
Citation: Gomes, H.; Redinha, N.;

Lavado, N.; Mendes, M. Counting

People and Bicycles in Real Time

Using YOLO on Jetson Nano.

Energies 2022, 15, 8816. https://

doi.org/10.3390/en15238816

Academic Editor: Fausto Pedro

García Márquez

Received: 29 September 2022

Accepted: 10 November 2022

Published: 22 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2020 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Counting People and Bicycles in Real Time Using YOLO on
Jetson Nano
Hugo Gomes 1,2 , Nuno Redinha 2, Nuno Lavado 1,3 and Mateus Mendes 1,4,*

1 Polytechnic Institute of Coimbra, Coimbra Institute of Engineering, Rua Pedro Nunes—Quinta da Nora,
3030-199 Coimbra, Portugal

2 Geologic Information Systems, Rua Pero Vaz de Caminha, 99, R/C, 3030-200 Coimbra, Portugal
3 Research Group on Sustainability Cities and Urban Intelligence (SUScita), Polytechnic Institute of Coimbra,

Rua Pedro Nunes—Quinta da Nora, 3030-199 Coimbra, Portugal
4 Institute of Systems and Robotics, University of Coimbra, Rua Silvio Lima- Polo II,

3030-290 Coimbra, Portugal
* Correspondence: mmendes@isec.pt

Abstract: Counting objects in video images has been an active area of computer vision for decades.
For precise counting, it is necessary to detect objects and follow them through consecutive frames.
Deep neural networks have allowed great improvements in this area. Nonetheless, this task is
still a challenge for edge computing, especially when low-power edge AI devices must be used.
The present work describes an application where an edge device is used to run a YOLO network
and V-IOU tracker to count people and bicycles in real time. A selective frame-downsampling
algorithm is used to allow a larger frame rate when necessary while optimizing memory usage
and energy consumption. In the experiments, the system was able to detect and count the objects
with 18 counting errors in 525 objects and a mean inference time of 112.82 ms per frame. With the
selective downsampling algorithm, it was also capable of recovering and reduce memory usage while
maintaining its precision.

Keywords: real-time object counting; YOLO; edge AI; Jetson Nano

1. Introduction

Counting objects automatically with good precision and accuracy using non-invasive
methods such as a video cameras is a long sought-after goal. In structured environments,
the problem is difficult, and in unstructured environments, namely outdoor scenarios, it is
even more difficult because of the nature of the environment.

In recent years, different approaches have been proposed, using different algorithms
and techniques, for object detection and tracking. Fachrie et al. [1] proposed the use
of a YOLOv3 [2] detection model without a proper frame-by-frame object tracker.
Bharadhwaj et al. [3] proposed the improved Tiny-YOLO with the ensemble Knowledge
Distillation [4] and also using the SORT [5] tracker. OpenDataCam [6] is an open-source
suite to detect objects in real-time video. Bochkovskiy et al. [7] used YOLOv4 and Tiny-
YOLOv4 [8] with a modified version of the IOU tracker [9].

Aside from the referred approaches, more recently, YOLOv5 [10] was published by
Ultralytics, providing different architectures of different sizes and mAP scores. The IOU
tracker mentioned in the OpenDataCam project has also been extended with a visual
tracker, originating the V-IOU tracker [11]. Finally, the SORT tracker was also followed by
DeepSORT [12], where the distance metric was replaced by a convolutional neural network
(CNN). One challenge that all of these approaches mentioned above faced was that the
performance, when running these systems on low-power edge AI devices, was difficult to
maintain without draining large amounts of power. This issue sometimes prevented them
from using heavier but better models and tracker algorithms in challenging situations.

Energies 2022, 15, 8816. https://doi.org/10.3390/en15238816 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15238816
https://doi.org/10.3390/en15238816
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-7086-4416
https://orcid.org/0000-0001-8237-3086
https://orcid.org/0000-0003-4313-7966
https://doi.org/10.3390/en15238816
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15238816?type=check_update&version=2


Energies 2022, 15, 8816 2 of 17

The present work proposes a system that can be deployed on an edge AI device,
namely the Nvidia Jetson Nano 2 GB [13]. The system was optimized to detect, track and
count people and bicycles in real time in situations of variable frequency. It was tested on a
real-world scenario dataset using the YOLOv5 detection algorithm with the IOU and V-IOU
trackers. We also propose the use of a velocity-based frame-downsampling algorithm that
enables the system to easily adjust the frame rate at which the detection module processes
frames based on the velocity of the objects being detected by either reducing or increasing
the frame rate when slower or faster objects are detected. This allows the system to ignore
some frames when they are not needed, maintaining performance in real time and without
having a big impact on the performance of the tracking. This feature also makes it possible
to use cheaper and lower-power devices. The object-counting tests executed achieved a
mean absolute error of 0.0435 without downsampling and 0.0457 with downsampling. The
downsampling tests showed that the system can easily maintain real-time execution while
reducing memory usage and maintaining its precision.

Section 2 briefly reviews the relevant literature in the field of object detection and
tracking, as well as previously proposed work tackling the same or similar problems.
Section 3 describes the architecture, methods and algorithms used in this work and how they
were implemented. Section 4 presents the different experiments conducted and their results.

2. Related Work

Some relevant works have been reviewed, and a summary is presented below.

2.1. Non-Invasive Systems for Counting Objects

Different methods have been proposed to solve the problem of detecting and counting
unique objects in real-time video.

Fachrie et al. [1] proposed a method that consists of a system to count vehicles using a
YOLOv3 [2] network. The network was pretrained on the MSCOCO [14] dataset. Instead of
using a proper object tracker to track the objects frame by frame, Fachrie used a simplified
method consisting of calculating the distance from the centroid of a detection to the counting
line, and if it was less than a certain threshold value, then it was counted. To prevent
the same vehicle from being counted more than once, they analyzed three consecutive
frames to identify the same vehicles by measuring their centroids to the previous frame.
They achieved a high accuracy of 97.72% for a video with a frontside view of a road.

Bharadhwaj et al. [3] proposed a robust method to count vehicles using edge devices.
The work used the detect-track-count framework, where they used an improved Tiny-
YOLO network with the ensemble Knowledge Distillation [4], consisting of three different
detection networks (Faster-RCNN [15], YOLOv3 [2] and SSD [16]), with the learned model
being optimized with TensorRT [17,18]. They used the SORT [5] tracker with a modified
version of the Kalman filter to circumvent sudden changes in the speed and position
of the vehicles during high traffic density situations. With this work, they achieved a
0.584 weighted average for the normalized weighted root mean squared error (nwRMSE)
score on the 2021 AI City Challenge Track 1 evaluation server.

OpenDataCam [6] is an open-source project able to count different classes of objects,
including cars, people, motorcycles and other objects. The direction of movement is also
detected. It was built to run on CUDA devices, including the NVIDIA Jetson Nano. It uses
the darknet framework to run YOLOv4 [7] and Tiny-YOLOv4 [8] as the detection model
and a modified version of the IOU tracker [9]. It features a web interface, where the user
can configure and interact with the system to define the counting lines and watch the
detections in real time. Additionally, this project contains a web API, making it possible for
third parties to perform some operations on the system.

Kumar et al. [19] proposed an object tracking and counting system in a zone. This
system uses the YOLOv4 model with pretrained weights for the object detection phase and
the DeepSORT tracker for the tracking phase. Different from the other methods proposed,
this work focuses on counting objects that are specifically inside a defined zone, being able



Energies 2022, 15, 8816 3 of 17

to detect when a certain amount of objects has been reached inside it. This system was
tested on the MOT17 dataset on the NVIDIA Jetson Xavier, achieving a MOTA score of
approximately 60%.

Oltean et al. [20] approached the object-counting problem in a similar way to the
other methods mentioned above. This system is able to count vehicles in real time. It uses
Tiny-YOLO for the vehicle detection and fast motion estimation for tracking. The motion
estimation considers all the present vehicles and estimates the most likely position for the
next frame, considering just the previous positions and the dynamic average movement.
This system was able to properly count vehicles for both one-way and two-way traffic,
achieving a speed of 33.5 GPS with a GeForce GTX 950M on an Ubuntu OS system.

2.2. Object Detection Models

During the last few years, there have been very important advances in the area of
object detection. The R-CNN [21] deep neural network was proposed, aiming to be a
simple and scalable detection algorithm while improving substantially the mAP compared
with the other algorithms up to then. This network runs in three consecutive steps. First,
it extracts about 2000 region proposals from the image. Then, it computes the features of
every region proposal extracted. Finally, those features are fed into pretrained linear SVMs
for each class in order to classify those regions. The main problem with this algorithm is
that since it has to extract features and classify about 2000 region proposals, the R-CNN
becomes computationally very expensive. Afterward, new variations of the algorithm
were proposed in order to improve the computing time and minimize the problem. Some
improved architectures are the Fast R-CNN and the Faster R-CNN [15,22,23].

In 2016, Liu et al., proposed the SSD [16] algorithm. The SSD is a simple algorithm
divided into two components: the backbone and the head. The backbone’s model is usually
a pretrained image classification model that is used as a feature extractor. Typically, it is a
network such as ResNet [24] trained on the ImageNet dataset [25], in which the classification
layer is removed. The head of the SSD is composed of one or more convolutional layers
added to the backbone, whose outputs are interpreted as the objects’ bounding boxes
and classes.

The YOLO [26] algorithm proposed by Redmon et al. changed the way object detection
was performed until then, transforming it into a single regression problem. This algorithm
divides the input image into an S × S grid, and if the center of an object belongs to a
grid cell, then that cell is responsible for identifying that object. That cell then predicts B
bounding boxes and their confidence scores as well as C class probabilities. Finally, after
the bounding boxes, confidence scores and class probabilities are generated, the model
calculates the final detections. One of the problems with the YOLO algorithm was that
it had some difficulty detecting smaller objects, and therefore, its precision was lower
than some of the other models at the time. YOLO was further improved the following
years, with the most recent versions being YOLOv4 [7] proposed by Bochkovskiy et al. and
YOLOv5 [10] proposed by Ultralytics.

Table 1 shows a summary of different object detection models, namely the most
suitable ones for real time operation. As the table shows, both the YOLO and SSD models
achieved good precision and allowed very high frame rates on powerful GPUs. Notice
that these results were extracted from the literature. Nonetheless, on edge AI devices, the
performance was much worse, as detailed in Section 4.



Energies 2022, 15, 8816 4 of 17

Table 1. Comparison of object detection models.

Model Image Size Backbone mAP GPU FPS

Faster R-CNN [7] - ResNet-50 39.8% GTX 1080 Ti 9
SSD [7] 300 VGG-16 25.1% GTX Titan X 43
SSD [7] 512 VGG-16 28.8% GTX Titan X 22

YOLOv4 [7] 416 CPSDarknet-53 41.2% GTX Titan X 38
YOLOv4 [7] 512 CPSDarknet-53 43.0% GTX Titan X 31

YOLOv4-tiny [7] 416 CPSDarknet53-tiny 38.1% GTX 1080 Ti 270
YOLOv5n [10] 640 New CSPDarknet53 28.0% V100 b1 158
YOLOv5m [10] 640 New CSPDarknet53 45.4% V100 b1 121
YOLOv5x [10] 640 New CSPDarknet53 50.7% V100 b1 82

YOLOv5n6 [10] 1280 New CSPDarknet53 36.0% V100 b1 123
YOLOv5m6 [10] 1280 New CSPDarknet53 51.3% V100 b1 90
YOLOv5x6 [10] 1280 New CSPDarknet53 55.0% V100 b1 38

2.3. Tracking Algorithms

In 2017, Bochinski et al. proposed the IOU tracker [9]. This tracker had a very low
computational cost, but it was still able to compete with the top tracking algorithms at
the time. The IOU tracker uses the intersection over union (IoU) to associate a detection
to a track. It looks for the track of its last detection which has the highest IoU value and
associates with the new detection if it satisfies a given σiou value. If no association is made,
then a new track is created. Additionally, the tracker’s performance is improved by filtering
the tracks which are smaller than a length tmin and have a detection with a confidence value
bigger than σh. This also helps with filtering out false positives. The main problems with
this tracker are the high rate of track fragmentation and ID switches.

Later in 2018, Bochinski et al. proposed an extension of the IOU tracker, denominated
as the V-IOU tracker [11]. This new algorithm improves the previous IOU tracker problems
by using a visual single-object tracker. This visual single-object tracker is started when
a new detection is not associated with any track. The visual tracking is performed both
forward and backward. The visual tracker is initialized in the last known position of an
object and used to track the object for a maximum of ttl frames. If an association is made,
then the visual tracker is stopped, and the IOU tracker is continued; otherwise, the track
is terminated. The visual tracking is also performed backward through the last ttl frames
for each new track. Performing the visual tracking both forward and backward makes it
possible to close (2 × ttl)-frame-in-length gaps, while the single visual object trackers only
track for a maximum of ttl frames.

DeepSORT [12] was proposed by Wojke et al. with the goal of improving and fixing
some problems of its predecessor, the SORT [12] tracker. The most important problem is
the high rate of ID switches due to the difficulty of tracking objects through occlusions.
The DeepSORT tracker replaced the previous association metric with a CNN. After the
detections are made, the Kalman filter is used to propagate them from the current frame
to the next one. Then, to associate the detections to the tracks, it uses the Mahalanobis
distance to quantify the association and the Hungarian algorithm to perform the association.
The distance metric used for the association, as stated before, is based on a CNN classifier,
where the classification layer is removed, producing a feature vector that is also known as
the object’s appearance descriptor. This way, the DeepSORT tracker is able to follow objects
for a longer occlusion time while keeping it simple and able to run in real time.

Table 2 shows a summary of the performance of the V-IOU and DeepSORT track-
ers compared with the IOU tracker. The metrics used to compare these algorithms are
the following:

• Multi-object tracking accuracy (MOTA): Measures three types of tracking errors: false
positives, false negatives and ID switches. It does not take into account the localization
error or the detection performance as a significant influence on this measure.



Energies 2022, 15, 8816 5 of 17

• Multi-object tracking precision (MOTP): Measures the localization accuracy by averag-
ing the overlap between all the correctly matched predictions and their ground truth.

• Mostly tracked (MT): Percentage of ground truth tracks that have the same label for at
least 80% of their lifespans.

• Identity switches (IDs): Number of times an object with the same identity ground
truth changes its ID.

• Fragmentations (FMs): Number of times a track is interrupted by a missing detection.

From Table 2, it is possible to conclude that the IOU tracker was the worst performing
one between the three. Even though it achieved the same MOTA and MOTP values on the
UA-DETRACT-test benchmark as the V-IOU tracker, it had the lowest MT percentages and
the highest ID switch and fragmentation counts, showing how much the V-IOU tracker
improved in comparison with the IOU tracker. When comparing the IOU and DeepSORT
trackers on the MOT17 and MOT16 benchmarks, respectively, since they were very similar,
DeepSORT showed itself to be much better than the IOU tracker in every metric evaluated.
Unfortunately, the V-IOU and DeepSORT trackers were not compared directly due to the
lack of results on the same (or a similar) dataset.

Table 2. Tracker comparison.

Tracker Detector MOTA MOTP MT IDs FM Benchmark

IOU [11] Mask R-CNN 30.7% 37.0% 30.3% 668 733 UA-DETRACT-test
V-IOU [11] Mask R-CNN 30.7% 37.0% 32.0% 162 286 UA-DETRACT-test
IOU [11] Faster R-CNN 45.5% 76.9% 15.7% 5988 7404 MOT17

DeepSORT [12] Faster R-CNN 61.4% 79.1% 32.8% 781 2008 MOT16

3. System Architecture and Implementation

The research for this project was divided into different steps. The first step was the
literature review performed in order to understand which approaches had already been
tried to solve the same problem and get to know different approaches and algorithms
previously used. The second step consisted of the implementation of the system. The last
step was focused on testing the system with different algorithms, both for object detection
and tracking on a test dataset based on a real-world scenario where this application will be
used, in order to select the best algorithms and parameters.

3.1. System Architecture

The architecture of the system followed a method similar to that of Bharadhwaj et al. [3],
which was based on the following steps: detect, track and count. A representation of this
architecture is depicted in Figure 1.

The system is divided into three different modules. The first module deals with video
input in real time. The second module deals with object detection for detecting objects in
the video stream. The last module deals with object tracking, following the objects along
consecutive frames. These three modules are executed in different processes, and each one
performs a different operation. The data flow sequentially from one to another through
message queues. The processes run in parallel, thus achieving better performance than in
series. This was achieved by using the Python multiprocessing library, which helped bring
true parallel execution, as opposed to using threads, which after an initial experimentation
showed that the performance of the system was affected due to its concurrent execution
and, more specifically, the detection module because of the way the YOLOv5 model was
implemented. Additionally, the Queue class from the multiprocessing library was used
for communication between processes. This class already takes care of synchronization by
resorting to locks and semaphores, thus preventing any synchronization problems from
occurring. The video input module takes the frames and sends them to the detection
module at 15 FPS. The detection module is then responsible for extracting the relevant
objects which are found in each frame and sending the list of objects detected to the tracker



Energies 2022, 15, 8816 6 of 17

module. The tracker module associates the objects received with existing tracks or new
tracks which are created if no matching tracks are found. After associating the objects to
tracks, the tracks are then counted if they overlap with the counting line which defines the
area of interest of the image. The modules forward the data to each other using queues.
This architecture and implementation of the project were developed in a way that left
open the possibility of implementing, testing and using new object detection models and
tracking algorithms in the future, if deemed appropriate. The code of this project was
developed from scratch, with the exceptions of the YOLOv5 model, which used the official
implementation in the repository [10], and the object tracker, whose code came from the
official repository [27] and was adapted to better fit this project.

Figure 1. Diagram of the system architecture, showing the three main modules and data queues.

3.2. Detection Module

The detection module uses the YOLOv5 [10] network optimized by TensorRT [18]
to detect people and bicycles, although it is also possible to use the original PyTorch
framework version. This model was chosen over the others previously researched because
of its good results, variety of architectures and ease of implementation.

One problem that arose when using the YOLOv5 architecture was that the queue with
the frames from the video input module was always increasing in size due to the detection
process taking more than the system was able to handle. Naturally, this would eventually
lead to a system overflow when the Jetson Nano ran out of memory. This problem is an
important limitation of the system. Preliminary results showed that a solution was not
possible without significant adjustments, which could be one of the following:

• Reduce the frame rate. This would decrease the number of frames to process per
second. However, this also means that the difference between frames is larger and can
thus compromise the performance of the tracker, especially when faster objects move
through the frame.

• Use faster algorithms, such as a faster YOLO implementation or object detection
model. This would decrease the processing time and thus increase the frame rate. The
cost, however, is lower performance by the algorithms, for a faster object detector has
lower accuracy and precision, and a faster tracker also has poorer performance.



Energies 2022, 15, 8816 7 of 17

• Use a faster edge AI device. While this is also a simple solution, the main problem
with this solution is a significant cost increase for the solution, which is not desirable
for the product being developed. The increase in cost is not only due to the edge AI
device but also the power requirements. The device is expected to run on solar panels
and batteries, and additional power requirements can significantly increase the cost of
the system.

• Make modifications to the algorithm to optimize the processing time. This was the
preferred solution, and it is described below.

The developed system is, by customer requirements, designed to operate in remote
areas with low traffic and a limited energy supply. Therefore, the frequency of objects
to track is expected to be low, and thus not all frames need to be tracked. Based on this
information, the detection and tracking algorithm can be adjusted so that the time- and
energy-consuming algorithms are only activated when necessary. A velocity-based frame-
downsampling algorithm was implemented, optimizing the usage of the detector and
tracker modules. This algorithm is able to adjust the frame rate at which the detection
module processes the frames by ignoring some of them, depending on the velocity of the
fastest object in a frame. This way, the system can use a lower frame rate when there are
no objects or slower ones in the frame, such as people walking or standing still, and use a
higher frame rate when faster objects are detected, such as moving bicycles. This method
helps the system by reducing the frame’s queue size, maintaining its execution in real
time while reducing energy and memory consumption without having a big impact on the
tracker’s performance and consequently the counting error.

The algorithm starts by generating a frame batch with the size of the max FPS the
system is able to process, consisting of a list of Boolean values that map whether a frame
should be processed or not. The frame batch content is generated as a function of the
velocity of the fastest object in a frame. To prevent sudden changes in velocity, the value
considered in the frame batch generation is the mean of the max velocity values in the
last 10 frames. Given the max velocity value, the frame rate to be used is calculated by
the function in the Figure 2. This function outputs a lower frame rate for slower objects
and a higher frame rate for faster ones. With the frame rate value calculated, the frame
batch is finally generated, with the frames that will not be processed by the system evenly
distributed across the batch to reduce the distance of a moving object between two frames.
While the frame batch is not empty, the system will remove its first element and use it to
decide whether the current frame will be ignored or not. When it gets empty, a new frame
batch is generated. Additionally, for every frame tracked, the velocity of the fastest object
in it is saved for later usage.

After the detections are extracted from the model, they are fed into a non-maximum
suppression algorithm with a lower IoU threshold to try and reduce duplicate detections.
After that, these detections are passed through a class agnostic non-maximum suppression
algorithm but with a higher IoU threshold. This is due to the fact that there were many
situations where, when detecting a bicycle, the model would detect a bounding box of a
person very similar to the bounding box of the bicycle in addition to the normal and correct
bounding box of the person, which led to an over-counting situation.

3.3. Tracking Module

This module is responsible for both tracking and counting. In this project, the IOU
and V-IOU trackers were used.

The system starts by retrieving a list of detections from the queue that were sent by
the detection module. Then, these detections are fed through the tracker—either the IOU
or V-IOU tracker—so these detections can be associated with the tracks. After this, each
track’s direction is updated and obtained by calculating the vector from the oldest frame to
a limit of 20 to the last frame. After the tracks are fully updated, these are then counted. A
track is counted when the last detection’s bounding box overlaps a defined counting line,
and it will only happen the first time it overlaps with the line. For every track counted,



Energies 2022, 15, 8816 8 of 17

there will be a new registry inserted in a local SQLite database containing the track’s ID,
direction, class and highest confidence score, as well as the timestamp of the moment it
was counted.

Figure 2. Frame rate distribution function.

3.4. Implementation

For this project, we selected the YOLOv5 network due to it being able to run at a faster
frame rate compared with the Faster R-CNN and SSD models, and because it is supported
by PyTorch and TensorRT, making it easier to implement than YOLOv4 and YOLOv4-Tiny.
The YOLOv5 network has a wide number of architectures of different sizes and mAP scores
available, but due to the hardware restrictions presented by the Jetson Nano, we selected
the following architectures for experimentation: YOLOv5n, YOLOv5n6, YOLOv5s and
YOLOv5s6. The models were optimized by TensorRT specifically for the Jetson Nano with
the goal of reducing their inference time. The optimized model was obtained by running
one script from the official YOLOv5 repository [10], and then it was imported and used in
the system with the use of the respective class in the Computer Vision Utils [28].

The tracker algorithms chosen were the IOU and V-IOU trackers [9,11], since they run
very quickly compared with DeepSORT, which turned out to be inapplicable on the Jetson
Nano due to its low FPS count. The code of the trackers used in this project was based
on the original repository [27], with the only change being some code restructuring and
refactoring for real-time detections.

4. Results

Multiple tests and experiments were conducted with the final goal of obtaining the
best combinations of algorithms and their best parameters. These tests were performed
on a private dataset of 339 videos at 4 s each, with people and bicycles passing by. The
videos are examples of real-world scenarios of the use case this project was intended to
solve. Figure 3 shows how the data were distributed, showing the number of videos where
x people or bicycles passed through the area of interest and therefore should have been
counted. The figure shows the number of objects distributed by direction of movement,
namely from left to right or vice versa.



Energies 2022, 15, 8816 9 of 17

Figure 3. Characteristics of the dataset used to test the algorithms.

4.1. Object Detection

In this set of experiments, the main goal was to compare different YOLOv5 architec-
tures, the performance of the PyTorch framework and the TensorRT optimized models.
To test these architectures together, we extracted several frames from the videos of the
testset, obtaining a total of 630 images at a size of 640 × 640 pixels properly annotated with
the respective bounding boxes for people and bicycles. The annotations were made by
using Roboflow’s annotation tools (https://roboflow.com/, accessed on 9 November 2022).
In this experiment, we measured the APIoU=0.50:0.05:0.95 for both people and bicycles indi-
vidually and the final mAP combining the last two results. Additionally, the mean inference
time (MIT) per image in milliseconds (ms) was also evaluated in order to compare the
different architectures and the difference in performance between PyTorch and TensorRT.

The results of this experiment are summarized in Table 3. They show that the models
optimized by TensorRT outperformed the ones implemented in PyTorch in terms of the
inference time, which was reduced by approximately 50%. One other interesting result
that can be observed is the improvement in the mAP when using the TensorRT-optimized
models. Another interesting result is that the architectures YOLOv5n and YOLOv5s
outperformed their bigger versions (YOLOv5n6 and YOLOv5s6, respectively). This could
be due to the fact that the input images had a size of 640 × 640 pixels, which was smaller
than the image size the worst-performing versions of these architectures were trained on
(1280 ×1280 pixels). Given these results, the selected architectures for the next experiments
were YOLOv5n and YOLOv5s optimized by TensorRT.

4.2. Tracking and Counting

In this group of tests, the main goal was to see how the trackers performed in compari-
son with each other and then how the best of the two performed when using a better object
detection model. First, both trackers were tested with the lighter YOLOv5n architecture,
and then in the best experience, the detection model would be replaced by YOLOv5s.

These tests would evaluate the mean inference time (MIT) that a frame took to be
processed by the detection model and the tracker, the number of ID switches (IDs) and the



Energies 2022, 15, 8816 10 of 17

mean absolute error (MAE). The MAE was calculated by averaging the counting error for
each individual video, taking in consideration the classes of the objects and their directions.

Table 3. Results of object detection. The best results of each experiment are highlighted in bold type.

APIoU=0.50:0.05:0.95

Model People Bicycles mAP MIT (ms)
Py

To
rc

h YOLOv5n 50.76% 42.08% 46.79% 114.20
YOLOv5n6 52.26% 39.23% 45.75% 117.67
YOLOv5s 57.81% 61.20% 59.50% 216.37

YOLOv5s6 58.11% 56.43% 57.27% 221.39

Te
ns

or
R

T YOLOv5n 55.36% 43.13% 49.25% 66.99
YOLOv5n6 56.04% 38.60% 47.33% 62.79
YOLOv5s 60.05% 60.98% 60.51% 100.06

YOLOv5s6 60.18% 54.51% 57.35% 108.26

In these experiments, the values of the parameters were the same for both trackers
and had fixed values, as shown in Table 4. Additionally, in this group, the class-agnostic
nms was npt used due to not being implemented yet.

Table 4. System parameters.

Tracker σl σh σiou tmin ttl nms Class-Agnostic nms

IOU 0.2 0.5 0.05 10 - 0.4 -
V-IOU 0.2 0.5 0.05 10 8 0.4 -

Analysing the results shown in Table 5, the V-IOU tracker appeared to greatly out-
perform the IOU tracker. The biggest improvement was in the ID switches, which were
reduced by 90.8%. This may also be responsible for the MAE reduction of 8.85%. The
only parameter where the IOU tracker was better than the V-IOU tracker was the mean
inference time, which was slightly higher, although the benefits outweighed this higher
value. Using a YOLOv5s detection model also influenced the number of ID switches,
although surprisingly, the MAE was 0.15% higher than when using the YOLOv5n. One
problem that was detected when analysing these results was the very high error for the the
people moving in the left-to-right direction.

Table 5. Tracker and counting results.

Left to Right Right to Left

Model Tracker People
(MAE)

Bicycles
(MAE)

People
(MAE)

Bicycles
(MAE) MAE MIT (ms) IDs

Expected 234 19 177 95 - - -

YOLOv5n IOU 185
(0.2035)

38
(0.0796)

261
(0.2832)

141
(0.2005)

0.1917 67.46 1369

YOLOv5n V-IOU 249
(0.1091)

21
(0.0294)

238
(0.2153)

103
(0.0590)

0.1032 82.14 125

YOLOv5s V-IOU 241
(0.0973)

22
(0.0206)

239
(0.2242)

115
(0.0767)

0.1047 111.82 100

4.3. Parameter Optimization

With these tests, we tried to solve the problems encountered in the previous tests while
trying to find the optimal parameters for the system by performing various experiences.
The optimization of the parameters was carried out manually while analyzing the results
and creating a new hypothesis for better results based on the previous results.



Energies 2022, 15, 8816 11 of 17

Going back to the last test group results, the biggest problem encountered was the
very high error rate when counting people in the direction from right to left. The first
step to know the origin of this problem was to observe the confusion matrix of the people
counter in this same direction (Figure 4). It is clear that the main source of the problem was
the system counting people when it was not supposed to. Another interesting aspect is that
this happened more in this particular direction.

Figure 4. Confusion matrices of people counting overall.

Next, we observed the confusion matrix of the people count but only in the videos
where there were also bicycles counted this time (Figure 5), which showed that there were
more people being counted when they should not have been in these videos, as shown
in Table 6.

Looking at the bounding box output of some of these videos, we noticed that there
were situations where there was a bounding box for the person riding the bicycle, with
one for the bicycle and another one for the person. This last one was very similar to the
bounding box of the bicycle. To try and correct this, we implemented the additional
class-agnostic nms algorithm right after the first one with the goal of filtering these out by
eliminating the one with a lower score when two or more boxes overlapped with a higher
IoU threshold. Figure 6 presents the results before and after applying this class-agnostic
nms algorithm.

4.4. Downsampling Test

The YOLOv5s architecture was proven to give better results than the YOLOv5n
architecture, although for real-time detection, it raised the problem of its frame queue
being constantly filled with new frames, deeming it inappropriate for the present project.
YOLOv5n worked at approximately 15 FPS in the configuration used. YOLOv5s worked at
approximately 10 FPS only. If the system passed the retrieved frames by the detector, using
YOLOv5n, it could easily empty out the queue, although with YOLOv5s, this queue would



Energies 2022, 15, 8816 12 of 17

increase its size by roughly five frames every second. When analyzing a long video or
real-time footage, the Jetson Nano will eventually run out of memory, which is something
that needs to be prevented from happening.

Figure 5. Confusion matrices of people counting in videos with bicycles.

Figure 6. Before and after applying the class-agnostic nms.

To solve this problem, we proposed a selective downsampling algorithm capable of
adjusting the frame rate at which the system operated based on the velocity of the fastest
objects in the previous frames without having a big impact on the tracker’s performance.
In this group of tests, we evaluated the usage of this downsampling algorithm, comparing
it to the results obtained when not using this algorithm.



Energies 2022, 15, 8816 13 of 17

Table 6. Tracker and counting results.

Parameters Left to Right Right to Left

Model σl σh tmin ttl nms_agnostic People
(MAE)

Bicycles
(MAE)

People
(MAE)

Bicycles
(MAE) MAE MIT (ms)

Expected - 234 19 177 95 - -

YOLOv5n
0.2 0.5 10 8 1.0

249
(0.1091)

21
(0.0294)

238
(0.2153)

103
(0.0590)

0.1032 82.14

YOLOv5s 241
(0.0973)

22
(0.0206)

239
(0.2242)

115
(0.0767)

0.1047 111.82

YOLOv5n
0.2 0.5 10 8 0.8

247
(0.1032)

21
(0.0295)

232
(0.1976)

102
(0.0560)

0.0966 97.32

YOLOv5s 241
(0.0914)

21
(0.0177)

226
(0.1858)

102
(0.0472)

0.0855 110.34

YOLOv5n
0.2 0.5 10 8 0.6

248
(0.1062)

21
(0.0295)

219
(0.1593)

102
(0.0560)

0.0878 81.24

YOLOv5s 241
(0.0914)

21
(0.0177)

224
(0.1740)

102
(0.0383)

0.0804 109.93

YOLOv5n
0.2 0.5 30 20 0.6

248
(0.1062)

19
(0.0236)

210
(0.1327)

101
(0.0472)

0.0774 86.54

YOLOv5s 241
(0.0914)

21
(0.0177)

221
(0.1652)

100
(0.0324)

0.0767 113.60

YOLOv5n
0.35 0.5 30 20 0.6

239
(0.0914)

19
(0.0236)

201
(0.1121)

94
(0.0383)

0.0664 84.39

YOLOv5s 233
(0.0678)

21
(0.0236)

192
(0.0796)

94
(0.0295)

0.0501 111.96

YOLOv5n
0.45 0.5 30 20 0.6

238
(0.0767)

17
(0.0236)

192
(0.1091)

91
(0.0472)

0.0642 85.34

YOLOv5s 233
(0.0619)

21
(0.0177)

184
(0.0737)

94
(0.0265)

0.0450 112.06

YOLOv5n
0.5 0.5 30 20 0.6

240
(0.0885)

16
(0.0265)

189
(0.1062)

91
(0.0531)

0.0686 86.02

YOLOv5s 230
(0.0531)

21
(0.0177)

188
(0.0737)

95
(0.0295)

0.0435 112.82

To test the evolution of the frames’ queue throughout the execution of the system, we
put together an 18 min and 7-s video with various situations of people and bicycles passing
through at different speeds, as well as some situations where there were people standing
still in front of the camera for longer periods of time. To mimic the real-time camera, the
video frames were retrieved at 15 FPS. Figure 7 shows the big difference this algorithm
made in maintaining real-time performance, since the bigger the frames’ queue, the bigger
the delay was. This algorithm not only prevented the frames’ queue from constantly
increasing its size, which eventually led the system to crash at the size of 8199 frames when
not using the downsampling algorithm, but it also helped to keep its size very small.

Figure 8 presents a more detailed view of the evolution of the frames’ queue when
using the downsampling algorithm. We can see some spikes throughout the execu-
tion, where the biggest one peaked at 139 frames, meaning that faster objects were de-
tected, resulting in an increase in the frame rate, as opposed to when the queue size was
closer to 0.



Energies 2022, 15, 8816 14 of 17

Figure 7. Size of the frame queue with and without the downsampling algorithm.

Since there were some frames being ignored when objects were being detected, the
tracker might have had some difficulties tracking some of them—especially the faster ones—
due to their distance between frames being bigger. For this reason, the downsampling
algorithm increases the frame rate at which the detection module processes these frames
when faster objects are detected in order to decrease the impact of this algorithm on the
counting error. Table 7 presents and compares the results of object counting with and
without using the downsampling algorithm. When analyzing the results, it is possible
to see a slight increase in the mean absolute error, as expected, with an error variation of
only 0.0022.

Figure 8. Detailed view of the size of the frames’ queue using the downsampling algorithm.



Energies 2022, 15, 8816 15 of 17

Table 7. Counting results comparison of downsampled vs. unsampled architectures.

Parameters Left to Right Right to Left

Model σl σh tmin ttl nms_agnostic People
(MAE)

Bicycles
(MAE)

People
(MAE)

Bicycles
(MAE) MAE

Expected - 234 19 177 95 -

YOLOv5s
(Unsampled) 0.5 0.5 30 20 0.6

230
(0.0531)

21
(0.0177)

188
(0.0737)

95
(0.0295)

0.0435

YOLOv5s
(Downsampled)

230
(0.0530)

20
(0.0147)

187
(0.0884)

92
(0.0265)

0.0457

5. Discussion

A new approach was proposed for counting people and bicycles in an edge AI system
using the Jetson Nano board. The V-IOU tracker turned out to be a good approach for
the tracking problem, as expected, providing a good solution for the fragmentation and
ID switching problem presented in its predecessor by using a visual tracker and still
maintaining a very low frame rate. YOLOv5 also showed itself to be a good approach for a
small and fast object detector while achieving good mAP values for people and bicycles.
Using TensorRT to optimize this model specifically for the Jetson Nano set-up improved its
performance by approximately 50%.

The most important contribution of the present work was the velocity-based downsam-
pling algorithm, which allowed the system to adjust the frame rate at which the detection
module processed the frames and ignore some of them based on the velocity of the objects
moving through the frame. This algorithm helps the system maintain real-time perfor-
mance with heavier detection models without having a big impact on the counting error.
This also helps the system reduce energy consumption and therefore operate it on budget
hardware. The method was validated on a real-world scenario dataset, achieving a mean
absolute error of 0.0457 with downsampling applied and a mean absolute error of 0.0435
without downsampling being applied.

The focus of the present study was to provide a stable solution for running inferences
on a Jetson Nano device without any energy restrictions and with high model perfor-
mance. Too many parameters result in massive memory usage for the model and a long
computation time for inference. These are not appropriate to implement into all types of mi-
croprocessors or with energy restrictions. The proposed solution can easily run inferences
on a Jetson Nano device. The results can also be used as a benchmark for further studies
that take into account efficiency regarding energy consumption and also the trade-off
between model performance and the computing resources required.

Future work may include the improvement of the mAP value of the detection model
by training it specifically for people and bicycles or by applying the knowledge distillation
method, as Bharadhwaj et al. proposed. The new YOLOv7 architecture [29], which appar-
ently shows some improvements in performance without sacrificing the mAP, may also be
tried. The YOLO model may also be adapted to incorporate the changes necessary for edge
AI object detection, thus improving the present frame rate or decreasing power needs.

Additional experiments may also be performed in order to determine the maximum
and minimum distances of the objects to the camera, as they impact the size of the objects
in the images.

Author Contributions: Conceptualization, N.R., N.L. and M.M.; methodology, N.R., N.L. and M.M.;
software, H.G. and N.R.; validation, N.R., N.L. and M.M.; data curation, H.G.; writing—original
draft preparation, H.G.; writing—review and editing, N.L., M.M. and N.R.; supervision, N.L., M.M.
and N.R.; project administration, N.R. All authors have read and agreed to the published version of
the manuscript.



Energies 2022, 15, 8816 16 of 17

Funding: This work received financial support from the Polytechnic Institute of Coimbra within
the scope of Regulamento de Apoio à Publicação Científica dos Professores e Investigadores do IPC
(Despacho n.º 12598/2020).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fachrie, M. A simple vehicle counting system using deep learning with YOLOv3 model. J. Resti (Rekayasa Sist. Dan Teknol. Inf.)

2020, 4, 462–468. [CrossRef]
2. Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767.
3. Bharadhwaj, M.; Ramadurai, G.; Ravindran, B. Detecting Vehicles on the Edge: Knowledge Distillation to Improve Performance in

Heterogeneous Road Traffic. In Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans,
LA, USA, 1–20 June 2022; pp. 3192–3198.

4. Allen-Zhu, Z.; Li, Y. Towards understanding ensemble, knowledge distillation and self-distillation in deep learning. arXiv 2020,
arXiv:2012.09816.

5. Bewley, A.; Ge, Z.; Ott, L.; Ramos, F.; Upcroft, B. Simple online and realtime tracking. In Proceedings of the 2016 IEEE International
Conference on Image Processing (ICIP), Phoenix, AZ, USA, 25–28 September 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 3464–3468.

6. OpenDataCam. An Open Source Tool to Quantify the World (Version 3.0.2). 2021. Available online: https://github.com/
opendatacam/opendatacam (accessed on 9 November 2022).

7. Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. YOLOv4: Optimal Speed and Accuracy of Object Detection, 2020. arXiv 2004,
arXiv:cs.CV/2004.10934.

8. Jiang, Z.; Zhao, L.; Li, S.; Jia, Y. Real-time object detection method based on improved YOLOv4-tiny. arXiv 2020, arXiv:2011.04244.
9. Erik Bochinski, V.E.; Sikora, T. High-Speed Tracking-by-Detection Without Using Image Information. In Proceedings of the

International Workshop on Traffic and Street Surveillance for Safety and Security at IEEE AVSS 2017, Lecce, Italy, 19 April 2017.
10. Ultralytics. YOLOv5. 2022. Available online: https://github.com/ultralytics/yolov5 (accessed on 9 November 2022).
11. Bochinski, E.; Senst, T.; Sikora, T. Extending IOU Based Multi-Object Tracking by Visual Information. In Proceedings of the IEEE

International Conference on Advanced Video and Signals-Based Surveillance, Auckland, New Zealand, 27–30 November 2018;
pp. 441–446.

12. Wojke, N.; Bewley, A.; Paulus, D. Simple online and realtime tracking with a deep association metric. In Proceedings of the 2017
IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; IEEE: Piscataway, NJ, USA,
2017; pp. 3645–3649.

13. Nvidia. Nvidia Jetson Nano. Available online: https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
jetson-nano/product-development (accessed on 9 November 2022).

14. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in
context. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer:
New York, NY, USA, 2014; pp. 740–755.

15. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural
Inf. Process. Syst. 2015, 28, 1137–1149. [CrossRef] [PubMed]

16. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings
of the European Conference on Computer Vision, Honolulu, HI, USA, 21–26 July 2016; Springer: New York, NY, USA, 2016;
pp. 21–37.

17. Vanholder, H. Efficient inference with tensorrt. In Proceedings of the GPU Technology Conference, Edinburgh, UK, 29 March–1
April 2016; Volume 1, p. 2.

18. Developer, N. TensorRT Open Source Software. 2022. Available online: https://github.com/NVIDIA/TensorRT (accessed on
9 November 2022).

19. Kumar, S.; Sharma, P.; Pal, N. Object tracking and counting in a zone using YOLOv4, DeepSORT and TensorFlow. In Proceedings
of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 21–25 March 2021;
IEEE: Piscataway, NJ, USA, 2021; pp. 1017–1022.

20. Oltean, G.; Florea, C.; Orghidan, R.; Oltean, V. Towards real time vehicle counting using yolo-tiny and fast motion estimation.
In Proceedings of the 2019 IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME),
Cluj-Napoca, Romania, 23–26 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 240–243.

21. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, 23–28 June 2014.

22. Gandhi, R. R-CNN, Fast R-CNN, Faster R-CNN, YOLO—Object Detection Algorithms. 2018. Available online: https://www.
datasciencecentral.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms/ (accessed on 9 November 2022).

23. Yelisetty, A. Understanding Fast R-CNN and Faster R-CNN for Object Detection. 2020. Available online: https:
//towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97 (accessed on
9 November 2022).

24. Targ, S.; Almeida, D.; Lyman, K. Resnet in resnet: Generalizing residual architectures. arXiv 2016, arXiv:1603.08029.

http://doi.org/10.29207/resti.v4i3.1871
https://github.com/opendatacam/opendatacam
https://github.com/opendatacam/opendatacam
https://github.com/ultralytics/yolov5
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://www.ncbi.nlm.nih.gov/pubmed/27295650
https://github.com/NVIDIA/TensorRT
https://www.datasciencecentral.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms/
https://www.datasciencecentral.com/r-cnn-fast-r-cnn-faster-r-cnn-yolo-object-detection-algorithms/
https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97
https://towardsdatascience.com/understanding-fast-r-cnn-and-faster-r-cnn-for-object-detection-adbb55653d97


Energies 2022, 15, 8816 17 of 17

25. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ,
USA 2009; pp. 248–255.

26. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

27. Bochinski, E.; Eiselein, V.; Sikora, T.; Senst, T. Python Implementation of the IOU/V-IOU Tracker. 2022. Available online:
https://github.com/bochinski/iou-tracker (accessed on 9 November 2022).

28. BlueMirrors. CVU: Computer Vision Utils. 2022. Available online: https://github.com/BlueMirrors/cvu (accessed on 9
November 2022).

29. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. arXiv 2022, arXiv:2207.02696.

https://github.com/bochinski/iou-tracker
https://github.com/BlueMirrors/cvu

	Introduction
	Related Work
	Non-Invasive Systems for Counting Objects
	Object Detection Models
	Tracking Algorithms

	System Architecture and Implementation
	System Architecture
	Detection Module
	Tracking Module
	Implementation

	Results
	Object Detection
	Tracking and Counting
	Parameter Optimization
	Downsampling Test

	Discussion
	References

