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Abstract: This review paper looks briefly at conventional approaches and examines the intelligent
means for fault diagnosis (FD) and condition monitoring (CM) of electrical drives in detail, especially
the ones that are common in Industry 4.0. After giving an overview on fault statistics, standard
methods for the FD and CM of rotating machines are first visited, and then its orientation towards
intelligent approaches is discussed. Major diagnostic procedures are addressed in detail together
with their advancements to date. In particular, the emphasis is given to motor current signature
analysis (MCSA) and digital signal processing techniques (DSPTs) mostly used for feature engi-
neering. Consequently, the statistical procedures and machine learning techniques (stemming from
artificial intelligence—AI) are also visited to describe how FD is carried out in various systems. The
effectiveness of the amalgamation of the model, signal, and data-based techniques for the FD and CM
of inductions motors (IMs) is also highlighted in this review. It is worth mentioning that a variety of
neural- and non-neural-based approaches are discussed concerning major faults in rotating machines.
Finally, after a thorough survey of the diagnostic techniques based on specific faults for electrical
drives, several open problems are identified and discussed. The paper concludes with important
recommendations on where to divert the research focus considering the current advancements in the
FD and CM of rotating machines.

Keywords: motor; classical techniques; artificial intelligence; signal processing; model-based; data-
driven; electrical drives; fault statistics; stator fault; broken rotor bars; bearing; deep learning; fault
diagnosis; condition monitoring

1. Introduction

It is common that induction machines (IMs) are subjected to hostile environments
and exposed to various sorts of undesirable conditions. These factors, when ignored, may
result in the failure of IMs with serious repercussions on the industry, both economically
and non-economically. Moreover, lives can also be lost if proper precautions are not taken.
While most faults can be classed into electrical and mechanical faults, the underlying
reasons that motivate the study of IM faults are as follows:

• to obtain an idea on the evolution of the fault and predict their level of severity to
ensure till when a regular operation of the motor is maintained;

• to quantify the impact of the fault onto the motor behavior and interpret the signatures
to understand the cause of failure (a posteriori). Thus, based on these factors, it is
essential that FD and CM be carried out to ensure high reliability of the IMs and avoid
losses to the industry in monetary and non-monetary terms.

The oldest method to deal with faults is maintenance after breakdown [1]. This
is a significant disadvantage as it entails colossal downtime and is not acceptable, thus
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resulting in unexpected service interruptions and massive financial loss. Later on, the
method of preventive maintenance was introduced, where maintenance tasks were carried
out at planned regular intervals. However, this involved planned shutdowns and high
maintenance costs. A few decades later, CM was slowly adopted by industries [2]. The CM
has been recognized as the best modern practice for enhancing the reliability of machines,
reducing maintenance costs, and increasing service availability. Under CM, continuous
monitoring is carried out to detect faults in the system. This involves the observation of
machine conditions, which arranges the maintenance tasks by using a data-driven approach.
The data can be temperature, vibration, motor current, images, acoustic emission signals,
shock pulses, etc.

This paper gives a comprehensive review on the fault diagnosis (FD) and condition
monitoring (CM) of IMs. With regards to the databases accessed, journal articles, book
chapters, as well as conference proceedings of the common engineering repositories were
consulted (IEEE Xplore, Elsevier, Springer, Wiley, CRC, and more as per the references).
In this review, up to 60% of the publications with respect to FD and CM were journal
articles spanning over the last 2 decades, with the majority of publications considered in
between 2010 and 2022. In addition, about 13% of the references in this paper contained
books as well as book chapters, with the majority of publications produced in between
2005 and 2022. Up to 17% of the important conference proceedings were considered for this
review paper, where most publications happened in the years 2010–2020. Selected review
articles were also considered for this review paper and the majority of them were published
in between 2013 to 2021. Utmost care was taken with regards to the searches made at
respective databases and selecting the papers for review. This was to ensure that the major
aspects of FD and CM were captured, starting from the background till advancements
to date.

Following an extensive statistical study on rotating machinery faults, major faults
associated with IMs are explored. The rest of the paper looks at the conventional and
intelligent approaches used for the FD and CM of electrical drives. The standard methods
for the FD and CM of rotating machines are visited first, and then its orientation towards
intelligent approaches are discussed. Three main diagnostic procedures, model-based, signal-
based, and data-based, are addressed and described in detail together with their recent
advances. In particular, emphasis is given to motor current signature analysis (MCSA) and
digital signal-processing techniques (DSPTs) mostly used for feature engineering.

Consequently, statistical procedures and machine learning techniques are also dis-
cussed to describe the FD process in various systems. The effectiveness of the amalgamation
of the model, signal, and data-based techniques for the FD and CM of IMs is also high-
lighted in the literature survey. Finally, after a survey of the diagnostic techniques based on
specific faults for IMs, several open problems are identified, and some recommendations
are provided.

2. Rotating Machinery Fault Statistics

According to authors of [3–5], the number of working machines in the world was
expected to be around 16.1 billion in 2011, with the rapid development of 50% in the
preceding five years. Among these machines, the IMs are the most common ones and
are widely used in the industry. They are involved in assuring continuity of the process
and production chains of many industries. While the industry and application list for
IMs is rather long, they are often used as critical components in nuclear applications
such as nuclear plants, aerospace, and military-based applications where reliability is of
utmost importance.

The IMs are indeed reliable in operations, yet they are liable to various sorts of
undesirable faults. These deficiencies incorporate the following:

• Rotor mechanical faults, e.g., bearing faults, eccentricity, bent shaft, and misalignment;
• Stator faults, which can be recorded as a stator open phase, stator unbalance (because

of short circuits), or expanded resistance connections;
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• Rotor electrical issues which include rotor open phase, rotor unbalance (because of
short circuits), expanded resistance connections for wound rotor machines and broken
bar(s) or a split-end ring design for squirrel-cage IMs, and rotor magnetic flaws such
as demagnetization;

• The failure of one or more power electronic components of the drive framework.
IMs are symmetrical electric systems in view of the rotating magnetic field, so any
sort of deficiency can change their symmetrical properties. Mainly all the electrical
deficiencies that happen in the rotor impacts include a dissymmetry of the rotor
circuits, both for the wounded IMs (dissymmetry of the windings impedances) and
for the squirrel-cage IMs (broken bars or split-end ring designs).

Regarding the statistics available from surveys in [6–8], EPRI and Allianz databases
are consulted for faults related to IMs, while IEEE working group considers the statistics of
all the types of motors that are reported to have failed components, as shown in Table 1.
Statistics in Table 1 show that majority of associated faults come from IMs. This is because
it contributes to 80% of the failed components and also tops all the categories under the
failed components. Interestingly, it can also be seen that the two largest categories of faults
reported are bearing and winding faults which contribute to 44% and 26%, respectively,
of the total number of motor failures. This is also comparable with the surveys included
in [8–19] and the statistics from EPRI [7], with regards to bearing, as well as stator- and
rotor-related faults (Table 2).

Table 1. Failed component (motors)—Reprinted, with permission from Ref. [6] 2007, IEEE.

Failed Component Induction Motors Synchronous Motors Wound Rotor Motors DC Motors Total (All Motors)

Bearings 152 2 10 10 166
Windings 75 16 6 6 97

Rotor 8 1 4 4 13
Shaft or Coupling 19 6 - - 19

Brushes or slip rings - 7 8 2 16
External Devices 10 9 1 - 18

Not specified 40 9 - 2 51
Total 304 41 41 6 380

Table 2. Fault comparison (%).

Fault Type IEEE Working
Group [6] EPRI [7] [9–13] [14] [17] Allianz [8] [19] [15] [16] [18]

Bearing 44 41 40 41 69 13 40~50 51 40~50 42
Stator-related 1 26 37 38 23 21 66 28~43 26 30~40 31
Rotor-related 2 8 10 10 10 10 13 5~10 7 5~10 9

Others 22 12 - 12 - 8 12 16 - 12
1 Stator-related fault percentages consist of the following fault types: winding faults and short circuit faults.
2 Rotor-related fault percentages consist of the following fault types: broken bars, end ring, shaft/coupling.

These studies also indicate that still there is a need for improvement with regards to
CM because surveys have reported that most discoveries of failed component are found
upon the usual maintenance routine. Considering faults in IMs, data from the IEEE
workgroup described that 60.5% of the failures found during maintenance (scheduled)
are from bearings, 8.3% are from windings, and 5.1% are from rotors. It is preferred
that the least amount of faults are found during regular operation; however, bearing and
windings (the two largest categories) represent 36.6% and 33.1%, respectively, of the failures
discovered during the operation [6,20]. Hence, the major underlying causes of IM failures
are inadequate and untimely maintenance. Correspondingly, mechanical breakage is said
to be the largest failure initiator for IMs, whereas normal deterioration from age, high
vibration, and inadequate lubrication are the significant contributors to IM failures.

Based on the above statistics, it must be noted that metrics presented here are not
valid for all the scenarios. This is because the faults stated above are highly sensitive to the



Energies 2022, 15, 8938 4 of 36

operating conditions of the machine and their occurrence may be because of different rea-
sons [21]. With this aim, in the following sections, conventional and intelligent approaches
for FD and CM are discussed.

3. Conventional Approaches for FD and CM

An all-important feature of FD and CM is that early-occurring faults can be detected
and quick measures can be taken to avoid catastrophic outcomes. Even if the weak anoma-
lies are observed, early-stage fault detection is essential for any type of platform that
involves rotating machines. Regardless of the system in detail, a generic CM scheme would
involve the following components:

a. A sensing task (primary variable);
b. A data acquisition task (digitizing analogue data for processing);
c. A data processing task (information identification);
d. A diagnostic task (reasoning and taking action from the processed data).

Based on different sensing approaches, diverse techniques were applied to perform
the FD and CM of IMs. The most common standard approaches for analyzing faults in IMs
are as follows.

i. Vibration analysis—To begin with, the primary sources of vibration in IMs are:
(a) the response of the stator end windings to the emf generated on the conductors,
(b) the dynamic behavior of rotor in the bearings as the IM rotates, (c) the response
of the shaft bearing onto the support structure of the IM, and (d) the response of the
stator core to the attractive force developed magnetically between the stator and
the rotor [22]. Under this variety of occurrences, the mechanical component of the
IM is immensely affected. Hence, through vibration analysis, the following faults
can be identified: rotor eccentricity, unbalanced rotor faults, bearing faults, and
gear-based faults. Under vibration analysis, the data essential for the identification
are the oscillation force that is imparted by the IM, and it is directly proportional to
the acceleration of vibration. Usually, piezo-electric sensors are deployed for fault
detection in small motors, which work based on piezoelectric effect to generate
electricity from mechanical stress. In addition, micro-electro-mechanical system
(MEMS) accelerometers have also been used to acquire vibration data for fault
detection and diagnosis in IMs [23], particularly for rotor bar faults. Through signal
processing, vibration-based data are analyzed, and with the mathematical model of
the IM, anomalies are detected. See survey for the FD and CM of rotating machinery
using vibration analysis in [23–27].

ii. Partial discharge analysis: This type of analysis is usually carried out to test the
winding insulation in high-voltage systems. Small electrical discharge occurs as a
result of insulation degradation; this is referred to as “partial discharge”. The parts in
IMs which are mostly affected by the discharge activity are (a) the stator slot wall,
where these phenomena can erode and affect the main wall insulation; (b) where
coils emerge from the earth protection of the slot so that the insulation system is
exposed to the surface discharge; (c) the end winding surface—at phase separation
regions, whereby the surface is immensely affected, usually in the presence of dirt or
moisture [22]. In general, the degraded winding insulation may have over 30 times
the partial discharge activity than a normal one [28]. In a high-voltage machine,
partial discharge analysis can identify the degradation before complete failure. This
technique has been used extensively in high-power industries, and its reliability
has been verified by [29]. A specialized piece of equipment, the partial discharge
analyzer (PDA) is usually used to monitor the partial discharge in windings on an
online basis [30]. Interesting studies related to PDA for stator winding insulation
and recent advances in this area are highlighted in [31,32].

iii. Induced voltage analysis: The fault can be identified by analyzing the induced
voltage along the shaft of an IM. This induced voltage mainly occurs due to the
degradation of the insulation winding (stator). A major drawback of this type
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approach is that very small to negligible voltage readings are given at the incipient
stage of the insulation failure. The adequate amount of information in terms of volt-
age readings is given only when a significant amount of damage has already been
inflicted upon the insulation windings [33]. Due to these reasons, this technique is
not so common nowadays.

iv. Torque analysis: Due to its symmetric construction, faults in the IM produce har-
monics at particular frequencies in the air gap. Unfortunately, this air-gap torque
cannot be measured directly and requires electrical quantities which are measurable
(especially the motor terminal parameters). As an alternative to MCSA, authors
of [34] have proposed load torque signature analysis (LTSA) in their work. On
the other hand, reference [35] utilized the air-gap profile to discriminate faulty
signatures from healthy where the torque normalization method has been used
in conjunction with voltage and current measurements. The researchers have
concluded that diagnosis entirely depends on the size and the rating of the IM inves-
tigated as the majority of studies [34,35] investigate the torque-speed characteristic
curve to identify asymmetries in terms of stator- and rotor-related faults.

v. Acoustic analysis: This type of analysis entirely relies on the acoustic noise spectrum
generated by the IM. Straightforward spectral analysis is carried out and compared
with respect to the healthy signature for fault detection. Common faults analyzed
using acoustic analysis are: bearing faults, air-gap eccentricity faults, and gearbox
faults. In [36,37], some studies state that this type of analysis is instrumental for
the early detection of the incipient faults, while some studies [38,39] utilize this
approach for gearbox FD which is a recent trend. The major drawback of these
techniques is that under a noisy environment, this approach may be impractical
due to noise interaction from other sources (working machines, etc.) [35].

vi. Chemical analysis: This analysis is one of the most effective but is an invasive
technique used to monitor the health of IMs. In general, for IMs, the lubricants
are subject to chemical analysis, mostly to determine the wear of the bearings. By
taking the sample of the lubricant and performing X-Ray analysis, the deposits
which chemically attack the bearings can be identified. This is because the lubricants
usually not only carry products of their own but also contain the byproducts of the
wear of the bearings and seals. With time and being subject to various environments
(heat, cool, vibration, etc.), the quality of the lubricants can decrease, resulting in
the degradation of bearings [20,22] due to presence of metal filling in the bearing
(which rotate and damage the other ball bearings). In addition, the degradation
of the insulation material in the IM can also chemically attack the parts which are
vulnerable, such as winding insulation [22]. However, it should be noted that for
this type of analysis, the detectability criteria are application-based, and tests are
only feasible for large machines [40].

vii. Thermal analysis: With this method, the detection of bearing and stator inter-turn
faults is possible in IMs. Usually, the change in temperature of the IM reveals a lot
of information on its performance by merely comparing the heat signature of the IM
when it usually operates. The bearing fault via thermal analysis is detected because
of the increase in the friction coefficient upon operation, which in turn increases the
temperature of the IM. In terms of inter-turn faults, the temperature rises till the
IM is affected. This can be visualized by means of thermal camera. While this type
of fault can take time, thermal monitoring can reveal the cutoff regions to raise an
alarm for the inter-turn fault. Most model-based studies have thermally modelled
the IMs. They have been performed in two ways: (a) a lumped parameter thermal
model and (b) a finite element analysis model [41]. Refs. [42,43] give an overview
of recent thermal-based analysis for FD and CM in electrical machines.

viii. Current analysis: With this technique, stator currents for the IMs are monitored.
This is a non-invasive technique, whereby the stator current is measured by using
Hall-effect current sensors. While a current transformer coil can be used, its readings
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are unreliable for low-frequency measurements. For analyses described in i–vii
above, it is mandatory to deploy an additional sensor to acquire the parameters of
interest. This requires additional work to be carried out when it comes to mounting
the transducers. To some extent, this may affect the normal operation of the IM as
well as being expensive when it comes to cost factor. On the other hand, acquiring
stator currents without an extra device is feasible since the current transducers
are already installed in the system which are responsible for the protection of
the IM and its control mechanisms. In this regard, MCSA or current signature
analysis (CSA) can be used as the sensor-less fault detection method which can
be implemented without additional hardware. MCSA or CSA is achievable on an
online basis, meaning current spectra can be acquired and analyzed while the IM is
running. Most recent studies in the field of IM FD utilize MCSA or CSA as the base
technique [3,5,17,44,45].

According to [20], MCSA or CSA comprise four important steps: (a) data acquisition,
(b) data pre-processing/signal conditioning, (c) feature calculation, and (d) fault assessment.

a. Data acquisition: the three-phase stator currents of the IM are measured by means
of current transducers, which are identical for all the phases. The acquisition is
completed for both transient and steady states under various loading conditions.

b. Data pre-processing/signal conditioning: in this step, the digitized signal is further
conditioned to remove noise components with filtering techniques. Thereafter, the
signal is stored for further analysis including feature calculation.

c. Feature calculation: in the third step of MCSA/CSA, the calculation of the most no-
table features is made, which involves digital signal-processing techniques (DSPTs) [46].
Under the DSPTs, time-, frequency-, and time–frequency-based techniques are uti-
lized. Based on the above DSPTs, the focus is on identifying and separating the
constituents of the spectrum obtained upon data acquisition. Not only are the DSPTs
utilized under this process, but also other state-of-the-art techniques such as neural
networks, fuzzy and neuro-fuzzy, etc., are used in order to calculate the features. In
a nutshell, MCSA/CSA is mostly used to identify the characteristic fault frequency
component in the spectra, which may arise due to an anomaly in the investigated
motor. It should be remarked that for each type of fault incurred, a unique fault fre-
quency may spike up, indicating the nature of the fault. In some studies, the severity
of the incurred fault from the frequency spectra can also be determined [47,48].

d. Fault assessment: in this step, after the detection of the fault, its severity and nature
are determined by either the DSPTs [46] or pattern recognition techniques [49].
Usually, the severity factor and class of the fault are deduced by comparing them
with the healthy stator current signature. Recent trends in the area of FD and CM
involve artificial intelligence (AI)-based techniques mainly used for classifying and
deducing fault severity, as per studies in [47,48].

In comparison with these techniques, CSA/MCSA is one of the most popular and
economical solutions for the FD and CM of IMs. Indeed, in this case, the basic electrical
quantities required for analysis can be readily measured using the existing protection circuit
that are already installed. It is worth mentioning that MCSA is a non-intrusive approach,
since the inexpensive current sensors (clamp-meters) can be conveniently deployed without
disconnecting the electrical circuitry. In addition, with the rise in technological advance-
ments, it is now possible to acquire the data remotely and perform the required analysis
for the maintenance of IMs. In terms of safety, this type of approach requires no physical
connection between the current sensor and the motor-driven equipment. Further benefits
of MCSA are listed in [9,50–54].

In the framework of MCSA, Park’s vector current (PVC) [55,56] has received attention
in recent decades to diagnose common faults in IMs. The three-phase currents can be
transformed into direct and quadrature components (id, iq) to reduce complexity and for
better visualization. A common way to deduce the healthy state of the IM is to visualize the
stator PVCs in the id − iq plane. A perfect circular pattern reveals the healthy condition of
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the IM, whereas an elliptical pattern denotes a fault. The more elliptical the graph, the more
severe the level of fault [57–59]. This approach is usually adopted to detect the voltage
unbalances, the stator-based faults, and single phasing operation of the IMs. A study in [60]
also showed that the PVC approach is superior to Concordia transform in terms of FD
in IMs.

Stating ia, ib, ic as the three-phase stator currents, the Park’s vector current components
are given by:

id =

√
2
3

ia −
√

1
6

ib −
√

1
6

ic (1)

iq =

√
1
2

ib −
√

1
2

ic (2)

Refs. [59,61] have also utilized the PVC in detecting faults in voltage source inverters
(VSIs) and additionally analyzed the deviation of the PVC pattern with respect to the
healthy PVC pattern. Since IMs are highly symmetrical and offer any deviation, either in
terms of fault or minor unbalance (that are always marginally present in IMs), the PVC
alone cannot discriminate this failure/unbalance, as it ignores the non-idealities if no zero
component is present and if supply unbalances for IMs are inherent. Further advances
of the PVC by [56,62] lead to the “Extended Park’s Vector Approach” (EPVA, iP), where the
modulus of id and iq (iP which is the “extended” part of EPVA) is found as below:

iP =

√∣∣i2d∣∣+ ∣∣∣i2q∣∣∣ (3)

The EPVA is applied to the steady-state diagnosis of stator inter-turn faults, broken
rotor bar faults, unbalanced supply voltage, and mechanical misalignment. As mentioned
by [56,62], this variation of the Park’s vector approach (PVA) gives more insight into the
severity of the fault rather than identifying the type of fault incurred in the IMs.

Another common approach which comes under CSA/MCSA for the diagnosis of IMs
is negative-sequence current analysis (NSCA) [63,64]. This technique has been widely used
for detecting the stator inter-turn faults in IMs. Namely, the detection of asymmetries is
analyzed by this approach and currents are converted from the unbalanced system to three
balanced systems: positive-sequence, negative-sequence, and zero-sequence currents. The
positive-sequence current has equal magnitudes with 120◦ of displacement giving a vector
relationship of (A − B − C). The negative-sequence current also has the same magnitude
and phase displacement as the positive-sequence current; however, the phase rotation is
inverted, i.e., (C − B − A). As for the zero-sequence current, the magnitudes are equal but
there is no phase displacement. From this analogy, the balanced system only has positive
sequences. Hence, for detecting the asymmetries in IMs, the negative-sequence current is
used. Usually, its magnitude is utilized to gauge the level of unbalanced effect incurred
in IMs.

In terms of data for MCSA, the techniques stated previously utilize either the steady-
state or transient currents of the investigated IM. Many other works have used the steady-
state current signature in diagnosing faults in IMs [28,50,65–67]. Under the steady-state
condition, a major disadvantage is that due to variations in speed or load, the current
signature is immensely affected. In this case, the spectra become blurred, and conventional-
frequency-analysis-based tools fail to work [68]. These limitations can be resolved by
analyzing the three-phase current signature of the IM under the transient regime. This
is because the current signal is less likely to be affected in case of no load or low loads.
Since the starting current is 7–8 times higher than the steady-state current, even if a smaller
IM is investigated, the variations in the current will be amplified under broken rotor bar
fault [69]. Many approaches such as [40,70,71] have utilized the transient signals for the
detection of faults in IMs.

While it is true that the conventional methods (i–viii) are used as the first approach for
FD (mostly MCSA) in numerous industrial applications, various limitations still remain
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unaddressed. As such, these conventional techniques cannot be the only means of support
for the development of diagnostic tools [3]. Under these circumstances, a systematic
framework is required to further investigate the nature of failure in rotating machines and
address them in a generic manner. Moreover, since MCSA has shown a large amount of
potential, it can be used in conjunction with other methods to gain an in-depth analysis of
various fault, which involves stator faults, rotor faults, and bearings for IMs. In the next
sections, three main frameworks and their advances in FD and CM are discussed.

4. Fault Monitoring and Diagnosis Framework

While the foremost techniques applied for the diagnosis of rotating machines in indus-
tries were mostly invasive (these tests include AC high-potential tests, capacitance, core
loss–loop, DC high-potential tests, dielectric absorption, grease analysis, growler, insulation
resistance, partial discharge, polarization index, single-phase rotor tests—[20]), and FD
and CM via non-invasive means became much popular towards the end of 20th century.
The non-invasive techniques are mostly based on various mathematical approaches, which
simply allow a diagnostic engineer to acquire data (current, vibration, temperature, or
sound data) and analyze the condition of the IM without leaving the production line [72].
In a similar manner, this identification of faults enables one to develop a database that
consists of healthy and faulty logs. Based on these data, intelligent systems (expert systems)
can be designed to perform the FD and CM task autonomously.

As mentioned in earlier sections, MCSA is one of the most popular and accurate meth-
ods for IM FD and CM. It is completely non-invasive and involves analyses under steady
and transient states. MCSA includes methods such as parametric analysis, non-parametric
analysis, and high-resolution or sub-space-based methods. Under non-stationary condi-
tions, high-order spectral analysis and statistical-based approaches are utilized [11,73].
Nowadays, MCSA is still used as the most important technique in conjunction with other
topologies for IM FD and CM.

In this respect, there are three main families of diagnostic procedures, according to [17].
In all of these procedures, MCSA is employed at the initial step. The classification of these
procedures on the basis of MCSA is given in Figure 1.
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The following sub-sections give details on the model-based, signal-based, and data-
based techniques for IM FD and CM.

4.1. Model-Based Approaches

The FD of IMs via model-based techniques requires prior knowledge of the system.
A prior assumption on the initial conditions is also a requirement when representing the
system in operation. The signals which are generated by the mathematical models assist
in the detection and identification of the faults incurred in IMs. In addition, model-based
techniques mostly rely on the accurate dynamic model of the system and are equipped to
detect unanticipated faults. This is because model-based approaches take advantage of
the “disturbances” or the so-called “residuals” [74], which are the differences between the
outputs of the actual physical system and its corresponding mathematical model (Figure 2).
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The residuals are usually indicative of a fault condition or sometimes signify certain
levels of operation. Under different levels of operation, the model-based techniques (which
is also classified as under analytical-based approaches) can be categorized into various
groups which are listed in Sections 4.1.1–4.1.5.

4.1.1. Physical-Model-Based Approaches

Physical-model-based approaches rely entirely on the laws of physics to dynamically
model a system together with some assumptions depending on its operation. Under this
modelling technique, models are derived for each component. Using this component-
oriented approach, the whole system can be described by compiling and inter-relating the
equations for each component with others. As for IMs, dynamic modelling is a well-studied
topic, and various models of the IM have been derived [75].

As a matter of fact, physical modelling was not intended for FD in the first place, since
they did not contain the knowledge on how the system behaves in the presence of a fault.
The dynamic modelling of systems was originally intended for control purposes, which
required a mathematical interpretation of the system to be investigated. However, it is
common knowledge that the detection of a fault in systems is possible since the response
of a healthy system is different from the one in a faulty condition. In this respect, fault
detection and fault localization are possible using only the physical model of the system.
This is apparent since the physical model of the system is made up of various components;
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hence, any major deviation in terms of the outputs of the individual component directly
points to the faulted part.

Moreover, apart from just physically modelling the system to detect and localize the
fault, various other techniques over the years have been implemented to estimate the model
parameters, not only in healthy conditions but also under faulty conditions. This has been
a major shift in focus because of the rise in fault-tolerant-based control topologies [17,44].
Furthermore, the residuals represent an important piece of information, which forms the
base of many estimation-based techniques. In parameter estimation-based approaches,
the derivation of the dynamic model is the most important step for the technique to
succeed and is advantageous for plenty of reasons such as accuracy, prediction of the next
state, and identification purposes. These estimation-based approaches are covered in the
next sub-sections.

4.1.2. State Estimation Techniques

Under analytical methods, a finite number of variables exist which are known as the
state variables. Based on their inaccessibility due to cost of the sensor or large requirement
of the measurements or their lack of physical meaning, these variables are not measurable.
In most circumstances, they are usually estimated over time as the system evolves, provided
that appropriate initial conditions are specified. Figure 3 below shows the principle of state
estimation where the measured system input and output signals are fed to the observer.
While the mathematical model of the system is already known, this type of approach plays
a major role in reconstructing the state of the system on the basis of measurements and
the existing model. Namely, Kalman filters and Luenberger observers have been the most
effective and common methods utilized under this domain [76]. For example, in terms of
FD and CM, the rotor currents (of a squirrel-cage IM) or the flux can be used on the basis of
the Park’s model of the IM to gage an idea on certain types of faults, because the control
algorithms utilize the estimations derived from the aforesaid techniques. While these
techniques (Kalman filter and Luenberger observer) are based on linear representation
around the model, operating points and improvements have been made by extending the
existing linear-based observers. In this regard, the extended versions of these techniques are
the “extended Kalman filter (EKF)” [77] and the “extended Luenberger observer (ELO)” [78],
respectively. In addition, a recursive and straightforward formulation based on the Kalman
filter has been used to detect stator inter-turn faults in IMs, as per [79]. Not only that,
the aforesaid estimation-based techniques have been very useful in terms of FD in power
converters, as per studies in [80,81].

4.1.3. Residual Generation Techniques

The techniques associated with residual generation for the diagnosis of IMs involve
both model and actual generated signals. Deviations between the model and the actual
(experimental) signal are known as the residuals, and Figure 4 illustrates the principle of
residual generation techniques. While different residual generation techniques work in
their own way, the prime objective is to extract meaningful residuals such that a particular
type of fault occurrence is accurately detected. For healthy conditions, the deviation
between the model and experimental output would converge around zero. It is often the
case that techniques related to residual generation offer an accurate diagnosis for actuators
and sensors [82]; however, internal faults are detected much better by using identification
techniques (Section 4.1.4).

4.1.4. Identification Techniques

Identification techniques rely completely on the experimental data together with the
analytical model to determine the dynamic model of the system, which is to be monitored or
perform FD on. Utilizing the input–output measurements, the identification techniques aim
to continuously update the model parameters and converge to classify various operating
conditions. In terms of the FD and CM of IMs, the fundamental idea is to estimate the
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parameters that characterize healthy and faulty conditions. A formalization of this principle
is explained in detail in [83]. The estimations for the model parameters are guaranteed by
the error minimization algorithms which are between the output of the model and the real
physical machine (IM). A generic principle of identification techniques is demonstrated in
Figure 5 below.
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For the diagnosis of IMs, the electrical parameters which characterize them (faults)
can be used as good-condition indicators. A common fault that has been diagnosed by
parameter estimation techniques is the broken rotor bars. Under this fault occurrence, the
rotor resistance can be monitored, and not only can the detection be modelled, but also its
degradation using the identification techniques. In several studies, monitoring the rotor
resistance is highly recommended since it directly provides information on the health of the
rotor bar for a squirrel-cage IM. According to [45], the severity of the rotor bar damage is
directly proportional to the rise in rotor resistance (measured by the parameter estimation
techniques). In terms of monitoring the rotor resistance, the output-error estimation [84,85]
non-linear high-gain observer [86,87] and the EKF [77,88] can be utilized.

A major drawback of monitoring the rotor resistance is the fact that temperature
variations due to increased load can also result in rotor resistance variation. This drawback
can be countered by introducing the internal machine temperature model within the model
by means of other identification techniques and also acquiring prior data [89].

According to [89,90], it might be difficult for some faults by utilizing the above iden-
tification techniques. These faults include: an inter-turn short circuit, an inter-coil short
circuit, static and dynamic eccentricity, and broken bar faults. This is because the main
limitation of identification techniques is that persistent excitation is required to generate
adequate data to be used by the algorithm. In the case of a controlled system operation
(constant speed/excitation), these techniques may fail [91].

With this aim, these techniques require a dynamic system model in order to carry out
the estimations for the model parameters. The model needs to be dynamic so that it is com-
pliant with the techniques used. In doing so, sufficient knowledge of the system behavior
under various operations is mandatory. In addition, not all faults can be diagnosed with
the above parameter estimation methods (bearing/gearbox faults). As a result, diagnostic
methods that require no model are highly recommended.
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4.1.5. Finite Element Method

Apart from the dynamic modelling or optimized dynamical modelling (“optimized”
here means the utilization of parameter estimation techniques for determining the accurate
model parameter) of systems, the finite element method (FEM) is one of the most popular
methods used to study the behavior of systems in many disciplines such as materials, fluid
mechanics, electromagnetism, as well as thermal engineering. The FEM was introduced
by Courant (1943) who investigated the field of “vibration of systems”. Further notable
developments were made by Turner (1956) and Clough (1960), which led to a formal
publication in a book by Strang and Fix (1973) [92]. To date, the FEM has been applied to
vast areas and used extensively by the industry, mostly used for the purpose of system
design [93].

The FEM derives from the ideology of the “divide and conquer” rule. In technical
terms, for the analysis of complex systems or structures, the idea is to divide the system
into small elements and characterize it on the basis of its geometrical/mechanical/electrical
properties which are discrete, i.e., finite [94]. In this way, the elements can be studied very
easily, considering its continuity. In terms of solving the finite element problem, the FEM
calls for simultaneous solutions to the reaction problem of the elements due to the applied
disturbances together with the interaction of the adjacent elements (connected with similar
nodes). The solution is set up so that convergence is observed towards the behavior of the
whole structure.

With FEM, it is possible to simulate many different scenarios to approximate the
behavior of the systems in the event of fault appearance or its evolution. Due to its
versatility, finite element analysis (FEA) offers in-depth information about the fault and has
the potential to determine the way a system would behave in case of anomalies at various
operating conditions. Using FEA, the condition of the system should be measured in the
form of a variable value (state estimate) or extracted from a system signal in the form of
a feature. Upon comparison, it is assumed that the state or feature investigated behaves
similarly in both the FEA simulation and under experimental condition.

Due to their geometry, the IMs are complex to model and analyze for FD. In most
cases, by using estimation-based methods, it is difficult to extract an accurate analytical
or even a semi-analytical form for some characteristics, including faults. Although FEM
is a form of approximation (for a system), it can return experimentally proven accurate
results according to [95]. The diagnosis of IMs is based on its magnetic field distribution,
which is allotted in different quantities for different parts of the IM. Some of the most
influential factors that should be explicitly considered for the diagnosis of IMs via FEM are
listed below:

• the non-linearity of silicon steel materials;
• the non-sinusoidal distribution of the windings and rotor bars;
• accuracy in material modelling;
• structural deformation.

While the FEM has several tremendous advantages, closed-form solutions, which can
be used for the parametrized study of a device or structure, are not returned, which makes
this approach a numerical model-based technique. The solution returned is, therefore,
only a numerical approximation of a real solution. Once it is obtained, its validity is only
for the configurations and parameters adjusted just before the simulation process. Since
the calculations via FEM involve meshes, the FEM-based approach has an inherent error
which is associated with the structure that has been modelled. For these problems, various
approaches have been implemented, and the direction of research under this topic focuses
more on optimization [96,97]. In the case of IMs, studies involving the diagnosis of stator-
and rotor-based faults have been effectively carried out in [95].

4.2. Signal-Based Approach

Signal-based approaches do not necessarily require a specific model of the system.
They only rely on the signatures given at the point of interest, mainly input and output
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terminals. All the analyses are carried out by a signal-type interpretation (comparison
with the ideal case) or by an expert system (mainly pattern recognition techniques). For
simplicity, the signal-based approaches are more common these days as they are simple to
implement, and most of them are non-invasive. The analysis of faults for IMs under the
signal-based approach is carried out under stationary and transitory states. In this respect,
the following types of analyses are performed:

• spectral analysis;
• spectrogram;
• temporal analysis;
• via Wigner–Ville distribution [98].

The spectral analysis method mostly focuses on the stator, rotor, and bearing faults.
They require accurate data which demand more computational effort. This category within
the signal-based approach is also highly sensitive to the measurement quality and needs
careful signal conditioning before analysis. While this approach is well suited for steady-
state analysis, spectrogram and other categories of signal-based approaches are well suited
for diagnosis under transient states [45].

Under temporal analysis, a comparison of the signal between healthy and faulty
operations of the system is carried out to deduce the condition of the IMs [99,100]. A
significant flaw under this type of analysis is that a direct comparison is impossible due
to irregularities (phase shift and noise issues) associated with the measurements. While
alleviating this problem is possible, the time complexity is intensely affected.

Another solution is to utilize time–frequency-based methods. These methods are
based on Wigner–Ville analysis, which combines both the time and frequency analysis for
monitoring the condition of the IM under stationary and transitory states.

In all of the above signal-based approaches for the diagnosis of IMs, studies in [3,9,11,12]
reveal that MCSA is the most versatile way of determining the condition of IMs. This is
because the starting current, steady-state current, transient-state current, or even shutdown
current can usually be easily extracted and analyzed. Each of the currents mentioned above
have their own advantages and disadvantages. In the next section, some recent advances
in signal-based approaches are described with a specific focus on MCSA with DSPTs.

Advances in Signal Processing for FD of IM-MCSA

Over the past few decades, MCSA and motor vibration analysis (MVA) have always
been the key approaches used for the FD and CM of IMs. There is flourishing literature on
how these approaches have been adopted for the diagnosis of electrical drives [3,5,11,101].
In particular, there is an ever-increasing need for further studies with attention to the
manufacturing sector.

MCSA analyzes the spectrum of the stator current and is useful for electrical machines
working at a steady speed and rated load. Transient conditions are also essential in diag-
nostics, and these methodologies have been proposed for faults in this situation [102–105].
Apart from the current signature analysis, instantaneous power signature analysis and its
variants have also received attention in the recent decade to detect both stator- [106] and
rotor-based [107] faults. Through this technique, many fault harmonics are transferred
into a well-bounded low-frequency band (0–100 Hz) [9]. Moreover, it gives a nearly linear
response when measuring the severity of stator- and rotor-related faults [108]. However,
a significant disadvantage of power signature analysis is the requirement of power an-
alyzers [108,109]. In addition, even though the fault harmonics are bounded in a short
range of frequency (as stated in [9,109]), the power spectra are heavily affected by noise
due to unavoidable small anomalies, such as supply voltage asymmetry, electromagnetic
interference, and possible load fluctuations with frequency bands overlapping with the
faulted ones. Under these circumstances, it is difficult to identify the actual fault harmonics,
and, consequently, additional countermeasures should be adopted [109], resulting in some
information loss or degradation. According to the literature survey presented in [9], the
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stator current signature analysis still represents a more effective and reliable tool for IM
fault detection.

Most FD schemes devised three decades back utilized the fast Fourier transform (FFT)
as a base technique for the analysis of motor current or vibration signatures. The FFT has
a few weaknesses, with regards to the masking of characteristic frequencies by supply
frequency, the inexactness for transient signals, and so on. To address these weaknesses,
diverse new techniques have been developed. In particular, digital signal processing (DSP)
strategies have also been utilized in some MCSA-based methodologies.

Most of the faults in electrical machines may cause asymmetries in its electromagnetic
field, thus adding characteristic fault frequencies to any underlying sensor signal. This
can be investigated by frequency-domain analysis. Despite their adequacy, the traditional
DSPTs have a few restrictions to be assessed for a correct FD.

Some of the current DSPTs are wavelet transform (WT), discrete wavelet transform
(DWT), continuous wavelet transform (CWT), power spectral density (PSD), Wigner–Ville
distribution (WVD), wavelet packet decomposition (WPD), short-time Fourier transform
(STFT), Park transform, Prony, and fractal analysis [20,101]. The transient and the steady-
state current in IMs have been utilized to diagnose broken rotor bar faults. Internal faults
in IMs have been described using DWT and FEA. Motor signature analysis has been
performed by employing PSD and WPD [9,12,20].

For the diagnosis of IMs, FFT performs well for steady-state analysis as it gives
different frequency components that are present in the signal. In the event of motor data
analysis, FFT transforms the time domain signal to the frequency domain, which requires
an exact slip estimation for the frequency component in a spectrum. Likewise, if there is
any occurrence of particular faults in the motor, frequencies produced are incredibly close
to the fundamental component with small amplitude. Particularly for small motors under
these circumstances, the diagnosis of the fault and the determination of the severity of
motors under light load is no more reasonable [3,20].

Similarly, the variation of motor load, torque, inertia, supply voltage, or speed oscilla-
tion of motor can create harmonics which have similar characteristics to the frequencies
associated with the faulty motors. Because of this, FD using motor current frequencies
appears to be troublesome. A significant drawback of FFT analysis is that it cannot separate
the harmonics because of motor faults arising from either load variation or fluctuation
of voltage [9,20]. This problem was sorted out by utilizing the STFT strategy, which uses
constant-sized windows to analyze all the frequencies (also the transient phase). A signifi-
cant drawback of STFT is the matching of frequency content due to its limited window size.
While it can be solved using a variable window size, WT carries this out suitably and is very
appropriate for the analysis of the transient signal. WT decomposes a signal both in the
time and frequency domains in terms of a wavelet, known as the “mother wavelet”. However,
WT has a few disadvantages, e.g., the determination of a mother wavelet is very subjective,
which may cause mistakes in the identification of parameters. A frequency response would
be unsatisfactory since the low-order wavelet can overlap between bands. In order to
address the issues imposed by WT, the Hilbert transform (HT) has been proposed. This
strategy resolves the issue surrounding the inappropriate determination of the mother
wavelet utilizing the envelope analysis of the signal. Moreover, the MCSA at the steady
state has been investigated by this HT technique. However, variation or changes in the
signal dynamics (non-stationarity in the dataflow) may affect the performance of the HT
technique, and this is still an open problem [17,101].

5. Orientation towards Modern Techniques for FD

Ever since the rise in terms of the technological advancements, there has been a massive
demand for techniques that can cope up with the overwhelming data-based systems.
Towards the late 1900s, in the third industrial revolution, production lines and other
processes were on the verge of automation. Under Industry 3.0, the memory programmable
controls and computers were mounted within to obtain feedbacks to ensure safety and
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successful production loop. It is in this era where the conventional techniques alone were
sufficient for FD and CM.

Not long after, the fourth industrial revolution came into effect which shifted the
trend towards the advanced automation of the production systems. The already-existing
computerized technology was further optimized and expanded to incorporate network
connection which later led to “cyber-physical production systems” that yielded the smart
factories (fully autonomous production system with minimal human intervention and
interaction is complete via networks) to some extent [110]. A similar opinion is shared
when it comes to the FD and CM of IMs since they have always been a part of Industry
1.0–Industry 4.0 [111,112]. Under these circumstances, it is essential to have a very efficient
and reliable diagnostic system matching the latest trends due to changes brought about by
Industry 4.0.

At present, conventional techniques (model-based or signal-based) are not sufficient
to handle a data-driven industrial process, which also includes the diagnostic framework.
This is because, in most circumstances, the amount of data is so enormous that its analysis
requires a large amount of computational effort as well as field expertise to reduce some
complexities associated within. Hence, it is necessary to adopt new modern techniques
to solve the problems in which conventional techniques fail. This needs to be addressed
under various frameworks. Hence, the focus is on the field of diagnostics, where the IM is
considered to be the major component for investigation.

With regards to the above shift in the paradigm, data-based approaches are ever
increasingly used specifically to monitor and supervise industrial processes. Applications
of these sorts require field expertise and specialist knowledge in terms of data analysis
and artificial intelligence (AI). The following section gives a basic survey of data-based
approaches.

5.1. Data-Based Approach and Its Transition

For FD and CM, understanding or learning about various scenarios (healthy vs. faulty)
is mandatory. The prediction of the future behavior of a system is connected with the
historical experience and events. In this era of Industry 4.0, machine learning (ML) is
suitable for the data-driven approach used for the FD and CM of the system with a specific
focus on IM drives. The ML is part of the AI field, which is mostly concerned with the
design and development of algorithms that enable computers to learn.

The prime objective of the ML research is to extract meaningful information from the
data through the computational and statistical method and via supervised or unsupervised
means, as well as to interpret it to the end-user in simple terms relating to the condition
of the system with regards to FD and CM (Figure 6). With this aim, ML strategies are
instrumental in describing relevant trends and characterizing the data so that statistical
and probabilistic estimates are accurate.

Unlike conventional ones, data-driven approaches rely entirely on the data provided.
They are capable enough to intelligently detect and identify the correlated trends in the system
dynamics so that the estimation on the current and the next state in terms of health can be
accurately predicted. Under the FD and CM of IMs, the data-driven approach, in conjunction
with ML techniques, follows a systematic approach that incorporates the following:

• statistical and probability theory;
• data pre-processing;
• feature engineering;
• dimensionality reduction;
• classification (supervised or unsupervised).

For this purpose, the data-driven approaches are divided into two classes: (a) statistical
approaches and (b) ML approaches. While the former approach forms the backbone of the
data-driven approaches, the latter is more popular and has been a hot topic ever since the
last few decades. Tables 3 and 4 illustrate the classification of statistical and ML approaches,
respectively.
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Table 3. Common statistical approaches [113].

Statistical Approaches

Parametric Methods Non-Parametric Methods

• Likelihood ratio test (LRT)
• Sequential probability ratio test (SPR)
• Maximum-likelihood estimation (MLE)
• Neyman Pearson criterion (NPC)
• Expectation–maximization (EM)
• Minimum mean square error estimation

(MMSE)
• Maximum A posteriori (MAP) estimation
• Rao–Blackwell estimation (RBE)
• Cramer–Rao lower bound (CRLB)
• Analysis of variance (ANOVA)
• Pearson correlation coefficient (PCC)
• Regression

• Nearest neighbor classification (NNC)
• Kernel density/Parzen window

estimation
• Wilcoxon rank-sum test
• Kolmogorov–Smirnov test
• Chi-square test

Table 4. Common machine learning approaches [113].

Classification and Clustering

Supervised Unsupervised

Discriminative Approach

• Linear discriminant
analysis (LDA)

• Neural networks
• Support vector machine
• Decision tree classifier

Generative Approach

• Naïve Bayes classifier
(NBC)

• Hidden Markov model
(HMM)

Discriminative Approach

• Principal component
analysis (PCA)

• Independent component
analysis (ICA)

• HMM-based approach
• Support vector machine

(SVM)
• Particle filtering (PF)

Generative Approach

• Hierarchical classifier
• k-Nearest neighbour

(kNN)
• Fuzzy C-means classifier
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5.2. Data-Driven ML-Based Approach

Considering the literature with regards to diagnostics, researchers have highlighted
that statistical approaches (Table 3) can form the base of AI techniques or ML-based
approaches (Table 4). ML approaches improve AI techniques within the statistical-based
framework. Hence, it is apparent that some element of statistical calculation should be
employed when applying ML techniques on data. ML techniques are strongly related to
classification problems (or clustering), which enables the identification of faults in electrical
drives. Based on the data provided, the classification can be divided into two parts:

i. Supervised classification: under this class, the input data and its corresponding
labels are provided. In this way, the algorithm can learn the patterns, so as to isolate
the healthy and faulty conditions of electrical drives. The raw data acquired from
sensors are subject to signal conditioning and feature calculation, which results in
the creation of successful classifiers after adequate training for real-time diagnosis.

ii. Unsupervised classification: under this class, the data have no predefined class label.
In this procedure, the algorithm can automatically organize the data after some
parameter tuning and finally assign clusters to each group with similar patterns.
Under this scheme, various clustering algorithms can be used.

Recent studies show that semi-supervised frameworks can also be developed to further
optimize classification and detection capability [49]. These types of classification can be
further divided into two categories: (a) the discriminative approach and (b) the generative
approach. These two categories rely on the estimation of the posterior probability, which
plays a significant role in the field of diagnostics, especially to acquire information on the
likelihood of the occurrence of a fault.

The discriminative approach enables the learning of a single model that predicts the
class in the form of a binary relationship. This means that the assigned class, regardless
of its location (assuming it is very near to the decision boundary), has a 100% a posteriori
probability for the selected class and a 0% probability for the other. In this way, the data
mapping depends on the discriminative function without considering the class membership
probability of the data.

The generative approach models the prior probability of each class and then chooses the
best fit for the observed data (based on optimization methods such as MLE, least-square
estimation, Monte Carlo, Markov chains, etc.). Thereafter, by employing Bayes’ rule, the
generative approach produces a different probability density model for each class and
yields the overall probabilities for each variable. Hence, under each observation, the class
probabilities are assigned to quantify the likelihood of the class, giving an idea on the
position of the observation and its closeness to the decision boundary. See Table 4 for
common ML-based approaches.

6. The Amalgamation of Model, Signal, and Data-Based Techniques for the Diagnosis
of IMs

Based on the above discussions, each of these diagnostic frameworks have pros and
cons as highlighted in [3,68]. Inspired by the idea of ensemble methods and majority rule
classification topologies, the drawbacks of each diagnostic approach can be alleviated by
creating a hybrid type of system where the model, the signal, or the data-based schemes
are combined in a single architecture.

Although this approach may be cumbersome and may require additional hardware
or software, it gives very good results in terms of efficiency and accuracy. In general,
model-based techniques are combined with AI-based approaches for the optimization
and parameter estimation of electrical drives. In particular, signal-based approaches have
been applied for the diagnosis of IMs, either alone or in conjunction with model-based
approaches. In this application, conditioning of the residuals or other associated signals is
essential. While it is apparent that signal-based approaches cannot handle a huge amount
of data, there is currently a trend to combine DSPTs with AI-techniques for the design of
FD and CM schemes.
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Over the last few years, there have been advances in research in devising new CM
schemes for electrical machines and drives. In particular, numerous approaches [11,12,20,44]
have been developed to address the problem of non-linearity and other associated factors
related to IMs. The trends and advances in the FD and CM areas mostly focus on the
application of AI [3,9,12,17,44], which gives a clear indication that AI techniques, along
with motor circuit analysis (MCA), MCSA, or MVA, play a significant role in electric motor
diagnostic systems with resulting higher practicability, reliability, and automation. In
addition to DSPTs for the FD of IMs, novel AI-based algorithms for fault detection, classifi-
cation, and diagnosis purposes have been produced throughout the years. Many recent
works have highlighted the utilization of AI tools where feature engineering is achieved
through cutting-edge DSPTs and other novel topologies and new neural-based techniques
for classification [3,11,114].

Figure 7 summarizes a system architecture for the diagnosis of any system using a
data-based approach. This generic architecture includes all possible frameworks that can be
designed with the previous three diagnostic approaches. It should be remarked that in the
FD and CM of electrical drives, the MCSA plays a crucial role and should always be used
to ensure proper fault detection and isolation. Moreover, even if the feature engineering
and dimensionality reduction block-sets require domain expertise, pre-processing with
MCSA can now be easily applied within deep learning frameworks; indeed, it can extract
noteworthy features as well as reduce the dimension in a single architecture. Most studies
in deep learning approaches involve semi-supervised networks and “transfer learning” [115]
to enhance the overall system accuracy without the need of feature engineering or signal
conditioning. In order to explain these kinds of models, it is possible to “probe” [116] its
network (decision making layers) and visualize the feature maps to discover important
condition indicators (feature) that may be instrumental for FD. Though these strategies are
currently in their infancy stages due to non-stationarities in the data, the prior processing
of signals remains necessary.



Energies 2022, 15, 8938 20 of 36

Energies 2022, 15, x FOR PEER REVIEW 20 of 36 
 

 

 

Figure 7. Generic FD and CM framework.Figure 7. Generic FD and CM framework.



Energies 2022, 15, 8938 21 of 36

7. Intelligent Approaches for FD
7.1. Overview of Intelligent Architectures in FD

The development of AI-based FD and CM strategies for IMs mostly rely on data-driven
models these days. A generic procedure to establish an AI-based FD and CM scheme is
based primarily on the acquisition of relevant data from the hardware (the IM in this case).
This is followed by the extraction of important features with the help of MCSA, MCA, or
MVA through DSPTs. Thereafter, the most significant features are selected in accordance
with dimensionality reduction, as well as other feature extraction techniques. Finally, the
extracted features are used to develop a classifier for the fault identification and evaluation
of the fault severity. In further sections, recent advances in the FD and CM of IMs are
discussed, following the diagnostic scheme described in Figure 7. Intelligent AI-based
diagnostic frameworks are particularly considered.

7.1.1. Recent Advances in FD for IMs via Intelligent Techniques

In the recent decade, there has been a flourishing amount of literature that involves
the development of the diagnostic schemes for electrical machines and drives to overcome
the shortcomings of conventional methods. The main composition of intelligent FD and
CM framework relies on the following aspects:

i. Feature engineering—derives appropriate condition indicators of the machine in
question and correlate the changes with respect to the healthy conditions of the
motor. This can be achieved by employing DSPTs and other conventional meth-
ods, and requires domain expertise. Studies show that it is possible to use deep
learning, especially that implemented with convolutional neural networks (CNNs),
to combine the feature engineering and feature extraction parts [38,117]; however,
extensive data and fine-tuning are required to achieve better results. While it may be
cumbersome to try out various new architectures for the diagnosis of IMs involving
CNNs, deep learning is still a promising approach and should be explored more
in detail.

ii. Feature extraction and dimensionality reduction—since feature extraction methods
and the dimensionality reduction (DR) are complementary, both of them can be
exploited under the diagnostic framework. The term feature extraction means
extracting significant or noteworthy features from the previous feature engineering
step. The method of extraction may vary and would involve specific feature ranking
techniques to demonstrate the variability of each engineered feature. On the other
hand, the term DR refers to a reduction in the feature set (FS). The DR is an essential
step in ML, since the resulting FS reduction simplifies the classification and reduces
the training time and other time complexities. Unlike other ranking-based feature
extraction techniques, which tend to reduce the importance of the bottom-ranked
features, the DR can reduce the dimensionality of the FS while preserving the
contribution of all the features. Various studies in relation to the topology or
geometry-preserving DR techniques have been explored by researchers in [38,47,48].

iii. Classification—in this step, pattern recognition techniques are employed after the
feature engineering, feature extraction, and DR steps. The FS is made a classifier
compliant (i.e., it is ready to be used for classification) and then it is statistically
normalized before training. The objective of classification is to discriminate the
signals given by the real physical machine based on the historical data. The classifi-
cation is performed either in a supervised or in an unsupervised way; moreover,
the classification requires a considerable prior assessment of the statistical validity
of the FS. The FS is assumed to be studied in terms of geometry, topology, and
variability of the data, so that proper preprocessing can be made. While many
studies do not address this aspect, they end up using large classification archi-
tectures just to achieve higher accuracies. On the other hand, using the above
systematic way of preprocessing the FS, simple classification tools can be proposed
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to achieve relatively high values of accuracy with a lower time complexity and
simple architecture.

The next section first describes recent advances for i–iii above, and then focuses on
their application to the FD of individual faults of IMs (bearing, stator, and rotor faults).

7.1.2. Feature Engineering

As mentioned earlier, the robustness of an FD and CM scheme depends heavily
on the calculation of appropriate features. Signal-based FD has been one of the most
noticeable techniques to analyze non-linear signals in an IM because any fault would result
in asymmetries in the electromagnetic field, and consequent fault frequencies in MCS. Some
of the current DSPTs are listed in [20], to which time–frequency-domain feature analysis is
to be added, which includes peak value analysis, root-mean-square (RMS) analysis, power
signatures, energy signatures, and the mean value of the signal.

For harmonic retrieval techniques in the frequency domain and the automation of
the extraction process (to be used for training the classifier for FD), a common practice
is to use the maximum peak values of the harmonics of interest for a given window of
signal, followed by the extraction of the appropriate frequencies and its corresponding
amplitudes [5,20,53,73]. In some cases, this becomes involved due to the overlapping of
noise and inverter harmonics [3,53,73], which conceals the harmonics of interest. Various
approaches have been attempted to optimize this process by employing either signal
averaging, filtering techniques, or parametric techniques [5,20].

For the case of non-parametric methods, some common drawbacks are as follows:

• the harmonic component of interest is very close to the fundamental frequency
component;

• some information is lost due to filtering.

When using non-parametric techniques, there are high chances that some spurious
peaks appear because of inadequate averaging or signal drift due to excess averaging. In
this respect, much attention has grown towards techniques using parametric approaches
for spectral estimation for their superiority over non-parametric techniques.

The parametric approach can be divided into two classes: parametric techniques for
continuous spectra and parametric techniques for line spectra [118]. While parametric
methods for continuous spectra are suitable for linear prediction techniques, such as the
Prony method, they work poorly when the frequency content of the signal changes abruptly.
On the other hand, parametric techniques for line spectra, which include subspace methods,
such as MUSIC or Pisarenko, can decrease the computational complexity and improve the
accuracy for estimating frequencies of interest for FD [9]. However, a major drawback of
these high-resolution techniques is that the estimation degrades when the model order is
incorrectly specified. This is apparent for non-stationary data flow, which is the case with
the FD of IMs [119]. Although many researchers strive to generalize this procedure, this is
still an ongoing issue.

In this context, the utilization of AI tools in the FD and CM of electrical machines
has brought about a remarkable advantage in the diagnosis process with resulting early
and exact fault detection [120,121]. AI techniques can be significantly useful during the
fault classification and decision-making process, once features are extracted from the signal.
In the pre-processing phase of any classification technique, the feature extraction and the
DR procedure are crucial to keep essential features [47,48]. However, both linear and also
non-linear-based techniques have been used to reduce the number of features in the dataset.
An overview of the recent advances using nonlinear DR techniques for feature reduction is
given in Section 7.1.3.

After the DR step is completed, the fault classification can be made with either super-
vised or an unsupervised method. A significant difference arises from the consideration
that classes are labelled in any supervised learning process, while they are unknown when
using unsupervised learning. A detailed interpretation of the classification techniques is
given in Section 7.1.4.
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7.1.3. Dimensionality Reduction Techniques

Data mining addresses the extraction of meaningful information from Big Data
(e.g., from the internet), especially if they are of very high dimension. For both data
visualization and automation processes, its dimensionality has to be reduced. This is also
important to learn data manifolds, which, in general, are of lower dimension than the
original data. This reduced dimensionality also has the advantage of mitigating the curse
of dimensionality, which improves classification and associated analyses. This reduced
dimensionality is performed by DR techniques outlined in [122].

Using too many features to develop a classifier can result in overfitting problems,
which would cause serious errors and failures in fault identification. If a reduced set of
features with high variability in the data was used, the generalization of the AI model
would improve. In this case, DR methods play an essential role, as they employ various
criteria and standard procedures to eliminate insignificant features in the dataset. Some of
the standard methods for DR are principal component analysis (PCA), probabilistic PCA,
neighborhood component analysis (NCA), multidimensional scaling, Sammon’s mapping,
and factor analysis (FA) [122].

Most DR techniques work offline, i.e., they require a static database (batch) of data,
whose dimensionality is reduced. These techniques can be divided into linear and non-
linear ones, with the latter being generally slower but more accurate in real-world scenarios.

For online data processing and real-time DR, it is mandatory to acquire a continuous
stream of input data. Under this scenario, the data are assumed to be extracted from a
stationary distribution. Generally, linear methods perform faster DR and generally use
principal component analysis (PCA) as the base method. Indeed, PCA [49] is a linear
technique for feature reduction which utilizes an orthogonal transformation to convert the
data (observations) into a set of linearly uncorrelated variables called principal components.
In most cases, PCA is used as a preprocessor to develop classifiers. Like PCA, other notable
linear DR techniques are factor analysis (FA) [49] and independent component analysis
(ICA) [123], which are fast and straightforward, though not reliable with non-linear data
structures, as expected.

Non-linear DR techniques, although generally slower than linear ones, achieve more
accurate results in real-world applications, where non-linear data are easier to occur [124].
The real-time operation of a DR technique is quite essential, not only for a fast projection of
a data batch, but for non-stationary data tracking. Because of their shortcomings in terms
of time complexities and considering that the classification architecture is already complex
itself, the real-time applicability of these types of schemes is scarcely feasible. As a result,
they are used in offline mode, which does not often meet the requirements of the industry.

Linear neural-based techniques have been derived from the following linear tech-
niques: the generalized Hebbian algorithm (GHA [125]) and the incremental PCA (candid
covariance-free CCIPCA [126]). Over the years, numerous efforts have been made to re-
duce the time complexity of non-linear DR techniques. Some of these approaches include
updating the structure information (graph), new data prediction, and embedding updating.
The incremental variants, e.g., the iterative locally linear embedding (LLE) algorithm [127],
still appear to be computationally expensive and time-consuming.

Neural networks (NNs) have also been used for nonlinear data projection, with
preliminary offline training and subsequent real-time use (recall phase). In this case,
they work only for stationary data and they are more suitable than implicit embedding
models. Examples of such NNs include self-organizing maps (SOMs) [128] and their
variants [129,130]. A brief survey has been listed in [49]. With this aim, some methods
(including discriminant analysis and logistic regression) only focus on individual faults,
while some can diagnose multiple faults but with some drawbacks (shallow ANNs, Fuzzy
Logic, symbolic classification, SOMs, etc.). However, the authors of [17,44] also state that
FD under non-stationary conditions is still an open issue.

Thus, this means that under machinery diagnosis, studies need to be mostly focused
on operations under low and fluctuating loads, IMs with different magnetic structures, IMs
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with phase asymmetricity, diagnosis under pre-fault situations, and capability to diagnose
multiple faults under time-varying scenarios.

7.1.4. Classification

For fault classification and decision making, once the feature set has been developed,
AI-based techniques are very useful [120,121]. Generally, before the classification stage,
the choice of features used is of utmost importance. A useful feature set should be able
to keep all the possible information contained in the primary dataset. This enables better
training of classifiers and helps to rule out the true negatives and false negatives. In the
literature, many feature selection and dimensionality reduction techniques have proved
their capability of extracting noteworthy features from the raw/standardized dataset for
the faster processing for classification. This is usually performed in either a supervised or a
non-supervised fashion. Under supervised learning, the classes are labelled, while under
unsupervised learning, no label is given [48,131].

Unsupervised algorithms have mostly been used to detect faults and track their
evolution. In particular, unsupervised frameworks [49] have been used to study healthy
class-clusters and the progression of individual faults (meaning only one class, i.e., healthy
vs faulty). These methods are generally used to detect non-stationarities in a continuous
data-stream.

In the case of a stream of non-stationary data, e.g., those generated for fault and
pre-fault diagnosis and modelling, online curvilinear component analysis (onCCA) and the
growing curvilinear component analysis (GCCA) have been proposed in [132–134]. These
methods exploit incremental quantization to track non-stationarity; indeed, data clustering
is performed together with a fast projection technique based on curvilinear component
analysis (CCA [131,135,136]).

However, the performance of these methods is only as good as the data provided
to the algorithm; hence, if the data supplied are unreliable, the method fails. Recent
studies show that, for the purpose of multi-fault diagnosis, these methods are used in
a semi-supervised [137,138] way for FD. In addition, a significant disadvantage of this
type of approach is that it is computationally expensive and requires high-end computing
devices. In some cases, their time complexity is very high due to the sophisticated system
architecture. As a consequence, their industrial penetration is relatively low [44].

The subsequent sections show a survey of major faults in IMs and their diagnosis
strategies from an AI point of view. The survey begins with the diagnosis of bearing- or
gear-related faults, then it proceeds with the diagnosis of stator-based faults. The following
sections present rotor-based faults and the diagnosis of IM faults under non-stationary
conditions.

7.1.5. Diagnosis of Bearing and Gear-Based Faults

One of the most common techniques used for the diagnosis of bearing and gear-based
faults is based on the utilization of vibration signals or even noise, which however requires
particular sensors. The consequent possibility of separation of faults have empowered
research in FD techniques [3].

The stator current has been proposed as an interesting option for FD in this area, and
some studies have highlighted the advantages of using stator current over vibration signal
analysis for the identification of these faults [139]. In this respect, [3] reports some of the
challenges faced in the diagnosis of bearing faults when utilizing the current signature,
e.g., in relation to the impact of supply unbalances or variable-speed drives on the bearing
faults signals. This last issue has inspired various works that have concentrated on the
impact of converters on the bearing faults. In [140], the authors build up a complete study
capable of predicting bearing currents in IM electrical drives to estimate the remaining
useful lifetime of the bearings.

Despite the issues with current-based fault bearing evaluation, [3] proposes the use of
current or voltage sensors to analyze bearing-related faults. A few works have followed
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and have created current-based procedures for the FD of various types of bearing faults.
The authors of [141] propose the use of entropy analysis of wavelet signals and NNs for
bearing fault identification and characterization. Others have proposed the application of
different quantities to analyze bearing faults in IMs. In [142], the statistical processing of
stray flux information to analyze three unique sorts of bearing faults has been proposed.
This approach seems to be very successful and it can be considered an alternative approach
with respect to the analysis of stator currents.

Regardless of these advances in the utilization of current and different quantities
for bearing FD, the adoption of vibration-based systems is still more common. Some
works have focused on the optimization of the bearing fault detection procedure [121].
Reference [143], likewise, proposes a methodology taking into account support vector
machines (SVM) to consequently recognize and characterize bearing faults, with the help
of noise reduction to simplify the presence of vibration signals. Reference [144] combines
the envelope analysis of vibration signals, the sliding FFT procedure, and PCA to analyze
bearing faults.

In addition, Ref. [145] presents an interesting way to deal with plastic bearing FD,
which involves a two-stage process that combines envelope analysis and empirical mode
decomposition (EMD) to preprocess vibration signals and concentrate on the fault-related
components. However, despite the wide selection of schemes depending on various models
and signal processing techniques, there is still no reasonable general approach [3]. The
diagnosis of bearing faults has always been a specific issue in a few recent works [3].

In [146], non-conventional procedures for IM FD have been studied. It proposes an
unsupervised classification system known as artificial ant clustering to detect and classify
rotor and bearing faults in IMs at various load levels. In [147,148], general techniques used
in image processing and pattern recognition have been proposed to tackle the problem
of rotor FD. The authors of [147] propose an approach for the programmed evaluation of
the rotor condition, taking into account the analysis of the start-up current. The PCA, in
combination with kernel density estimation [148], is used to identify the stator current-state
space patterns of a motor in a healthy condition with different faults (broken bars and
eccentricities), accomplishing exceptionally precise classification results.

There is also an ever-increasing literature base about the use of deep neural networks,
and above all the convolutional neural networks (CNN), which only require raw signals
without any feature engineering (see [117] for a very recent review for bearing faults
and [149,150] for gear faults). In [117], it is shown that for the CWRU dataset, composed
only of vibration data, all deep learning tools require, in general, only three or four layers
in order to achieve very high test classification rates. For example, the adaptive CNN
(ADCNN), equipped with a Softmax classifier and three layers, has a testing accuracy of
97.90%. However, most of these techniques stack the 1D temporal raw data, obtained from
different accelerometers, into a 2D matrix form, similar to the representation of images.
This approach is questionable, because the convolutional filters search for false correlations
in contiguous rows (because of the filter size). Instead, it would be more meaningful to
take into account only the 1D raw signal and, correspondingly, a 1D convolutional neural
network. In [151], three convolutional layers are used, together with two fully connected
layers. An accuracy of 97.1% is reached in the case of vibration data. In [152], interestingly,
a shallow convolutional neural network (with only one convolutional layer), equipped
with only six filters for one channel and three filters for two channels, is enough for more
than 98% test accuracy, again on vibration data.

7.1.6. Diagnosis of Stator Faults

The reliability of FD and CM is mostly assessed on their accuracy in discriminating
the faults under balanced and unbalanced conditions. Under these circumstances, simulat-
ing the fault conditions becomes more important. Many studies have been conducted to
predict the performance of IMs using various modelling/simulation techniques for stator
faults [55,56,93,153]. To distinguish the healthy and faulty frequency components, theoreti-
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cal analysis and modelling of the IMs are necessary. Through this, fault frequency spikes in
the presence of time harmonics and motor saturation can be isolated [11]. In [154–157], the
non-linearity and saturation effects have been investigated with the enhanced modelling
and simulation of faulty motors.

Novel CM techniques have also been developed for stator inter-turn faults that are
characterized by frequency components of the line-to-line voltage after switching off
the motor, or of the transient voltages and currents during loading and unloading [158].
In addition, works of [159] have focused on the detection of stator inter-turn fault by
monitoring the sequence component impedance matrix, while [160] describes a method to
predict the insulation failure in IMs by using the line-to-neutral voltage.

The negative-sequence currents have also been used to detect stator-winding faults.
In [64,161], the research has shown that it is possible to detect the stator winding turn
fault by directly detecting negative-sequence currents of IMs in real-time. Besides these
approaches, Reference [162] utilizes partial discharge to detect stator insulation degradation,
while [163] focuses on the motor current zero-crossing instants for fault detection. In this
study, analysis is performed using a zero-crossing time (ZCT) signal of the stator current.
In [164], a protection method for IM against faults due to voltage unbalance and single
phasing has been described.

There has been a significant shift in focus on the techniques associated with the
diagnosis of stator-based faults. The FD and CM of IMs for stator faults have inclined
more towards AI techniques from the traditional approaches in recent years. Various
AI-based techniques such as expert systems, artificial neural networks (ANNs), fuzzy logic,
neuro-fuzzy systems, genetic algorithms, etc., have been utilized for the diagnosis of stator
faults in [165]. In this respect, a current Concordia pattern-based fuzzy decision system has
been developed in [166], while in terms of detection of stator inter-turn faults, Ref. [167]
has implemented a classification scheme using ANNs.

While the list for the techniques involving the FD and CM of stator-based faults is
very long, it should be emphasized that the diagnosis of stator faults due to two or more
mechanical faults (e.g., bearing defects, eccentricity faults, bent shaft, or rotor-related faults)
occurring simultaneously is still an open issue. Chances are high that these different
mechanical types of faults may deteriorate the stator insulation. In addition, the possibility
of more than one cause responsible for the same fault (stator insulation degradation due to
moisture and also mechanical rubbing) should be critically considered [33,168]. Under these
circumstances, more than one detection parameter should be monitored simultaneously.
Furthermore, studies in [169] suggest that the noise parameter should be explored more
extensively, since it contains important information regarding the fault characteristics. In
the same study, the authors also claim that the noise of the rotating motor can be strongly
influenced by the change in loading conditions.

7.1.7. Diagnosis of Rotor Faults

Monitoring for rotor faults in IMs is an appealing research topic for quantitative
noninvasive strategies, which can also work successfully under transient conditions. In
particular, each electrical fault in the rotor of an IM gives rise to the asymmetry of the rotor
circuits, either on wounded rotor machines (asymmetry of windings impedances) or in
squirrel-cage machines (broken bars or split-end rings).

Rotor faults can result from thermal stress, electromagnetic forces, electromagnetic
noise and vibration, centrifugal forces, as well as environmental or other mechanical causes
because of the loss of laminations, weak parts, bearing failures, or defects in connections.
Rotor faults have been investigated under constant and variable speeds, under the condition
of inverter supply.

In general, rotor fault diagnosis methods can be categorized into signal, model, and
information-based classes [17]. Signal-based strategies typically utilize the stator current
since it is sensitive to rotor faults. A symptomatic index can be therefore devised together
with a threshold to express the boundary between faulty and healthy conditions.
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Some recent works have revamped the utilization of AI tools, exploiting either novel or
enhanced system topologies, or a mix of novel DSPTs (for feature extraction) and NNs (for
classification), for the diagnosis of rotor faults. Moreover, some recent contributions have
consolidated the use of statistical information and NNs for fault detection and classification.
More particularly, Ref. [120] have proposed a strategy which exploits a feature extraction
system depending on smoothed ambiguity planes for the separation of classes. This helps
boost the separability among classes utilizing Fisher’s discriminant ratio and a feature
selection procedure. This approach takes into account an error likelihood model to select
an ideal number of extracted features. This results in the successful diagnosis of broken
bars faults, stator faults, and bearing faults. Ref. [170] utilizes the statistical features of
time-domain and spectral information as a basis for the development of a NN for rotor fault
detection and classification. A similar approach is used with SVM-based methodologies,
which has been given much attention over the last few years. Ref. [171] gives an example
of recent applications of SVM-based strategies to classify rotor-based faults.

7.1.8. Diagnosis under Non-Stationary Conditions

An electrical machine works under nonstationary conditions when its typical duty
cycle consists of persistent and arbitrary load fluctuations or changes in supply voltage
or current. Electric vehicles, wind generation, and other modern processes are examples
of real applications in which electrical machines work under nonstationary conditions.
Conventional methodologies using stationary analysis, for example, the MCSA, leads
to unsatisfactory results in this case. Other methodologies taking into account transient
analysis, especially during the start-up, cannot be used to analyze nonstationary conditions.
Thus, new methods have been developed. A summary of recently proposed strategies for
performing FD in nonstationary conditions are now explained.

Frequency-domain analysis: When speed oscillations are small, Fourier analysis can
be used, since correct accuracy is not mandatory. The unavoidable decrease in the fre-
quency resolution in the spectrum when the time window is decreased can be counteracted
by increasing the number of samples, which is not always achievable. The inadequate
choice of the number of samples can hide the harmonics of interest for the detection of
faults. To overcome this issue, strategies have been proposed for the estimation of signal
parameters by employing the rotational invariance method (ESPRIT-[172]). Moreover, the
idea prominence has been quite useful when it comes to the extraction of harmonics for
signals that are acquired under the non-stationary operation of IMs. References [47,48]
utilize the idea of prominence after transforming the time-domain signal into frequency
domain. In addition, the authors are also able to detect the occurrence of broken rotor bar
faults using the technique of the “occupied band power ratio”.

Time-domain analysis: Various issues can occur under non-stationary conditions when
time-domain analysis is used. While different failures can be analyzed in the frequency
domains with respect to the magnitude and frequency, there are no such particular fault-
related patterns in the time domain for straightforward diagnosis. However, faults result
in energy variations within certain frequency ranges, and this can be utilized for the
identification of the fault, by using, e.g., the discrete wavelet transform (DWT), which can
extract the frequency bands of interest for further processing [173]. Another approach is
to use frequency estimation methods which do not require the DFT and based on time-
domain signals, such as the frequency estimation methods. These methods rely on the
eigen decomposition of the autocorrelation matrix of the stator current signal and divide
the space spanned by the eigenvectors into two subspaces: a “signal” subspace and a “noise
subspace”. This method then exploits the orthogonality of these two spaces, due to the fact
that the autocorrelation matrix is an Hermitian matrix.

One of these is multiple signal classification (MUSIC) [47,174], which can eliminate
the problem of the influence of the fundamental harmonic by moving the corresponding
eigenvector to the noise sub-space. Many applications of MUSIC have been developed, but
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since this method depends on the eigenvalue decomposition of the autocorrelation matrix,
it might be unsuitable for online applications.

Diagnosis in the time–frequency domain: This kind of analysis can be performed
through different continuous transforms such as STFT, CWT, WVD, Choi–Williams dis-
tribution (CWD), and Zhao–Atlas–Marks distribution. The standard after-effect of these
changes is a three-dimensional figure generally plotted as a two-dimensional colored map.
For each time value, this map yields the dispersion of the signal energy among various
frequencies. This enables the beginning of the fault to be tracked during nonstationary
conditions [119,175]. Moreover, even vision-based strategies utilize the time–frequency
charts (given by the aforesaid techniques) to train the neural-based models for the purpose
of classification.

8. Open Problems and Final Remarks

The works mentioned above lay emphasis on the research developments in the field
of FD, including the use of one of multiple sensors, the combination of data-driven and
model-based strategies, and the utilization of hybrid methods to follow the trend of a fault.

From the surveyed literature, while AI-based approaches have made significant
progress in FD, some open issues still remain, like the requirement of a large amount
of data from sensors to perform an accurate diagnosis. This is especially true for supervised
based techniques, as listed in [17], where a detailed insight of common AI-based approaches
in IM fault diagnostics is presented.

In addition, the problem of generalization is of major concern to the industry and
also to the researchers for the FD of machines with different characteristics or rating [4],
which can easily lead to misclassification. In these cases, feature engineering plays a major
role in enhancing the overall system accuracy. Several characteristic features are used
in the FD and CM of IMs. Some of the most important ones are: statistical time and
frequency-domain features [176], the envelope of the signal using Hilbert transform [177],
the harmonic retrieval using non-parametric and parametric methods, the energy and
kurtosis [178] of the signal, and the cepstrum of the signal [179]. Some of these features can
be used to indicate abrupt changes in the signal. The significance of these features depends
entirely on the nature of the fault in the IM.

In most cases, some of the drawbacks for the DSPTs arise when there is a change in
the environment. Due to low loads, fluctuating loads, and time-varying conditions, as well
as special magnetic structures or combined faults, results from the basic frequency-domain
techniques can be invalidated [4]. Similar concerns are shared by [3,44,102].

Furthermore, [44] has developed a comparative study of time–frequency approaches.
In summary, the authors conclude that these approaches (Wigner–Ville + notch filter,
adaptive transform, and Hilbert–Huang transform) have high computation complexity and
are unsuitable for online applications or low-cost devices implementation. For CM, the
authors also highlight the lack of coordination between the signal requirements of DSPTs
and that of data transmission schemes, which is therefore the main reason why these DSPT
techniques are rarely utilized in commercial systems.

In terms of the rotor eccentricity of IMs, the authors of [3] state that some of the
unsolved issues concern the avoidance of the load influence and also the discrimination
between the static and dynamic eccentricities. While some techniques have evolved in
trying to solve this issue, the authors claim that there is still a room for more improvement.

As for bearing faults, the search for techniques which rely on quantities and can
be directly measured in the motor terminals rather than on the bearings is a challenge
which has not yet been solved [44], especially taking into account problems relating to
the current analysis for diagnosing bearing faults. The same conclusion is shared by [3].
In [180], comparisons are made about the use of current signatures and analysis of data
from acoustic sensors. In this work, the authors have been rather pessimistic about the use
of stator current for bearing faults. In addition, the development of techniques in terms of
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the discrimination of faults with similar signatures and their suitability for implementation
in low-cost CM systems is still an open issue in [3,11,44].

Nevertheless, little investigation has been conducted into the development of control
strategies to localize faults and maintain the unchanged or minimally affected drive behav-
ior, in both transient and steady-state operating conditions. Works of [181,182] investigate
the behavior of multiphase IMs in terms of the resilience of the stator windings. Some stud-
ies [183] have also highlighted that more effective designs for power electronic systems are
necessary as current control schemes often increase the complexity and cost with possible
reduced performance.

Following the recent advances in AI-based strategies for FD and CM, CNNs, recurrent
neural networks (RNNs), as well as other deep learning (DL) approaches (generative
adversarial networks (GANs) and transfer learning (TL) [115]) and their variants have been
in the spotlight. While extensive data are required to accurately model the faults, even
incremental techniques [131] are evolving to address the problem of time complexity and
reduce storage capacity for the trained model. The lack of data can be addressed by the use
of GANs, however, thorough validation checks must be made to ensure the model behaves
in a generic way. Even TL is very instrumental when it comes to the limited amount of data
available of the same genre. A collaborative way to develop classification or regression
models is by using the TL approach. Though it may require more storage space, models
trained through the TL approach tend to carry a good amount of information that were
trained previously using different sets of data.

Though the potential of GANs and TL approaches are quite remarkable whilst having
a complex architecture, these black-box types of neural based models can now be well
understood. This can be achieved through “probing” [116] the trained model as well
as visualizing the information that contains the feature maps of the data when making
important decisions given in a test set. Once the “how” and “why” behind the trained model
are determined, one can simplify the trained network and create simpler variations for
hardware deployment.

It should be remarked that with respect to FD and CM for any kind of electrical
drive, AI-based approaches have taken a steep step forward compared to other non-AI or
conventional approaches. However, one should try to address the data-driven problem
in a much simpler way and increase the model complexity if, and only if, satisfactory
results are not met. In a nutshell, while modern AI-based approaches will continue to
make advancements, it is strongly recommended that data are comprehensively explored
to select a simple tool for fault analysis/modelling, classification, or degradation studies.
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