were conducted. The effects of varying the
air–fuel ratio, the compression ratio (CR), and the spark timing (ST) were investigated in
order to identify the optimal range of operation at moderate load conditions. The results
demonstrated that the optimal operation with SI mode would be at CRs of 13.5–14.5 and
an air–fuel ratio of around 4. With such configurations, it was easier to adjust the ST to
optimize the engine combustion performance by advancing the combustion phasing to
improve the indicated efficiency while avoiding the abnormal auto-ignition that may cause
high MPRR. The PC combustion mode was also investigated. The results indicated that the
active PC would introduce higher MPRR and heat transfer losses inside both MC and PC
compared to the passive PC. There was no additional means to optimize the passive PC at
a high CR by adjusting ST due to the high MPRR. Thus, a reduction in CR combined with
advanced ST was examined as a solution. In this case, the MPRR was within the normal
range for engine operation, but the incomplete combustion losses increased.

As an overall comparison between SI and PC mode for the conditions under study,
the PC mode generated a higher heat transfer loss owing to the significantly stronger jet
flame-piston wall interaction and additional heat transfer through the PC assembly. Due
to the high flame speed of H2, even under ultra-lean conditions, a high ITE was achieved
even at the SI mode by optimizing the ST and air–fuel mixture preparation. Moreover,
combining moderate CRs with air dilution could be a potential solution to allow a larger
range for engine controllability where PC can be more suitable compared to the normal SI
mode. In the future, the numerical models used in this work will be validated against the
experimental data under different loads.
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Abbreviation

Abbreviation Meaning
AMR Adaptive mesh refinement
bTDC Before top dead center
CA Crank angle
CA5 Crank angle of 5% cumulative heat release
CA90 Crank angle of 90% cumulative heat release
CAD Crank angle degree
CFD Computational fluid dynamics
CI Compression ignition
CO Carbon monoxide
CR Compression ratio
GHG Greenhouse gas
HCCI Homogenous charge compression ignition
HRR Heat release rate
ICE Internal combustion engine
IMEP Indicated mean effective pressure
ITE Indicated thermal efficiency
MC Main chamber
MPRR Maximum pressure rise rate
PC Pre-chamber
PCFR Pre-chamber fueling ratio
PFI Port fuel injection
RNG Renormalization group
RON Research octane number
RPM Revolution per minute
SACI Spark assisted compression ignition
SI Spark ignition
ST Spark time
TDC Top dead center
TKE Turbulent kinetic energy
λ Air–fuel ratio
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