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Abstract: With a proliferation of diverse types of renewable distributed generation (DG) into the
distribution network, an equivalent model of an active distribution network (ADN) is extremely
important, since the detailed modeling of the whole ADN is much more complex and time consuming.
However, different studies developed different model structures of ADNs, which are difficult to be
applied in a power system simulation. At the same time, the DG’s low voltage ride through the
(LVRT) control was not considered in the existing ADN model, which may lead to a large modelling
error. In this paper, a general equivalent model is developed for the ADN with a significant amount
of DGs, based on a two-step modelling method. Step one, motivated by the dynamic similarities
between the doubly-fed induction generator (DFIG)-based wind turbines, direct drive permanent
magnet synchronous generator (DDPMSG)-based wind turbines, and photovoltaic (PV) generation, a
general model structure of a renewable DG is initially developed. Then, an aggregation method for
the DG’s nonlinear subsystems of the low voltage ride through (LVRT) control and the converter’s
current limits are presented. Step two, the ADN model is represented by a general renewable DG
model paralleled with a composite load model, and the model is validated, based on an actual
distribution network with different renewable DG penetrations and different disturbance degrees.
The simulation results show that our model outperforms others with acceptable errors.

Keywords: active distribution network; general model; renewable distributed generation;
dynamic modeling

1. Introduction

Digital simulation, which mainly depends on the model of network components,
plays a crucial role in the power system analysis and control. Power load, as one of the
key elements, has a significant influence on the power system dynamics. Reference [1]
shows that the inaccuracy of the load model might lead to a big deviation between the
simulation and the actual recordings. Developing a high-accuracy load model is thus
the fundamental step for the power system analysis. A traditional distribution network
is modelled as an aggregated load represented by the composite load model (CLM) or
synthesis load model (SLM) [2–7]. Currently, with the increasing integration of renewable
distributed generation (DG), the dynamic characteristics of the distribution network have
been significantly changed. This indicates the necessity of new modeling techniques for
active distribution networks (ADNs) in simulating modern power systems [8–11].

Most studies use the parallel structure of the aggregated traditional load model (CLM
or SLM) and the aggregated renewable DG model to investigate the dynamics of the
ADN. The main differences among them lie in the representation of the renewable DGs.
For instance, a series of connected synchronous generators and converters is applied by
Refs. [8,12,13]. Meanwhile, a controllable current source model in Ref. [14] is used to
address the dynamics of the wind-based generation. However, these models did not take
into account the influence of the converter’s control and the low voltage ride-through
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(LVRT) characteristics in the renewable DGs. A positive sequence model for the converter-
based sources with a simple generic control was developed by Ref. [15], and the controlled
voltage source model was applied as its good convergence in the simulation. According to
Refs. [16,17], the “DER_A” model, a dynamic DG model developed by the Electric Power
Research Institute (ERPI) and the North American Electric Reliability Corporation (NERC),
aggregated the renewable DGs by considering the DG’s disconnection and dynamic voltage
support under large disturbances. However, the above models are much more complex,
and thus may not be convenient for use with the CLM or SLM. According to Ref. [18], a
generic DG model with a LVRT was built to simulate several manufacturers’ products. An
equivalent model was further developed by analyzing the dynamic characteristics of the
DGs’ overall responses. However, the converter’s current limit which plays a vital role in
the dynamic behaviors of the renewable DGs, were not considered in this equivalent model.

The dynamic reduction technique is another option to model the ADNs. According to
Ref. [19], a singular value decomposition method, which ignores the dynamics of the small
eigenvalues, was developed for aggregating the distribution networks. Based on Ref. [19],
the Krylov subspace linear iteration method and Hankel norm approximation method
were further improved by Refs. [20,21] for the reduced-order modeling of the distribution
network. Since the reduced order model only retains a part of the dynamics of the original
system while the model structure and parameters may be different from the physical system,
these methods are difficult to be integrated into most standard simulation programs.

Furthermore, with the development of machine learning technologies and the con-
tinuous improvement of data mining capabilities, data-driven modeling methods have
been developed in recent years [22]. More specifically, the dynamic characteristics of the
load were addressed, based on an artificial neural network, according to Refs. [23,24]. In
Ref. [25], the method of the decision tree was applied to construct the dynamic model
of an ADN, and the ant colony optimization algorithm was used to identify the model
parameters. The data-driven methods have a good adaptability when the model structure
is unknown or difficult to express mathematically. However, they typically require a large
amount of historical data, and the model accuracy could be easily affected by noise.

Currently, a lot of renewable DGs are integrated into the medium-voltage distribution
networks, and these renewable DGs are required to equip with LVRT control to support the
main power grid during faults. Therefore, the LVRT control should be considered in the
dynamic modeling. To attain the equivalent model of a renewable DG with a LVRT control,
the whole dynamic process of the DFIG WTs or the PV generation were analyzed, and the
LVRT blocks were aggregated by updating the reference value of the equivalent controller,
in Refs. [26,27]. However, these methods focus on the modeling of one specific renewable
DG with the same type of generators or control strategy. It is difficult to be adopted into
the equivalent modeling of an ADN with various types of renewable DGs [7].

With a large number of different types of renewable DGs in the distribution network,
it is a challenging task to implement an accurate model for an ADN without significantly
increasing the computational cost. In this paper, a general model is developed to describe
the dynamics of the different types of renewable DGs with the LVRT control. Thereafter, a
new aggregation method for the LVRT control and the converter’s current limit of various
renewable DGs, is addressed in detail. The developed renewable DG model and the
CLM is constructed in parallel as the dynamic equivalent model for the ADN. The main
contributions of the paper are summarized as follows:

(1) With the dynamic similarity analysis for the different types of renewable DGs, a
general model is developed to describe the overall dynamics of various DGs in the ADN,
and to represent different types of DGs from several manufacturers.

(2) A novel equivalent method is developed to aggregate the nonlinear LVRT control
and the converter’s current limits, according to the operation status of each renewable DG.

(3) A general model, which combines the developed renewable DG model and the
CLM in parallel, is developed and validated through an illustration example and a practical
testing case.
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This paper is organized as follows. The detailed models and dynamic responses of
the different renewable DGs with the LVRT control are illustrated in Section 2. Section 3
introduces the developed general model structure for the different types of renewable DGs.
In Section 4, the aggregation method for the multi-type DGs with the LVRT control and the
converter’s current limits, is proposed. In Section 5, the general model of a renewable DG
is validated by the responses of the detailed models from the multiple renewable DGs. In
Section 6, the general model of ADNs and the adaptability of the model is analyzed. This
paper is finally concluded in Section 7.

2. Detailed Models of the Renewable DGs

The detailed models of the renewable DGs (including DFIG WT, DDPMSG WT, and
PV generations), used in PSCAD/EMTDC, are shown in Refs. [28–30]. It can be seen that
all renewable DGs are grid-connected through power electronic converters. The main
differences among them include the following perspectives:

(1) Wind turbines are rotating elements while PV cells are static sources.
(2) The stator of DFIG is directly connected to the power grid, and its rotor is connected

to the grid through a converter; the DDPMSG WT and PV generations are connected to the
grid through a converter.

(3) The wind power generation includes a rotor-side converter control and a grid-side
converter control, while the PV generation has only the grid-side converter control link.

Pourbeik et al. [31] emphasized that the dynamic behavior of renewable DGs, as
seen from the grid, is dominated by the converter controller’s responses, rather than the
physical characteristics. The paper is primarily concerned with the dominant dynamics of
the renewable DGs, and the converter’s controller models are described by Refs. [28–30].
Accordingly, only the fault ride through the control models are discussed in detail in the
following analysis. We first present the LVRT control strategy in Section 2.1 and then
describe the dynamic responses of the DGs in Section 2.2.

2.1. LVRT Control Strategy

The LVRT control includes two blocks labeled as low voltage active current manage-
ment (LVACM) and low voltage reactive current management (LVRCM). They are used to
mitigate the system stress during the fault, by limiting the current command with both an
upper limit and a ramp rate limit. Generally, the reactive power priority control manner
is used.

(1) LVRCM: The LVRCM function is designed to increase the reactive current under
low voltage (smaller than 0.9Un) scenarios. The renewable DG’s reactive current iq is the
sum of reactive current from normal control iq_normal and the one from LVRCM module
iqLVRT, namely:

iq = min
{

iq_normal + iqLVRT, Imax

}
(1)

In this paper, Imax is 1.1 p.u. for DDPMSG WT and DFIG WT, and 1.5 p.u. for the
PV generation.

For DDPMSG WT, the reactive current of the LVRCM module iqLVRT is,

iqLVRT = kq(Un −U) = kq∆U, 0 ≤ U ≤ 0.9Un (2)

For the PV generation, the reactive current of the LVRCM module iqLVRT is,

iqLVRT =

{
0, (Un −U) < 0.2Un
kq(Un −U)− 0.25, (Un −U) ≥ 0.2Un

(3)

In (2) and (3), kq is the reactive support coefficient with the value of 0.8 for DDPMSG
WT, and 2.5 for the PV generation.
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(2) LVACM: The LVACM function adjusts the active power reference value, based
on the terminal voltage of the renewable DG during the LVRT by PLVRT = λPref, and the
coefficient is λ, Figure 1 depicts the LVACM control strategy.
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Figure 1. Low-voltage active power management.

Under the mode of the reactive power priority control, the active current during the
LVRT can be expressed as follows,

id = min
{

PLVRT

U
,
√

I2
max − i2q

}
(4)

2.2. Dynamic Responses of the DGs

In order to analyze the dynamic characteristics of the different types of renewable DGs,
simulations under a 20%Un voltage dip are established. Figure 2 illustrates the transient
responses of three types of DGs.
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As shown in Figure 2, we have the following observations:
(1) All renewable DGs are at the LVRT state during the fault since the 20%Un voltage

dip exceeds the threshold voltage of the LVRT.
(2) During the voltage dip fault, the active power response trends of all renewable

DGs are similar, and the difference is the active power value. Specifically, according to
Figure 1, we have the following observations:

(a) The value λ of DFIG WT is 0.88, indicating that its PLVRT is 0.88 p.u.
(b) The λ of DDPMSG WT is 0.8, therefore its active power PLVRT is 0.8 p.u.
(c) The PLVRT of the PV generation is around 0.96 p.u., since its coefficient λ is 1.
(3) During the fault, the reactive power response trends of all renewable DGs are

also similar to each other, and the difference is the reactive power value. Specifically, the
reactive power of DFIG WT is 0, since it has no LVACM control, while the reactive power
of DDPMSG WT and the PV generation will increase, according to (2) and (3).

3. A General Model of the Multiple Renewable DGs

In this section, we present a general model for multiple renewable DGs. In particular,
we first give a reduced order model for renewable DGs in Section 3.1 and then describe a
general model of multiple renewable DGs in Section 3.2.
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3.1. A Reduced Order Model for Renewable DGs

To analyze the dynamics of the ADN, an aggregate model with a low order and fewer
computational time features is developed to investigate the dynamics of the different types
of renewable DGs.

Since the dynamic responses are similar for different types of renewable DGs, it is
reasonable to construct a general model. At the same time, the dynamics of renewable DGs
are dominated by the converters and their control strategies, a simplification model can be
attained, based on the order reduction technique, by which the components related to the
non-dominate modes are neglected. The simplifications are as follows:

(1) The mechanical part of the wind turbine generators including the wind turbine,
MPPT control, pitch angle control, and drive train are neglected.

(2) The generator and the grid-side converter are ignored as in Ref. [31].
With the simplification method above, the reduced order model of the renewable

DGs is shown in Figure 3. It includes six components: the DC capacitor, the simplified
phase-locked loop (PLL) model [32], the converter, the RLC filter element, the active current
control with the LVACM, and the reactive current control with the LVRCM.
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3.2. A General Model of the Multiple Renewable DGs

The dual-loop controller, which comprises an inner current loop and an outer power
loop, is often used in the renewable DG’s control. Zhao et al. [33] showed that the time
scale of the inner current controller is about 10 ms, while the outer power control and
phase-locked control is about 100 ms. When the ADNs are modelled for the power system
electro-mechanical transient analysis, the fast dynamics of the inner current control can be
neglected by setting id = idref and iq = iqref. The limit of each block in the active/reactive
control loop is aggregated as one value.



Energies 2022, 15, 8931 6 of 16

To further simplify the renewable DG model in Figure 3, a current source model is
used, in which, the converter and the filter are neglected, and the PLL is used to lock the
phase. Based on these simplifications, the model illustrated in Figure 3 can be adjusted
to the model, as shown in Figure 4, which is named as the general renewable DG model
(GRDGM) in this paper.
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In Figure 4, the function f
(
id, iq, θPLL

)
is expressed as:

f
(
id, iq, θPLL

)
= (id + jiq)ejθPLL (5)

The output power of the renewable DG is:{
Pg = idU cos(θ − θPLL) + iqU sin(θ − θPLL)
Qg = idU sin(θ − θPLL)− iqU cos(θ − θPLL)

(6)

In a steady state, θ = θPLL.

4. Model Aggregation for Multiple DGs

Generally, the distribution network contains many types of renewable DGs, located at
different sites, and their operation statuses are often different. Since the model of Figure 4
is generic for different types of renewable DGs, their equivalent model will have the same
structure. The parameters of the linear modules in the equivalent model can be calculated
by the system identification method. However, the nonlinear module, such as the LVACM
and LVRCM, and the limit needs to be aggregated, based on the operation status of each
renewable DG, which are shown in the following subsections.

4.1. Aggregation of the LVACM and LVRCM

According to Section 2, the active power reference value of the equivalent LVACM
under the LVRT can be expressed as:

Peq.ref =
n

∑
j=1

λ(j)Pgref(j) =λeq

n

∑
j=1

Pgref(j) (7)
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where n is the number of renewable DGs in the ADN, Peq.ref and λeq are the reference
values of active power and the power coefficient of the equivalent model, respectively.

With the values of Peq.ref and
n
∑

j=1
Pgref(j), λeq of the equivalent model can be obtained.

Based on (2) and (3), the reactive current of the equivalent LVRCM can be expressed as:

iqLVRT.eq =
n

∑
j=1

kq(j)∆U(j) = kq.eq∆Ueq (8)

where parameter kq.eq can be calculated by kq and ∆U of each renewable DG, and also by
the voltage variation ∆Ueq of the equivalent bus under a certain disturbance.

4.2. Determination of the Current Limit for the Equivalent Model

Assuming that Imax is the current limit value of a single renewable DG and Imax.eq is
the current limit of the equivalent model, we have

(1) When the current of all renewable DGs is less than the limit value, Imax.eq can be
calculated through:

iq.eq =
n
∑

j=1
iq(j)

id.eq =
n
∑

j=1
id(j) =

n
∑

j=1

√
Imax(j)2 − i2q(j) =

√
I2
max.eq − i2q.eq

(9)

(2) When the currents of n1 renewable DGs exceed their limits, and the currents of
(n− n1) renewable DGs are less than the limits, Imax.eq can be calculated through:

iq.eq =
n1
∑

j=1
Imax(j) +

n
∑

j=n1+1
iq(j)

id.eq =
n
∑

j=n1+1
id(j) =

n
∑

j=n1+1

√
Imax(j)2 − i2q(j) =

√
I2
max.eq − i2q.eq

(10)

(3) When all renewable DGs exceed their limits, we have id.eq = 0, and Imax.eq reaches
the maximum value, i.e.,

Imax.eq =
n

∑
j=1

Imax(j) (11)

5. Effectiveness of the GRDGM for Describing Multiple Types of Renewable DGs

To validate the effectiveness of the GRDGM representing the aggregate dynamic
behavior of the multiple renewable DGs in the distribution network, the case with three
types of DGs, as shown in Figure 5, is applied. The overall responses of the three renewable
DGs, based on the detailed model are compared with the ones from the GRDGM.
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The system as shown in Figure 5 consists of three types of renewable DGs con-
nected to the infinite source through transmission lines (ZL1, ZL2) and two transform-
ers (ZT1, ZT2). The rated power of DFIG WT, DDPMSG WT and PV are 2 MW, 2 MW
and 1 MW, respectively, and their grid-connected impedance are Z1 = 0.5765 + j1.6485Ω,
Z2 = 4.6120 + j13.1880Ω and Z3 = 6.3415 + j18.1335Ω, respectively. Assuming that all re-
newable DGs are with constant reactive power control mode, the LVACM and LVRCM are
the same as in Section 2.1. The remaining parameters are the same with the recommended
values on simulation platform of PSCAD/EMTDC [23–25].

The parameters {Kpp, Kpi, Kqp, Kqi, KPLLp, KPLLi} in GRDGM, and the impedance Zeq
between equivalent renewable DG and bus B2 are required to be estimated. They can be
estimated by the curve fitting method, which can be achieved through:

min error =
1
K

i=K

∑
i=1

[
(

Psim(i)− Preal(i)
Preal(i)

)
2

+ (
Qsim(i)−Qreal(i)

Qreal(i)
)

2
]

(12)

where Psim and Qsim are the active and reactive power responses, based on the general
model, respectively; Preal and Qreal are the active and reactive power, based on the detailed
model, respectively; K is the total number of points in the time window of the disturbed
trajectory. The sampling step is 10−5 s, and the simulation platform is PSCAD.

According to the grid-connected impedance of all renewable DGs in Figure 5, the
threshold value of the LVRT and the current limit of each renewable DG, we can attain that:

(1) all renewable DGs will not enter into the LVRT state when the voltage of B2 is
larger than 89.8%Un;

(2) all renewable DGs will enter into the LVRT when the voltage of B2 is lower
than 78.1%Un;

(3) all renewable DGs will exceed the current limit when the voltage of B2 is lower
than 59.2%Un.

5.1. Parameter Estimation Results

To estimate the parameters in the GRDGM, a 9.5%Un voltage dip disturbance is
conducted at B1 through the adjustment of the grounding resistance, the fault lasts for
0.2 s and the system returns to its original state after clearing the fault. Under this fault,
all renewable DGs will not enter the LVRT state, and the converter’s current is within the
limit. Therefore, the values of the equivalent LVACM and LVRCM will be λeq = 1, kq.eq = 0,
respectively, based on (7) and (8).

The total real and reactive power responses of three renewable DGs with a detailed
model at B2, are used as the training data, in order to obtain model parameters by means
of curve fitting, based on (12). The curve fitting method is a particle swarm optimization
algorithm. The initial population number of the particles and the learning factor are
assumed to be 20 and 2, respectively, and the maximum number of iterations is 200. The
identification results are shown in Table 1.

Table 1. Estimated results of parameters in GRDGM.

Parameter Estimation Parameter Estimation

Req(Ω) 3.5117 Xeq(Ω) 5.4950
Kpp 8.5231 Kpi 0.07509
Kqp 1.3200 Kqi 0.1177

KPLLp 68.9987 KPLLi 2500.3433

The responses of the GRDGM and the detailed model are demonstrated in Figure 6,
and the fitting error of (12) is 0.0031. It can be seen that the GRDGM can well capture the
whole dynamics of the multi-type renewable DGs.
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Figure 6. The renewable DGs’ responses under a 9.5%Un voltage dip.

5.2. Adaptability of the GRDGM

To further verify the adaptability of the GRDGM, we conduct two other disturbance
scenarios, as follows.

Scenario 1: the disturbance with an 18.5%Un voltage dip at B2.
Scenario 2: the disturbance with a 39%Un voltage dip at B2.
In both, the duration of the voltage drops is 0.2 s. Meanwhile, the parameters ob-

tained from the 9.5%Un voltage dip disturbance are used to fit the responses of these
two disturbances.

According to the grid-connected impedances of three DGs, it can be obtained that the
DFIG WT and the DDPMSG WT will enter into LVRT under both disturbance scenarios.
Parameters of the equivalent LVACM and LVRCM are calculate based on (7) and (8), and
resulted as λeq = 0.9087, kq.eq = 0.3167 and λeq = 0.6474, kq.eq = 0.6659 for each scenario,
respectively. In addition, the currents of DFIG WT and the DDPMSG WT will exceed the
limits, and the limiting value of the equivalent model is Imax.eq = 1.18 p.u. based on (10).

The overall responses of the three renewable DGs under the obtained parameters from
the 9.5%Un voltage dip disturbance are shown in Figure 7. In Figure 7a, the fitting error of
(12) is 0.0181; while in Figure 7b, the error is 0.0389.
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Figure 7. Model adaptability analysis. (a) 18.5%Un voltage dip disturbance at B2. (b) 39%Un voltage
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It can be seen from Figure 7 that the GRDGM has a high accuracy in fitting the overall
dynamics of the multiple types of renewable DGs. Moreover, the estimated parameters
under one disturbance have a good adaptability to other disturbances.

6. General Model of the ADN

In this section, we investigate the general model of the ADN. In particular, the initial
stages of the model development for the ADN focuses on constructing the general model
for the multiple renewable DGs. Then, the equivalent modeling for the ADN with various
types of renewable DGs will be investigated.

6.1. General ADN Model

The general ADN model (GADNM) can be represented by the parallel connection of
the traditional CLM and the GRDGM, as shown in Figure 8.
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In Figure 8, ZIP is the static load, and IM is induction motor load. When the power
loss is neglected, Figure 8 satisfies,{

PL = PIM + PZIP = PDG + PSYS
QL = QIM + QZIP = QDG + QSYS

(13)

The proportion of renewable DG’s power KDG and the proportion of dynamic load
KIM can be defined as follows, {

KDG = PDG/PL
KIM = PIM/PL

(14)

The system delivers power to the load when KDG < 1, while the ADN delivers power
to the system when KDG > 1.

6.2. Case Study

A real 35 kV active distribution network of an industrial park in China, shown in
Figure 9 is used to evaluate the performance of the GADNM. The system is built on the
PSCAD/EMTDC platform, the resistance, and reactance of the cable line per kilometer are
0.116 Ω/km and 0.10676 Ω/km, respectively. Since the park is dominated by civil light
industry load, e.g., rubber, plastics, and related manufacturers, most induction motors
are small ones. In Figure 9, the parameters of the induction motors are set with the
same value, which are as follows, stator resistance and reactance are Rs = 0.078 p.u.,
Xs = 0.065 p.u., respectively; rotor’s resistance and reactance are Rr = 0.044 p.u. and
Xr = 0.069 p.u., respectively; and its inertial time constant and excitation reactance are
H = 1 s and Xm = 2.67 p.u., respectively. The static load adopts the constant impedance
model, and the ratio of resistance/reactance is 5.

In the steady state, KDG = 1, and the output power of DFIG WT, DDPMSG WT, and
PV accounts for 34.48%, 35.39%, and 30.12% of the total DG power, respectively.

To verify the proposed GADNM, two disturbances with 20%Un and 70%Un voltage
dip at B2 are established. In both disturbances, the duration time of voltage drop is 0.2 s.
The responses of 20%Un voltage dip disturbance is used to estimate the model parameters
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by means of curve fitting, then the estimated parameters are used to fit the responses of
70%Un voltage dip disturbance to validate the model adaptability.
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Figure 9. Structure of a real 35 kV ADN.

As shown in Figure 9, 15 parameters {RDG, XDG, RCLM, XCLM, Kpp, Kpi, Kqp, Kqi,
KPPLp, KPPLi, Xs, H, s0, KDG, KIM} need to be estimated. Among them, s0 is the initial slip
of induction motor. The active and reactive power at bus B2 is used for curve fitting, and
the particle swarm optimization algorithm is used for parameter estimation.

Under the disturbance of 20%Un voltage dip, we have λeq = 0.9132 and kq.eq = 0.2713
based on (7) and (8). Under the disturbance of 70%Un voltage dip, we have λeq = 0.4261
and kq.eq = 0.9014. For both disturbances, Imax.eq is 1.2179 p.u. based on (11).

Figure 10 shows the responses of active power and reactive power at bus B2 from the
detailed model as shown in Figure 9 and the GADNM model as shown in Figure 8. As
shown in Figure 10a, the error of (12) is 0.0530, while in Figure 10b, the error of (12) is
0.0864. The estimation results of 15 parameters are shown in Table 2.

6.3. Adaptability Analysis

Three scenarios with KDG = 20%, KDG = 50% and KDG = 100% under different
voltage dip disturbances are conducted to investigate the model adaptability. The estimated
parameters in Section 6.2 are used to fit the responses. Figures 11–13 show the results.

We next present the detailed results, according the three scenarios, as follows.
(1) KDG = 20%
(2) KDG = 50%
(3) KDG = 200%
Under the three renewable DG penetration scenarios, the fitting errors are 0.0372,

0.0592, and 0.0794 under the 20%Un voltage dip disturbance, respectively, and the errors
are 0.0913, 0.0944, and 0.1004, respectively, under the 70%Un voltage dip disturbance.
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Figure 10. Responses of two voltage dip disturbances with KDG = 100%. (a) 20%Un voltage dip.
(b) 70%Un voltage dip.

Table 2. Estimated results of the parameters in the GADNM.

Parameter Estimation Parameter Estimation

RDG(Ω) 3.4221 XDG(Ω) 4.3953
Kpp 2.8821 Kpi 0.1291
Kqp 1.1114 Kqi 0.3437

KPPLp 114.1579 KPPLi 2791.2335
RCLM(Ω) 5.7222 XCLM(Ω) 6.5241
Xs(p.u.) 0.0599 H(s) 1.0812

s0(%) 1.6774 \ \
KIM(%) 64.1446 KDG(%) 102.3873
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Figure 11. Responses of the two voltage dip disturbances with KDG = 20%. (a) 20%Un voltage dip.
(b) 70%Un voltage dip.
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Figure 12. Responses of the two voltage dip disturbances with KDG = 50%. (a) 20%Un voltage dip.
(b) 70%Un voltage dip.
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Figure 13. Responses of the two voltage dip disturbances with KDG = 200%. (a) 20%Un voltage dip.
(b) 70%Un voltage dip.

Based on the above analysis, it can be concluded that the proposed GADNM can
achieve a high accuracy when it simulates the overall dynamic process of the ADN under
various scenarios and voltage dip disturbances.
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7. Conclusions

Due to the complexity of the detailed models of the different renewable DGs, including
the DFIG WT, DDPMSG WT, and PV generations, the diversities of their location and
operation status, this paper proposes a general GRDGM model to study the different
types of renewable DGs, based on the similarity of their model structure and dynamic
characteristics. The GRDGM is validated by comparing its responses with the detailed
models of various renewable DGs, and both the feasibility and adaptability of the GRDGM
are also verified.

Furthermore, the proposed GRDGM is connected in parallel with the traditional
CLM, as the dynamic model structure of the ADN. The model is also validated, based
on an actual ADN with multiple renewable DGs, and the results show that the proposed
GADNM has a good adaptability under different DG penetration levels and different
voltage dip disturbances.
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Nomenclature

Pg, Qg, Ug Active power, reactive power, and terminal voltage of the DG
U, θ Voltage magnitude and phase of the DG
RL, XL Resistance and reactance and capacitance of the transmission line
UDC Voltage of the capacitor at the DC side
θPLL Phase of the phase-locked loop
ud,uq d and q axis voltage
udref, uqref d and q axis voltage reference
id, iq d and q axis current
idmax, iqmax d and q axis current limit
idref, iqref d and q axis current reference
Pgref, Qgref, Ugref Reference value of the active power, reactive power, and terminal voltage of the DG
Kpp1, Kpi1 Proportional and integral (PI) gains of the outer loop of the active power control
Kpp2, Kpi2 PI gains of the inner loop of the active power control
KPLLp, KPLLi PI gains of PLL
Kθp1, Kθi1 PI gains of the constant power factor control
Kqp1, Kqi1 PI gains of the constant reactive power control
Kup1, Kui1 PI gains of the constant voltage power control
Kqp2, Kqi2 PI gains of the current inner loop for the reactive power control
ω Rotational angular frequency
ϕ Power factor angle
iqLVRT Additional active current of the LVRT control
Un Rated voltage
Imax The converter’s current limit
PZIP, QZIP Active and reactive power consumed by the ZIP loads
PIM, QIM Active and reactive power consumed by the motor load
PL, QL The total active and reactive power consumed by ZIP and IM
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PSYS, QSYS The system’s total active and reactive power
ZDG, ZCLM Grid-connected impedances of the DG and CLM load
Zeq Equivalent impedance
RDG, XDG Real part and imaginary part of ZDG
RCLM, XCLM Real part and imaginary part of ZCLM
Req, Xeq Real part and imaginary part of Zeq
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