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Abstract: The environment is seriously threatened by the rising energy demand and the use of
conventional energy sources. Renewable energy sources including hydro, solar, and wind have
been the focus of extensive research due to the proliferation of energy demands and technological
advancement. Wind energy is mostly harvested in coastal areas, and little work has been done on
energy extraction from winds in a suburban environment. The fickle behavior of wind makes it a
less attractive renewable energy source. However, an energy storage method may be added to store
harvested wind energy. The purpose of this study is to evaluate the feasibility of extracting wind
energy in terms of hydrogen energy in a suburban environment incorporating artificial intelligence
techniques. To this end, a site was selected latitude 33.64◦ N, longitude 72.98◦ N, and elevation
500 m above mean sea level in proximity to hills. One year of wind data consisting of wind speed,
wind direction, and wind gust was collected at 10 min intervals. Subsequently, long short-term
memory (LSTM), support vector regression (SVR), and linear regression models were trained on
the empirically collected data to estimate daily hydrogen production. The results reveal that the
overall prediction performance of LSTM was best compared to that of SVR and linear regression
models. Furthermore, we found that an average of 6.76 kg/day of hydrogen can be produced by a
1.5 MW wind turbine with the help of an artificial intelligence method (LSTM) that is well suited for
time-series data to classify, process, and predict.

Keywords: renewable energy; LSTM; forecast; artificial intelligence; machine learning; Islamabad

1. Introduction

Increasing energy demands resulting from rapid industrial digitization and urban-
ization of the world’s population coupled with the necessity of cleaner environments and
emissions control has led to exponentially expanding interest in renewable and sustainable
energy resources [1–3]. Hydro power and solar and wind energy constitute the main re-
newable sources of energy. Hydropower contributes 29%, and the cumulative contribution
of solar and wind energy is 6% of the total energy consumption of Pakistan, as shown in
Figure 1a based on data provided in [4]. These contributions the fulfilling of energy needs
are expected to grow by 33% and 12%, respectively, by 2025, as indicated in Figure 1b based
on data provided in [5]. Hydro power has a significant environmental impact on natural
waterways, although dams are expensive to build and depend on natural reserves [6].
Whereas solar energy has a significant footprint throughout the day, during the night,
another energy source is required to fulfil energy demands. Subsequently, environmental
factors have a considerable impact on the efficiency of solar PV systems, including bifacial
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panels [7–9]. Wind energy provides a reasonable alternative; however, its integration into
the energy grid is hindered by its intermittent nature [10].
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In this study we propose a method to store wind energy in terms of hydrogen as a
reasonable solution, as well as the use of artificial intelligence/machine learning (AI/ML)
as a tool to assess the potential of the proposed solution. In conventional energy sources,
energy storage occurs before electric power generation in the form of the primary resources
of coal, gas, uranium, or oil. Electricity is generated according to demand by thermal
power plants. However, the production of renewable energy from wind is detached from
energy demand, and it is necessary to store energy after the wind turbines harvest it. A
theme-based literature review is summarized in Table 1.

Table 1. Theme-based literature review.

Hydrogen Production

Sr. No. Subtheme Research Work and Findings Reference

1 Analytical method to
produce hydrogen

An engineering equation solver (EES) was utilized to determine the overall
energy and exergy efficiencies of the hydrogen production process, and the
particle swarm optimization technique was used to optimize the system.

[11,12]

2 Biochemical hydrogen production

Biochemical methods play an important role in hydrogen production, in
addition to being environmentally friendly. BEAMR was found to be an
efficient method for hydrogen production. Moreover, the rate of hydrogen
production can be increased by increasing the activity of hydrogen
production bacteria.

[13–15]

3 Electrolyzer for the
production of hydrogen

Proton-exchange membrane (PEM) electrolyzers were incorporated, for
hydrogen production, and multiple electrolyzers were suggested.
Electrolyzer were compared, revealing that an electrolyzer with a
membrane is most efficient. Hydrogen production of up to 1.2 kg/h can be
achieved using a PEM electrolyzer, but with Cr-C coated SS304 bipolar
plates in chemical solution, a 1 MW system was able to produce 6 m3/h.
Methanol was also introduced in PEM for hydrogen production.

[16–20]

4 Hydrogen production

Multiple methodologies were presented, and mostly renewable sources were
utilized to produce hydrogen as a product with some by products, such as fresh
water and electricity. Moreover, the prospective and attractiveness of hydrogen
production was elaborated.

[21–27]

5 Solar energy for
hydrogen production

Machine learning was applied to forecast hydrogen production, yielding the
Prophet model with a daily average of 93.3 × 103 kg/km2. Furthermore, a
solar-driven, steam-autothermal hybrid reforming system (SAHRS) was
proposed to capture the carbon emissions generated during hydrogen
extraction. It was also concluded that solar energy had a considerable
impact for superheating and steam generation to feed gaseous reactants.

[28–31]
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Table 1. Cont.

AI Applied Energy Forecast

Sr. No. Subtheme Research Work and Findings Reference

1 Forecasting framework

A forecasting framework was provided to reduce the cost of wind resource
assessment, and the GIS-MCDA model was used to determine the potential
placement of biomass, geothermal, solar, and wind power plants. AI
methods were used to estimate the water yield through a solar distiller and
solar energy production for short-term and long-term forecasting.

[32–35]

2 ML forecasting

Machine learning algorithms were applied to efficiently forecast energy
production. Suggestions for capturing the intermittent nature of wind were
also presented. A study was presented for prediction of the parameters of
vortex bladeless wind turbines using LSTM.

[36–39]

Wind Energy

Sr. No. Subtheme Research Work and Findings Reference

1 Hybrid power

Hybrid renewable energy was favored at a reasonable price when the
portion of renewable energy was increased in the energy mix. Numerous
analyses also confirmed that a hybrid system is superior to a single source,
whereas multiple wind turbines are preferred over a traditional turbine.

[40–43]

2 Wind power potential

Wind energy has considerable potential, but its intermittent nature hinders
the support of this source. The performance of VAWT was evaluated in the
presence of bluff bodies, which showed interesting results. Furthermore,
Germany has used wind sources to generate power and phased out
coal-based electricity generation. Wind speed assessment was also achieved
using multiple ML methods.

[44–49]

Energy Storage

Sr. No. Subtheme Research Work and Findings Reference

1 Conventional methods

Traditionally, excess energy is stored in batteries, but such methods are not
favored for sole used, owing the short life of batteries. In a hybrid system, they
can be incorporated in the system for constant output. Some other methods
include utilization of energy in terms of heat.

[50–52]

2 Hydrogen as a fuel

Storing excess energy in terms of hydrogen by incorporating the use of
hydrogen storage alloys (HAS) is a unique idea, as it can be utilized for
energy generation in remote areas. Alternatively, it can be used to
manufacture chemicals that are energy carriers, such as NH3, CH4, and
methanol.

[40,53,54]

Researchers are continuously working on improved methods for clean, green energy
sources. The focus of this study is a novel approach to hydrogen harvesting using artificial
intelligence for its efficient production. Using wind (speed, direction, gust, etc.) as an
inputs machine learning algorithms forecast hydrogen production in Islamabad (Pakistan’s
Capital) as their output. Furthermore, the proposed method saves time and implementation
costs by pre-estimation of clean green energy through a mathematical model based on
sample data. An added advantage of implementing machine learning is that with the
help of historical wind data, computer systems can perform special tasks to identify the
pattern of wind speed and automatically predict the next stage, automatically learning and
improving on past experiences. Among others, long short-term memory (LSTM), support
vector regression (SVR), and linear regression architectures are used in this particular study,
in consideration of the continuous data type.

2. Methodology

Prior to forecasting, one year of data was acquired to ensure that the seasonal variation
was captured for a suburban environment. The primary input for the machine leaning
models was a series of data sets that were collected over the course of year to capture
seasonal variation. The data sets include values for wind gust, wind direction, and wind
speed that were recorded in 10 min intervals for the optimal prediction outcomes. The data
sets of wind speed, wind direction, and wind gust acquired with the help of an anemometer
were runt through machine leaning algorithms to train the models. Among all the trained
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models, the best-predicting model was utilized for estimation of hydrogen production
implementing PEM. A comparison was drawn with estimated hydrogen production from
the measured wind speed data acquired from the instrument and the predicted hydrogen
production potential of AI-predicted wind speed for the same time span. The obtained
results are discussed in subsequent sections.

2.1. Appratus

The apparatus used to quantify the speed of wind was an NRG 40H anemometer [55],
which is suitable for an electrically noisy environment and compatible with instruments
that require a square wave signal. It is also used in small wind turbines as a control sensor,
whereas in high-speed winds, it triggers the PV tracker to stow. A high-level square-wave
voltage signal is generated that is compatible with the frequency of the wind speed. A wide
range of industrial instruments is compatible with the signal. The instrument specifications
are as follow: 3-cup anemometer sensor with a range of 1 m/s to 96 m/s (2.2 mph to
215 mph), and output signal range of 0 Hz to 125 Hz, and a threshold speed of 0.78 m/s
(1.75 mph). The operating conditions were as follows: supply voltage, 5 V to 26 V DC;
supply current, 9 mA maximum; operating temperature and humidity ranges, −55 ◦C to
60 ◦C (−67 F to 150 F) and 0 to 100% RH, respectively. The swept diameter of the rotor is
190 mm (7.5 inches).

2.2. Machine Learning: Training and Testing Models

The long short-term memory (LSTM) model was used in deep learning as an artificial
recurrent neural network. LSTM is distinct from the other models, as it includes feedback
connections. LSTM has a wide range of applications, such as handwriting recognition,
network traffic detection (anomaly), intrusion detection, etc. Essentially, gates of an LSTM
unit comprise a cell, input gate, forget gate, and output gate. The cell stores the values
for a certain period of time, and the gates process the information into and out of the cell.
The network serves best in categorizing, processing, and forecasting based on time series
data. A detailed study was presented by Young on LSTM cells and architecture [56]. The
hyperparameters, which were set before the training of the model are hidden neuron: 300,
layers: 2, and Learning rate: 0.01.

Support vector regression (SVR) is another technique used to predict wind speed for
hydrogen production. In SVM, the rate of error is minimized, whereas in the case of SVR,
the error is fixed within a certain limit. This enables definition the extent to which an error
is acceptable in our model to fit the data. The maximum error we set is called epsilon, and
it can be adjusted to obtain the desired accuracy. Another method adopted for prediction
of hydrogen production is linear regression, which is used to predict relationships between
two variables. The technique involves the observation of data by fitting a linear equation.
All the methodologies adopted herein are used to compare hydrogen production forecasting
methods. The methods mentioned above can provide an overview of the extent to which
wind energy can be harvested in a particular area, resulting in hydrogen production.
Artificial intelligence enables the use of the information predicted by the models, such
that if a reasonable amount of hydrogen production is predicted for a particular site, only
then can the installation of turbines be executed. This methodology saves time and cost
associated with the production of green energy.

A proton-exchange membrane (PEM) electrolyzer utilizes the electrical energy gen-
erated by wind turbines and produces hydrogen. The recorded data sets from the sensor
(data measured with the help of an NRG 40H anemometer) and predicted data sets from
AI models were compared for validation of the results, which are presented in Section 3.
For ease of understanding and visualization, MATLAB was used to generate graphs. The
whole mechanism can be separated into three stages, i.e., the wind turbine, the inverter
(AC/DC), and the PEM electrolyzer (Figure 2). Figure 3 presents the workflow diagram
displaying the process involved in the prediction process of wind speed data sets. The data
sets were acquired by an NRG40H anemometer and fed into the training models (LSTM,
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SVR, and LR). The generation of hydrogen was then quantified using the predicted data
that was acquired through the machine learning approach.
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2.3. Harvesting Hydrogen from Wind Power

To obtain the results, some of the parameters were fixed; for example the efficiency
of electrolyzer was set as 75% [57], and the efficiency of the wind turbine ranged from
35% to 45%, as in [47]. In this study, the turbine efficiency was set at 40%, and the rotor
diameter was set at 77 m [58]. The rotor diameter plays a significant role in increasing or
decreasing wind energy. As the diameter increases, the swept area also increases, resulting
and an upsurge in wind energy and vice versa. Hence, a direct relationship exists between
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rotor diameter and wind energy. The lower heating value of hydrogen was designated as
33.3 kWh/kg, and the density of air was set to 1.225 kg/m3.

A wind turbine is used to convert mechanical power into electrical power. The
electrical output power can be estimated according to [47] and [59]:

Pwt =
1
2

V3ηwtρair AwtCp,wt (1)

where V is the speed of wind measured in m/s; ηwt is the efficiency of the wind turbine,
assumed to be 40%; ρair is the density of air, equal to 1.225 kg/m3; Awt is the swept area;
and Cp,wt is wind turbine power coefficient. The following relation can be used to compute
the net input energy.

Pinput =
1
2

ρair AwtV3 (2)

The power output by the generator of the wind turbine is further processed through
an AC/DC converter and utilized by the proton-exchange membrane electrolyzer (PEM).
The PEM splits the water into its basic constituents, i.e., hydrogen and oxygen, through
electrolysis. The electricity used by the PEM is obtained from the wind turbines. The rate
of hydrogen production gained by the PEM electrolyzer can be computed with the help of
the following relation [60].

.
NH2 =

Jel
2F

(3)

where Jel is the density of the current, F is Faraday’s constant, and
.

NH2 represents the
hydrogen mole flow. The amount of hydrogen mass produced from the input of wind
energy in kg/h is given by [57,58].

MH2 =
ηel Pwt

LHVH2

(4)

where MH2 represents the produced mass of hydrogen, ηel indicates the efficiency of
the electrolysis process, Pwt is the wind power input to the electrolyzer, and by LHVH2 .
Represents the lower heating value for hydrogen. Another relation used to estimate wind
turbine output energy is [58].

Pwt = Eout (5)

Eout = CFPrT (6)

Here, Pr is defined as the wind-turbine-rated power, and CF is the capacity factor [58].
The cost of production of wind energy can also be estimated by the capacity factor.

CF =
Pout

Pr
(7)

The overall energy and exergy efficiencies of wind-power-based hydrogen production
can be calculated as follows [61].

ηwind =

.
mH2 LHVH2

Pinput
(8)

Ψwind =

.
mH2 exH2

Pinput
(9)



Energies 2022, 15, 8901 7 of 13

3. Results and Discussions

The aim of this study was to utilize a clean, green energy source and store it in an
environmentally friendly, cost-effective manner. The prediction of wind speed leads us to
estimate the hydrogen production for the city of Islamabad. The technique adapted in this
study is flexible and can be implemented for any region in the world. Predicted wind speed
estimates the hydrogen production using three machine learning algorithms. One added
advantage of this research approach is that we can forecast wind direction and install fixed
or unidirectional wind turbines to optimize generation. The graphs for absolute errors and
standard deviation of wind speed and wind direction are shown below.

K-fold cross validation was applied to algorithms used in this research. The results are
discussed below, with 10 folds taken for each case. Figure 4 shows the wind speed variation
in K folds compared with the mean absolute error and standard deviation among all the
machine learning approaches applied in this study. Similarly, Figure 5 shows the wind
direction variation in K folds comparing the mean absolute error and standard deviation of
the wind direction.

Results show in Figures 4 and 5 clearly indicate that of all the techniques applied
in this study, LSTM has the lowest mean absolute error and standard deviation, with a
consistent line, i.e., no fluctuations as compared to the other techniques. The performance
of the machine learning methods was evaluated based on the mean absolute error and
standard deviation. Among all the models, LSTM has the lowest mean absolute error of up
to 0.7 m/s, whereas the other models reached up to 1.1 m/s with fluctuations.

Furthermore, based on the accuracy graph, LSTM was chosen for prediction of wind
speed and wind direction. Figure 6 demonstrates the accuracy of the measured wind speed
vs. predicted wind speed. The average accuracy was found to be 78.66%. Data for the
preceding two days are taken into account for the prediction of the succeeding two days.
The interval time is set to 10 min.
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The data sets of measured wind speed and predicted wind speed are plotted together
for ease of understanding. The predicted wind speed conforms closely to the actual,
measured wind speed, as shown in Figure 7. Furthermore, a bar chart was used to represent
the average hydrogen produced in an hour per day in Figure 8. With the exception of a few
bars caused by unusual wind gusts, the predicted values of average wind speed per day
are roughly comparable to the measured values. Barring unusual wind gusts, there is a
small margin between the predicted and observed values.
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Figure 8. Hydrogen production from daily average wind speeds.

The relationship between the average hydrogen production per hour in one day vs.
total hydrogen production per day appears to be closely linked, as indicated in Figure 9.
These results were obtained in Islamabad; however this forecasting method can be applied
to an optimal location for maximum hydrogen production. By forecasting hydrogen
production in such a manner, investments can be made at optimal locations to harvest more
energy. Figure 10 shows the rate of hydrogen production by the predicted wind speed for
the month of August. The same graph is expanded for improved visualization, as shown
in Figure 11, which demonstrates the rate of hydrogen production on a daily basis. The
result shows that the rate of production increases during daytime and decreases at night,
and the rate of hydrogen reaches its maximum value around noon. The rate of production
starts increasing at 1000 h and starts decreasing almost immediately after noon.
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The present results may be helpful in predicting other renewable sources with the
models used herein or with other models. For this purpose, considerable computational
resources will be required for comparative studies to train multiple models incorporating
different data set sampling frequencies, time periods, locations of data acquisition, etc.
Furthermore, hydrogen storage methods can also be studied to harvest and store energy
for later use.

4. Conclusions

In this study, we emphasized the use of machine learning methods to forecast the
hydrogen production by a PEM electrolyzer using wind energy from wind turbines. For
this purpose, wind speed and wind direction data were collected with the help of an
NRG 40 anemometer and an NRG 200 wind direction sensor, respectively, at latitude
33.64◦ N, longitude 72.98◦ N, and altitude 500 m above mean sea level. One year of data
were K-fold cross-validated using three methods i.e., linear regression, SVR, and LSTM,
which was used to forecast the hydrogen production. The output of the model was used
to estimate wind energy production in the area under consideration and identify the
minimum, maximum, and average energy capacity. Among all the models, LSTM had
the lowest MAE and standard deviation wind speed, with values are consistent at around
0.72 m/s and 0.68 m/s, respectively. By implementing the LSTM model, we found that
an average of 6.76 kg/day of hydrogen can be produced from a single wind turbine in a
selected suburban environment. Moreover, a strong correlation is indicated between wind
speed and solar energy, as shown in Figure 11. The wind speed reaches its maximum in the
afternoon, resulting in increased hydrogen production, whereas a second production peak
occurs around 0200 hrs. The LSTM model provides a satisfactory estimate of hydrogen
production potential at the selected site; such forecasts are essential for project planners to
effectively harness green energy sources.

Author Contributions: Conceptualization, A.J., M.S., M.R., Y.A. and A.W.; methodology, A.J., M.S.
and E.U.; software, A.J., U.J. and M.R.; validation, A.J. and U.J.; formal analysis, A.J., U.J., M.S. and
M.R.; writing A.J. and M.S.; supervision, M.S., M.R., E.U., Y.A. and A.W.; funding acquisition, M.S.
and M.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.
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Nomenclature
Awt Swept area
CF Capacity factor
Cp,wt Power coefficient of wind turbine
F Faraday’s constant
LHVH2 Lower heating value
LSTM Long short-term memory
LR Linear regression
Jel Current density
MH2 Mass of hydrogen
.

NH2 Rate of hydrogen production
OTEC Ocean thermal energy conversion
Pr Rated power of the wind turbine
Pwt Output power from wind turbine
PEM Proton-exchange membrane
SVR Support vector regression
ηel Efficiency of the electrolysis process
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