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Abstract: Bifacial technology is attracting the attention of the photovoltaic community. Although
considered premature, research and development activities still need to be carried out to improve
bPV performance. In addition, the need for a standard test reference will aid bankability and increase
confidence in this technology. This article describes the state of the art of bifacial technology, going
through the bPV cell and its difference compared to conventional monofacial cells and listing the
different sources of limitations, with an identification of different parameters that characterize the
performance of the bifacial. Then, the paper reviews the different modeling methods that allow
predicting the performance of bPV systems, and ends with the most important applications, whether
for dual use of land to produce energy and food (agrivoltaic) or for placing bPV modules on water
bodies instead of on the ground (aquavoltaics), or for vertical use as solar fences, acoustic barriers, or
building-integrated photovoltaic modules.
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1. Introduction

Unlike conventional monofacial cells, bifacial PV (bPV) cells convert solar energy from
both sides of the cell into electricity, Therefore, bPV cells make use of the global radiation
on the front side and of the mainly-reflected rays coming from the ground to the rear side.
Bifacial technology can increase the power density of photovoltaic energy compared to
monofacial cells. At the same time, bPV modules lower the relative cost of the surface area
of photovoltaic systems, as they take up less space than monofacial ones to provide the
same amount of solar power [1].

The research on bifacial PV technology began in 1960 [2]. A few years later, the study
of the experimental application of bPV performance was initiated [3,4]. However, this
technology has gained significant interest only since the 2010s as can be seen in Figure 1. In
that decade, international researchers started working more intensively on these bifacial
cells and modules, and companies such as Sanyo Co., Yingli Solar, PVG Solutions, bSolar,
etc., have marketed bifacial PV modules with c-Si bifacial photovoltaic cell structures [5,6].

In previous work, the use of bifacial technology showed an increase in energy yield
compared to monofacial of up to 30% [7], with an initial cost increment of 5–6 ¢/W which
leads to a reasonable rise in production costs [8]. The increase in energy generation depends
on different factors, such as the ground reflectivity (albedo), the module clearance, the
bifaciality, and the orientation [9]. Additionally, the use of bifacial PV in power plants can
be more cost-effective, especially for high albedos, resulting in a lower LCOE (levelized cost
of energy) compared to conventional mono PV [10,11], and can decrease the BOS (balance
of system) price per watts installed [12]. Since the rays are received from both sides of the
cell, a question can be raised about the temperature of the bifacial cell. However, since the
convective heat exchange is dominant, the temperature of the bPV and mono PV cells are
not far apart at ambient conditions [13].
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Figure 1. Articles published on bPV technology over the last 20 years with the key word “bifacial
photovoltaic” (Source: Scopus).

Bifacial technology is expected to be the major player in the PV global market. The
international technology roadmap for PV foresees the market share of PV modules to
increase from 20% in 2020 to 70% in 2030. In 2013, a largescale photovoltaic power plant
was built for the first time in the city of Hokuto (Japan), which has a capacity of 1.25 MWp.
This plant recorded a gain of 21.9% in the first year compared to a similar-sized mono-PV
power plant [14]. So far, the largest bPV power plant under construction is a 900 MWp
system with tracking configuration being built by the Saudi company ACWA Power in
Dubai [15]. This project will help to accelerate the learning of bPV technology. One of the
main ways to improve a solar PV plant is to include a sun tracking system. One would
expect that tracking would increase the energy yield also in bPV, as it would maximize the
front-side irradiance. However, one question that could be raised is whether maximizing
the front direct irradiance with tracking will create significant shading on the ground that
could reduce the contribution of reflected irradiance on the ground (albedo). Despite this,
two-year tests show that two-axis trackers for bifacial systems produce 14% more electricity
in a year compared to monofacial, and at least 35% more than a fixed-tilt system [16].
This suggests dual-axis tracking as an economically attractive solution, especially for
northern latitudes.

One of the major challenges of bPV technology is the ability to fully model rear
irradiance in different operating conditions. However, two factors can be identified as
critical to the acceptability of bifacial photovoltaic devices: formulation of an indoor bifacial
photovoltaic performance characterization standard and a full outdoor performance char-
acterization simulation model. The establishment of standards and an accurate modeling
methodology will enhance the bankability of bifacial photovoltaic technology. Moreover,
the simulation model is able to serve a useful role in the large-scale photovoltaic systems
design and implementation, either an optical model to quantify the irradiation received
at the front, for example, the isotopic model of Liu and Jordan [17], or the improved ver-
sion [18]. For rear-side irradiance it is more complex. The common simulation methods are:
(I) view factors by simulating the portion of the rays that leave one surface and hit another
and (II) ray tracing by following the path of the rays. These two methods will be discussed
in this paper in the optical modeling section. Thermal and electrical methods to simulate
the bPV cell temperature and electrical performance will also be discussed.

The economic competitiveness of the technology is another challenge that may limit
its market expansion. Suitable applications of bifacial technology have been explored, such
as agrivoltaics, with simultaneous land use between agriculture and PV modules [19], or
building-integrated PV, where bPV modules can replace conventional building materials on
the roof, in skylights, on facades, or as acoustic barriers [20]. bPV technology has also been
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applied in floating photovoltaics, in which modules are installed on or above water surfaces
(lakes, reservoirs, or dams) to produce electricity and, in some cases, aquaculture [21].
Further understanding of the performance of bifacial photovoltaic applications will help
validate their relevance. Several articles have reviewed the bifacial technology, but we
have seen that detailing the different applications of the bifacial technology can be very
useful to complete the knowledge in this field. For this reason, this article will concentrate
more on the performance of bPV technology in different applications, such as agrivoltaic,
acoustic barriers, and floating PV. The main scope is to review the state-of-the-art of bifacial
photovoltaic technology. This article is divided into three parts: fundamentals of bifacial
photovoltaic technology and performance parameters, the different modeling methods
(optical, electrical and thermal), and the main applications of bPV technology (agrivoltaic,
aquavoltaic, and vertical).

2. Bifacial PV Technology
2.1. Bifacial PV Cells

The principle of operation of bifacial bPV technology is the same as that of mono PV
technology, namely the photoelectric effect. Photons with energy greater than the band
gap transfer their energy to the electron e− and give rise to electron-hole pairs [22]. The
carriers generated nearby the semiconductor’s depletion region do not recombine, but
rather diffuse toward the substrate and emitter and are attracted by the inner electric field,
directing electrons and holes toward the N-type and P-type semiconductors, respectively.
Between the front and rear contacts, an electromotive force is created as a result. When
the two sides of the photovoltaic cells are connected, electrons move through the external
charge. However, differently from monofacial systems, bifacial modules can make use
of light hitting both the front and back glass of the bPV cells. Because of their bifacial
characteristics, both the front and the rear glasses are covered with anti-reflective (AR)
coatings. To improve the irradiation absorption of the bifacial photovoltaic cell, the back
contact is fabricated in the form of an open metallization grid, either in Ag or Al metals,
which is not the case for the monofacial (Figure 2) The back contact in the monofacial cell
is a separate layer covering the entire back of the cell, and this is the structural difference
between a mono and a bifacial photovoltaic cell [23].
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The most common encapsulation in bPV is the glass/glass structure, which allows
absorption from both sides [25]. However, bifacial cells with glass/backsheet encapsulation
deliver more power and current compared to glass/glass in STC measurements, where
mainly front illumination is adopted. The reasons for this are first, the transmittance of the
bifacial cell for longer wavelengths and the result in a back-scattering within the backsheet
and, secondly, backsheet scattering in the cell gap region bring reflection at the glass to
air interface [26]. However, the glass/glass encapsulation provides more power in real
outdoor conditions due to the rays reflected by the albedo on the rear side that cannot be
converted into electricity in the glass/backsheet configuration.

Several technologies have also been developed to take full advantage of bifacial PV
cell structures by minimizing optical and resistive losses. In principle, resistive losses
can be decreased by using small busbar wires or a combination of busbars, which will
eventually decrease the series resistance as a result of the presence of a longer current path
plus shorter finger wires (or much thinner) [24–26]. Half-cell modules can also be one of
the solutions to reduce resistive power loss [27]. Small wires and multi-busbars can also be
a good option to reduce optical loss by reducing shading in the active area of the cell and
minimizing the reflectance and absorbance of the beams in the inactive area. In addition,
an infrared (IR) reflective coating on the rear glass of the bifacial glass/glass module would
reduce the transmission loss. The white reflective coating on the rear glass can lower the
transmission loss of the cell gap. By combining these two, a current gain of about 4% can
be achieved [28].

The predicted high share of the bifacial technology in the market has prompted several
companies and research groups to develop improved bifacial PV cells with different bifacial-
ities and efficiencies. The most prominent PV cells on the market are a HIT heterojunction,
an IBC interdigitated back contact, a DSBCSC double-sided buried contact, a PERC pas-
sivated emitter back contact, a PERL passivated emitter back contact, and a passivated
emitter back contact with full diffusion (PERT) [5]. Figure 3 shows the structures of the
different cells with the available bifaciality and efficiency. The maximums were achieved
by the heterojunction bPV cell, which will result in higher power output compared to
the others.
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2.2. Fundamental Solar Cell Losses

As with monofacial photovoltaic modules, bPV modules produce electricity by ab-
sorbing a portion of the sun’s rays and dissipating the remainder through losses of energy
inside the cell or from the cell to the module [29]. Losses incurred from the cell to the
module are mainly due to the series resistance, reflected and/or transmitted light. These
losses result in a decrease in the total output power of the module compared to the sum of
the output power of the bPV cells [30,31]. Losses in the cell, based on the lifetime of the
carrier, can be grouped as generation, transport, and recombination losses [32].

Carrier generation process losses: (i) optical losses corresponding to the fraction of
incident solar radiation energy that is reflected by or transmitted through the cells [24], and
(ii) spectrum mismatch losses due to the difference between the spectral responses of the
PV reference solar cell and the outdoor test PV modules [25].

• Carrier transportation process losses consist mainly of: (i) series resistance losses, due
to the loss in the transport of carriers in their paths due to collision with atoms or other
carriers [26]; (ii) the shunt resistance loss can be associated with the recombination
process, which conducts the generation of heat and is proportional to the loss of
photocurrent; [27](iii) The Carnot loss is defined as the minimum energy required to
separate photo-generated charges [26]; and (iv) the angular mismatch loss referred to
the energy loss caused by the mismatch between the absorption and emission solid
angles [24].

• Carrier recombination process losses: emission loss corresponds to the photons emitted
by the cells resulting from radiative recombination and non-radiative recombination
loss [24].

2.3. Bifacial Technology Performance Parameters

The most important parameters which characterize bifacial photovoltaic technol-
ogy are:

• The power conversion efficiency (ηBifacial) is the ratio of the generated electrical power
Pm (W) to the incident light power E (W/m2) under one sun with a (Gref = 1000 W/m2)
or more. It is measured separately for the front and rear faces. In general, it is calculated
at the maximum power point, Pm, in W, using the area of the solar cell (A, in m2). This
definition can extend to define the bifacial module efficiency as the power produced
divided by the total irradiance power received by the working surfaces of the module.
The efficiency of the bPV cell can go from 19.4% for PERC to 24.7% for HIT at the front
side, and from 16.7% for PERC to 19% for PERT at the rear side (Figure 2) [5].

ηBifacial =
Pm,front/rear

Efront/rear∗A
(1)

• The bifaciality factor (ϕ) defines the ratio of the device’s front and rear responses under
the same conditions. This parameter essentially determines the additional power that
can be generated by the rear irradiance. In the literature, there are different approaches
to defining the bifaciality factor, based on power, current density, voltage, or efficiency.
The most common one is the ratio between the power of the rear of the module and the
front under STC conditions [8]. The main equations to define bifaciality are as follows:

ϕJsc = Jscr/Jscf
(2)

ϕVoc = Vocr/Vocf (3)

ϕPmax = Pm,r/Pm,f (4)

ϕη = ηr/ηf (5)

where Jsc is the current density, Voc the voltage, and Pm the power and η the efficiency.
The subscripts “f” and “r” indicate the front and rear surfaces, respectively. The main
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characteristics that determine the bifaciality factor of a bPV cell are the rear surface
texture and antireflection coating (ARC) [28,29], the metal coverage of the rear side
contact [30], the rear side back surface field (BSF) doping and passivation [31], and the
base resistivity and lifetime of the solar cell [32]. The maximum bifaciality factor was
achieved for Si heterojunction bPV cells with values ranging from 85 to 95%, followed
by n-PERT from 75 to 90%, and then by the P-PERC from 65 to 80% [8].

• The bifacial gain (BG): an appropriate way to illustrate the importance of bifaciality is
to analyze the bifacial gain, which is defined as the difference in energy yield when
comparing bifacial and monofacial devices with identical installation configurations.
Generally, this comparison is based on the energy yield, expressed in KWh/KWp [33].

BG(%) =
Ybifacial − Ymonofacial

Ymonofacial
× 100 (6)

BGoptical = GRear/GFront (7)

where Ybifacial is the energy yield of a PV system with bifacial modules and Ymonofacial
the energy yield with monofacial modules in the same conditions (site, configuration,
and time period). A similar factor is the bifacial optical gain in Equation (7), which
is defined as the ratio of the rear (GRear) to the front (GFront) irradiances [34]. The
bifacial gain depends mainly on the ground albedo and the distance between rows.
The smaller the distance between the module rows, the lower the BG, and a high
albedo will result in a higher BG [34].

• The spectral response (SR): as the monofacial cells photovoltaic cells, bPV cells have
a spectral response (SR in A/W) representing the fraction of the available irradiance
that is converted to current [35]. The front and rear of the bPV cell may show a slight
difference in spectral response (Figure 4) [36], mainly due to the difference between
the two sides in passivation and metal contacts.

• The ground albedo (α): ratio of reflected radiation to the radiation from the sky dome.
It is common to assume the albedo of the ground surface as a constant for monofacial
PV systems, due to the limited contribution of reflected irradiation from the ground.
In general, the contribution of reflected radiation on the ground is less than 3% for
most monofacial PV systems and can be less than 1% for systems with a slope of less
than 25◦ [33]. In fact, the albedo is spectral and angle-dependent, and because of the
significant rear reflected irradiance importance for bPV systems, the spectral albedo
is typically adopted (Figure 5). The constant percentage of reflected light α can be
calculated as a function of spectral reflectivity Ar (λ) as [37]:

α =

∫
G(λ)Ar(λ)dλ∫

G(λ)dλ
(8)

where G(λ) is the spectrum incident on the surface. The reflected light can be simply
calculated by multiplying the constant albedo by the broadband incident spectrum at
this point.
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3. b-PV Modeling Methods

There are various models for predicting the performance of bifacial PV systems, which
are reviewed in this section. The models are typically one of three types. Optical models
calculate the irradiance received by a bifacial PV module from the front and rear. Thermal
models calculate the cell or module temperature. Electrical models estimate the electrical
output of a PV module.

3.1. Optical
3.1.1. Front-Side Irradiance

The front-side irradiance in bPV, (GFront) is actually similar to the monofacial, and is
composed of three components: direct, diffuse, and reflected irradiance. In some cases,
such as for SMARTS, there is no need for further calculation because the front-tilted global
irradiance can directly be obtained. However, if only horizontal irradiance is available,
according to Khoo et al. [39], the front-side irradiance of bifacial PV modules may be
simulated using the same optical model that is used to simulate monofacial photovoltaic
systems. The total irradiance on the front side of an inclined (tilted) bifacial photovoltaic
module can be expressed as follows:

GFront = GbRb + Gd,tilt + α·GHI
(

1− cos(β)
2

)
(9)

where Gb is the beam irradiance on a horizontal surface and Rb is the ratio of the beam
irradiance on the tilted surface to that on a horizontal surface at any given time. Gd,tilt
is the total tilted diffuse irradiance and, in the literature, there are numerous formulas
available [40,41]. The Perez et al. [42] model is the recommended model since it takes into
account the three diffuse irradiance elements (isotropic sky diffuse, circumsolar diffuse, and
horizontal brightness). Thus, the total inclined diffuse irradiance is given by the Perez et al.
model as follows:

Gd,tilt = Gd

(
1 + cos(β)

2

)
(1− F1) + F1Rb + F2 sinβ (10)

where Gd is the diffuse horizontal irradiance, β it is the module tilt angle, F1 is the circum-
solar brightness coefficient, and F2 represents the horizon brightness coefficient. Both F1
and F2 are linked to the sky irradiance conditions, which are described by three variables:
the zenith angle of the sun θz, the sky brightness index ε, and the brightness index ∆.
The last term is the diffuse component that is driven by reflection from the ground. It is
generated from an isotropic model proposed by Ineichen et al. [42,43]. α is the albedo (or
ground reflectance), which is usually assumed to be uniform over the entire ground surface
underlying the module [44]. [(1 − cosβ)/2] is the view factor from the front of the bifacial
PV module to the ground, under the assumptions of (1) infinitely long rows; (2) absence of
shadows on the ground; (3) the ground is horizontal; and (4) the ground is a Lambertian
reflector (independent of direction) [45]. Irradiance data used in the model can be obtained
from databases such as SolarGIS [46], Meteonorm [47], and PVGIS [48] or from tools, such
as SMARTS software [38], or they can be measured on-site.

3.1.2. Rear-Side Irradiance

Modeling the rear irradiance is more complicated because it is a combination of diffuse
and direct irradiance reflected from the shaded and unshaded ground. The most used
methods in the literature to simulate it are the view factor and ray tracing methods.

The View Factor Model

The view factor was first brought to measure the portion of the radiative heat flux
leaving surface A and reaching surface B [49]. It is a purely geometrical parameter and has
also been applied in the calculation of the irradiance reflected by one surface and perceived
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by the other. Photovoltaic panels are generally used in rows in the solar field, which means
a negligible module width compared to the row length, which allows for considering a row
of modules of infinite length. Then, the Hottel cross-string rule can be adopted [50]. This
rule allows us to calculate the view factor from surface A to surface B (Figure 6) as:

FA→B =
∑ Crossed strings−∑ Uncrossed strings

2·Source string
=

CF + DE−CE−DF
2·CD

(11)
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To calculate the rear irradiance of a row of bifacial modules of length L mounted
with a tilt angle β and with a module-to-ground clearance h (Figure 7), three view factors
(FRear

Sky , FRear
unshaded ground, and FRear

shaded ground) have to be determined. The rear irradiance can
be obtained from Equation (12), which denotes the three components of the global tilted
rear irradiance: beam, diffusion, and reflection:

GRear = GRear
beam + GRear

diffuse + GRear
reflected (12)

= (GHI− Gd)·RRear
beam + Gd·FRear

Sky + GHI·α·FRear
unshaded ground + Gd·α·FRear

shaded ground

where GHI, Gd represent the global and diffuse horizontal irradiance, RRear
beam is the propor-

tion of the inclined rear irradiance over the horizontal irradiance, and α is the albedo (or
ground reflectance). A more detailed calculation of every term can be obtained from [49].
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Ray Tracing Model

Ray tracing models track light from the source to the intercepting surface (forward
ray tracing) or from the surface of interest to the source (inverse ray tracing). Models are
often based on a Monte Carlo approach which simulates thousands of rays and then uses
optical physics to predict the way these rays interact on each surface of the model [50].



Energies 2022, 15, 8777 10 of 30

To predict the irradiance on the rear face of a bifacial photovoltaic panel, the ray tracing
model needs inputs such as the geometry of the structure, the properties of the materials,
and the position of the sun. There are different tools that perform simulation based on
the ray tracing method. These include free software packages, such as Radiance (inverse
ray tracing application) [51] and commercial ones, such as Trace PRO [52] and COMSOL
(forward ray tracing application) [53]. The primary benefits and drawbacks of the two
bifacial simulation approaches are displayed in Table 1 [54].

Table 1. The main advantages and disadvantages of bifacial simulation approaches.

Advantages Disadvantages

View Factors

• The view factor concept can be easily and
quickly implemented on regular
mounting geometries.

• The inhomogeneity of the bifacial module’s
rear irradiance can be replicated using the view
factor approach. The computing time is very
low even for a full-year simulation with a time
step of one hour.

• The accuracy is affected by the meshing on
the module’s rear side.

• Difficulty in taking into account irregular
geometries of mounting structures and
uneven ground surfaces.

• In the case of large bifacial PV systems, the
simulation time can be excessively long.

Ray-Tracing

• Ray tracing is more convenient for modeling
the inhomogeneity of bifacial
module irradiance.

• The impact on the rear irradiance of structures
and the module frames can fully be taken
into account.

• In comparison to the view factor approach,
the implementation of ray tracing in a
modeling tool is more challenging.

• Ray tracing simulations have a relatively
high computational power need, which
causes them to take a long time to run.

• Accurate knowledge of soil properties is
necessary to correctly calculate spectrally
and angularly reflected radiation, which is
not always available.

A comparison of the accuracy between the ray tracing (Radiance), the view factor
method, and the measurements has been made in [55] for two consecutive days at solar
noon and for different clearances for different sensor positions from the lower to the upper
part of the module, respectively, A, B, C, and D. The authors found that the view factor
model agrees better with measured values for a clearance of 0.6 and 0.15 m than the
RADIANCE software. From the data in [55], in (Figure 8) the errors were calculated and
show that in general the view factor grants lower errors. However, ray tracing is able to
obtain more details than the view factor model, as it takes into account the cell-to-cell gaps
and/or the shading produced by the junction box at the back of the module. In spite of this,
ray tracing can be of great interest for novel applications, such as agrivoltaic or building
integration, since the reflected surface can show a high inhomogeneity (trees, walls, etc.).
For example, agrivoltaic (APV) deals with complex geometries (crops or trees) that cannot
be simulated with VF assuming that the vegetation is uniformly distributed. The same
occurs in greenhouses, and RT can help to overcome this problem.
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Figure 8. Rear irradiance distribution error for the ray tracing and view factor methods for four
positions of measurement (A, B, C, and D).

There is another approach to bifacial modeling based on the prediction of energy
performance by empirical modeling. This uses different experimental results to develop
the coefficients of the best-fit model as in Equation (13) [54,56].

BG = A× (β) + B× (h) + C× (α) (13)

where A (/deg) is the fit coefficient for the tilt angle β, B (/meter) is the fit coefficient for the
ground to module clearance h, and C (/%) is the fit coefficient for albedo α. For a particular
set of applications, there is good agreement between the results of the experiments and
the models. For example, Jose E [56] developed a model which shows an annual energy
difference of a maximum of 7.2% and a minimum of 0.52% for different conditions of slope,
altitude, and albedo. Even with this accuracy, there have been very few attempts to forecast
the performance of bifacial plants through empirical models. The reason is the shortage
of experimental data to build accurate and reliable empirical models. Another reason for
the limited application of the empirical method is that it can only estimate the bifacial gain
for a given period of time and not the power values of the bifacial modulus for a given
period of time, such as the Raytracing and view factor methods. However, this method can
be of great interest to account for the bifacial contribution at the system or plant level due
to its simplicity. From an engineering point of view, this method is preferable due to its
easy applicability.

3.2. Electrical

The electrical performance of bifacial PV technology is the result of the combination of
the front and rear characteristics under the same conditions. In the literature, there are three
methods for the electrical modeling of bPV technology: the single point power models,
which are the most basic; additionally, the equivalent circuit model and the characteristic
point model, which are all used to predict the I–V curve as in (Figure 9) [57].
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3.2.1. Single Point Power Model

This model simulates the total power output of the bifacial solar modules as [57]:

PPV = GFront∗A∗ηF + GRear∗A∗ηR (14)

where PPV is the total output power of the bifacial solar module. GFront and GRear can be
calculated using the optical model as in the previous section. Otherwise, it can be measured
with two pyranometers, one for each side, or with an albedometer. ηF and ηR are the
electrical efficiencies of the front and rear faces of the bifacial photovoltaic module and A is
the module area. This model is general and can be used for any PV technology. For the
front and rear electrical efficiencies, ηF,R can be calculated as a function of the efficiency
ηF,R

stc at standard conditions and the cell temperature TCell [57] as Equation (15):

ηF,R
T = ηF,R

stc ∗ (1 + βT ∗ (T− Tstc)) (15)

where βT is the temperature coefficient of the bPV module and STC stands for standard
test conditions (STC, solar irradiance Gref =1000 W/m2, cell temperature Tc = 25 ◦C, and
air mass AM = 1.5).

3.2.2. Characteristic Point Model

In this model [57], the short-circuit current (Isc) and open-circuit voltage (Voc) for
the front and rear sides of the bifacial PV module can be separately determined for the
specified operating conditions. The dependence of Isc on incident irradiance is linear,
whereas logarithmic for Voc. The short-circuit current of the bifacial module (Isc) and its
open-circuit voltage (Voc) are thus given by:

Isc = IF
sc + IR

sc (16)

Voc = VF
oc +

VR
oc − VF

oc ln


(

IF
sc + IR

sc

)
IF
sc

/ln

(
IR
sc

IF
sc

)
(17)
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Pmpp = FF ∗Voc∗Isc(1 + βT(T− Tstc) (18)

where Pmpp is the power output at the maximum power point (MPP), whereas FF is the
fill factor.

3.2.3. Equivalent Circuit Model

This model is more accurate than those mentioned above [57] and is the most widely
used in academic circles. In the literature, there are several equivalent circuit models
that differ in the number of diodes and parameters. These have been summarized by
Tossa et al. [58]. These models calculate the mean parameters of the I–V curve of bPV
under STC conditions. The most broadly used model approach in the literature is the single
diode model (SDM) (Figure 10), which includes a series resistance (RS), a shunt resistance
(RP), and linear independent current source in parallel to one diode [59]. In SEM, the
following equation can be used for non-STC conditions:

Iph =
G

Gstc

(
Iph,stc + β(Tc − Tstc)

)
(19)

I0 = I0,stc

(
Tc

Tstc

)3
∗e(

qEg
Tstc

( 1
Tstc
− 1

Tc )) (20)

Rs = Rs,stc (21)

Rp =
Gstc

G
Rp,stc (22)

Vt =
Tc

Tstc
Vt,stc (23)

Ge = GFront +ϕ GRear (24)

where Eg is the band gap, q is the electric charge and Ge is the bifacial equivalent ir-
radiance defined as the irradiance received by the bifacial module and contributing to
current generation.
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3.3. Thermal

Unlike irradiance, which can be measured with a pyranometer, the PV cell temperature
cannot be measured directly with a thermocouple. Therefore, the thermal behavior of bPV
modules has to be modeled. There are different models in the literature to simulate the bPV
cell temperature. The most frequently used models are discussed in this section.

3.3.1. NOCT Model

This model was first used for monofacial technology [60] taking into account only
frontal irradiance, and then extended for bPV cells [61]. However, large differences were
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observed experimentally. On the other hand, using total irradiance (front + rear) led to
more accurate results [61]. This model only takes into account the variation of bPV cell
temperature with total irradiance and negates the effect of wind speed by means of the
following expression:

Tc = Ta +
TNOCT − 20

800
×
(

GFront + GRear
)

(25)

TNOCT is the nominal operating temperature of the cell in ◦C, specified by the manu-
facturer and Ta is the ambient temperature. In [62], a wind speed correction of this model
is available.

3.3.2. Sandia Model

This model has proven to be very adaptable and fully suitable for engineering and
system design purposes, as it provides the expected operating temperature of the module
with an accuracy of approximately ±5 ◦C [63]:

Tc = Tm +
GFront + GRear

Gref
× ∆T (26)

Tm = (GFront + GRear)·
(

ek1+k2·Uw
)

(27)

where Gref is the irradiance under STC conditions (1000 W/m2), ∆T is a temperature
difference parameter, defined as the difference in temperature entering the module and
the cell, Uw represents the wind speed at a standard height of 10 m, and Tm is the module
temperature bPV. k1 and k2 are parameters that depend on module structure, materials,
and module mounting configuration. A list of representative values of these parameters
for various types of modules and common configurations can be found in [64].

3.3.3. PVsyst Model

This thermal model is used in the commercial software PVsyst and is derived from
the Faiman model Equation (28) [65]:

Tc = Ta +
αa · GT · (1− η)
U0 + U1 · Uw

(28)

where αa is the absorptivity, η is the electrical efficiency of the bifacial photovoltaic module,
U0 is the coefficient of heat transfer (W/m2K), and U1 is the component of convective heat
transfer (W/m3sK). The difference between this model in the monofacial version is the
temperature changes with the total irradiance GT, which in this case the sum of GFront

and GRear.

3.3.4. Equivalent Thermal Circuit Model

This model is based on thermal resistances. Three categories of resistance are used:
radiative, convective, and conductive. This model can simulate the temperature of different
cell layers such as the top and bottom (EVA) beside the bPV cell temperature [66]. Based
on the equivalent thermal circuit illustrated in (Figure 11) [66], the cell temperature can be
determined through the following expression:

Cp,PVδPVAρPV
dTC

dt
=
(
τg·GT·A− PPV

)
− TC − TEVA1

RPV−EVA1
− TC − TEVA2

RPV−EVA2
(29)

where Cp,PV, δPV and ρPV are the specific heat (J/(kg K)), thickness (m), and density(
kg/m3) of the PV layer, respectively. τg is the glass transitivity (%), TEVA2 is the lower

EVA temperature (K), and RPV−EVA2 is the conductive thermal resistance between the PV
layer and lower EVA (K/W).
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3.3.5. Regression Model

This model is based on a multilayer mathematical model suitable for estimating the
temperature of the bifacial PV cells with the following relationship [67]:

TC = −22.1499 + 0.0300GT + 1.9839Ta − 0.0142Uw (30)

This equation considers the contribution of solar radiation incident on the rear side of
the bifacial PV module. The output of this model is the average temperature of the bPV cell
as a function of solar radiation GT (W/m2).

4. Bifacial Technology Applications
4.1. Agrivoltaic

The definition of agrivoltaics is the simultaneous use of land for the production of elec-
tricity through photovoltaic modules and agricultural production. This combination offers
a number of symbiotic benefits, such as the reduction of water balance and better resistance
to climatic effects, such as excess heat and drought [68,69]. Some innovative technologies
have been used for APV, such as concentrator photovoltaic (CPV) modules [70], which use
direct solar rays and diffuse solar rays separately for efficient dual use of the land. Direct
irradiance is used for electricity production through the CPV panels and diffuse irradiance
is used for crop photosynthesis under the photovoltaic panels. The main drawback of this
technology is mass production, which results in high costs [71]. Semitransparent photo-
voltaics were also used for APV, either with spectral semitransparency with selective use of
wavelengths [72], or with regional semitransparency by splitting the portion of the received
solar rays between the PV panel and the crop below [73]. The main limitation of this tech-
nology is that it is still premature for large-scale installations due to its low efficiency [74],
and significant degradation constraints [75]. The application of bifacial technology in the
APV offers advantages in different aspects, as it can produce electricity by simultaneously
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receiving direct sunlight and rear-reflected light from the ground or plants. The efficiency
of the bifacial APV can reach up to 24% [76]. The current LCOE of bifacial photovoltaics is
also lower than that of conventional monofacial photovoltaic systems [77]. All this makes
the bifacial APV a potential solution for combining photovoltaics and agriculture. This
section covers the definition of the main parameters defining the performance of APV
systems, with an existing bifacial agricultural systems (Table 2).

4.1.1. APV Main Parameters

Photosynthesis is the natural process used by plants to capture energy from the sun
and convert it into organic matter, which is then used to sustain almost all life on Earth [78].
Plant growth is dependent mainly on photosynthesis. The accumulation of organic matter
by the process of plant photosynthesis is called the net photosynthetic rate (Pn), and is often
used to evaluate the state of plant growth and photosynthetic capacity. The main factors
affecting the rate of photosynthesis are light intensity, carbon dioxide concentration, soil
and ambient temperature and humidity [79]. Similarly, to photovoltaic cells, the absorbance
of the plant leaf depends on the spectral distribution of the incident light. The part of the
light spectrum used by the plant for photosynthesis is called photosynthetically active
radiation (PAR) (µmoL/m2 s) [80], and is defined as between 400–700 nm wavelengths.
For the processes of respiration and photosynthesis, a minimum light intensity is required,
which is called the light compensation point (LCP), and, conversely, above a certain level of
light intensity it is called the light saturation point (LSP) (Figure 12). Additional light does
not enhance photosynthesis and the extra energy is converted to heat, which can reduce
productivity [81].
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In addition to environmental conditions, genetic factors, such as the carbon assim-
ilation pathway, greatly influence the photosynthesis process. Based on plant genetics,
plants can be divided into C3, C4, and CAM species [82]. In agrivoltaics, the partitioning
of the amount of incident light between the PV panel and the plant can decrease the light
intercepted for the photosynthesis process, thus requiring species that are adaptable to low
incident light. C3 species tend to saturate at low PAR [83]; they are also shade-tolerant and
outperform C4 species in low-light conditions, making them the best choice for use under
the PV plant [84].

The use of the installation of solar panels several meters above the ground surface
has shown various advantages; for example, the temperature of the soil has decreased
significantly [85], which favors the cultivation of plants. Similarly, the shading created by
the photovoltaic panels slows down water evaporation, especially during the warm season,
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leading to water savings of up to 14–29% depending on the shading level [86]. Another
beneficial aspect of this agrivoltaic practice is the possible increase in the efficiency of
energy production by reducing the temperature of the PV panels by 1 to 2 ◦C compared to
the ambient temperature [87]. In addition, with APV, soil moisture remains approximately
5–15% higher in the agricultural system [88], depending on the frequency of irrigation,
and the water used to clean the PV panels can be reused to irrigate agriculture [89]. All
of this translates into an increase in water efficiency compared to the agricultural-only
configuration. The APV can be more profitable compared to electricity or agriculture
alone [90]. The co-location of photovoltaic and agricultural farms potentially can increase
total site revenue by 2.5% to 24% over electricity income, depending on the location and
farming type [91].

The land equivalence ratio (LER) is used to evaluate the performance of an agrivoltaic
system (Equation (31)) [92]. The LER evaluates the energy and food ratios for the APV com-
pared to standard photovoltaic agriculture and open field agriculture, respectively [93], as:

LER =
Ycropping−APV

Ymonocropping
+

Yelectricity−APV

Yelectricity−PV
(31)

where Y is the yield, monocropping system refers to single crop harvesting, PV refers to a
standard photovoltaic plant, and APV stands for mixed agrivoltaic systems. An LER > 1
means that the APV system is more efficient than separating crops and PV for the same
area. For example, an LER of 1.3 means that, by adopting an APV system, the production of
electricity and food crops of a 100-ha farm will be equivalent to that of a 130-ha farm with
separate productions. Another factor has been defined to assess the efficiency of irradiation
spreading for a crop type and PV system called the light productivity factor (LPF) [94]. This
factor is primarily used in design optimization to identify the optimal PV array density,
panel orientation, and tracking configuration for a crop-specific PAR, which can predict the
overall energy-food efficiency of the APV at the design stage.

4.1.2. Bifacial APV Configurations

Similar to any photovoltaic plant, the agrivoltaic farm consists of bifacial solar modules
of height (L), mounted at a distance from the ground (h), and spaced by the pitch from row
to row (P) (Figure 13). To achieve acceptable agricultural performance, PV array densities
must be lower than those of conventional ground-mounted PV plants [95]. The radiation
that is available at ground level increases together with the distance between rows. The
ideal row spacing does not have a set value for all cases; instead, it varies from 3 m to
around 10 m depending on the crop and the availability of sufficient land [96]. The usual
configuration of an agrivoltaic system involves photovoltaic modules installed at a height
of 2 to 5 m above the ground with a suspended structure [97]. The module’s height depends
on the specific agricultural activities underneath. The tilt and orientation of the modules in
APV, similar to any photovoltaic plant, have different configurations (fixed tilt, single-axis
tracking, and double-axis tracking), as discussed in the sub-sections below.
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Single Axis Tracking Configuration

The commonly used tracking configuration in APV systems is single-axis tracking.
The one-axis scheme can be solar tracking (ST) when the module is aligned normally to the
sun’s rays or reverse tracking (RT) when the module’s face is parallel to the sun’s rays for
moderate and shade-sensitive crops [98]. The tilt angle of the module with the tracking
system is calculated based on the angle of incidence (θAOI) between the solar rays and
the normal of the module. The target angle (θAOI) for ST is 0◦, while for RT is 90◦. It
should be noted that two degrees of freedom are needed to maintain the module at normal
incidence. However, single trackers have only one, and therefore act to minimize the angle
of incidence rather than to maintain it at 0◦ [99].

A customized tracking (CT) scheme can also be adopted, which consists of switching
between ST around noon and RT near sunrise and sunset, and RT for the other hours
of the day [96]. Imran Hassan [100], in a study of APV farm performance of different
orientations and tracking schemes in Lahore, Pakistan (31.5204◦ N, 74.3587◦ E), shows that
ST maximizes energy production while ST minimizes it. The electrical energy produced by
the bifacial modules (IPV) in CT depends on the number of hours of adoption of the ST
per day. The authors add that it ranges between the IPV produced by the ST and the RT.
Additionally, the global ground irradiance (GGR) is maximum for the RT and minimum
for the ST. A comparison of the same tracking scheme ST applied to systems of various
orientations showed that the E/W modules produce more IPV than the N/S [101]. Another
study was conducted by Riaz Muhammad [102] in Lahore, for different tracking schemes
and three different crops (lettuce, turnip, and corn). The results show a small difference
in PAR between ST and RT in the morning and afternoon, but it becomes larger around
solar noon. Even though the PAR that reaches the ground decreases by switching from
RT to ST around noon, still values around the photosynthesis saturation active radiation
PARth can be reached, while the CT scheme allows great flexibility to maximize PAR in a
given month by switching between RT and ST. However, the adoption of half density of
bifacial PV modules can make the difference between the PAR of different tracking systems
negligible. As well, the ST limits yield for a precise PAR (YPAR) below 60% for full density,
and using RT, YPAR recovers to >80%. For the half-density arrays, ST gives YPAR > 80%
for all the three crops across all months. Furthermore, the adoption of CT can improve
YPAR and this can be true even for full density arrays. Finally, the adoption of a scheme of
tracking is an operation that can be carried out depending with other factors on the value
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of photosynthesis active radiation PAR of saturation for the crops, and the shade tolerance
of the crops.

Fixed Tilt Configuration

In the case of monofacial fixed-tilt north/south solar panels in the northern hemisphere,
the PV system tilt angle is selected to optimize the annual energy yield, resulting in a value
close to the latitude of the location [103]. For bifacial modules, the optimization of βmay
be different from that of monofacial PV panels, taking into account the β dependence of the
height, albedo, system size, and time of the year [104]. The optimal tilt angle of the APV
should be adjusted based on the desired balance for the distribution of sunlight between
the PV panels and the crops. In [105], changing the tilt angle of an APV farm from 20◦ to 60◦

shows an increase in annual PAR of 13% and annual energy yield of 16%. This illustrates
that adjusting the tilt angle can be a useful trade-off between crop and PV performance.

The Pitch Distance

The pitch distance in a solar PV system refers to the distance between rows in the
APV installation. To study the effect of the pitch p (distance between rows), a parameter is
been used called global ground radiation GGR, defined at a specific crop height obtained
as the percentage ratio between the light received under the cover of the panels and the
total incident light without panels installed [104]. The energy produced by the PV modules
increases with decreasing module density, i.e., with low pitch, and this is due to the
high number of modules per pitch. However, the global ground radiation GGR for crops
decreases with increasing module density due to the high shading effect caused by the
dense surface coverage of the PV modules [105]. A comparison of energy production of
bifacial PV N/S and E/W was performed also in [103] at an inclination of 20◦. The module
density (p/h) was varied from 1 to 3. The monthly results showed that at low module
density PV E/W had similar energy performance to PV N/S. As the panel density increased,
PV N/S showed relatively higher energy output, and PV E/W provided a relatively higher
GGR and reduced the energy output for all panel densities. This gives an idea of the effect
of the pitch on the agriculture and photovoltaic yields, which are complementary, and
depends on the desired production.

The Elevation

The elevation of the photovoltaic modules h, intended as their vertical distance of the
ground, is a major factor defining the heterogeneity of light at the crop level. The higher
the modules are, the more homogeneous the daily irradiation on the ground is [69]. A
high-height crop, such as corn, which can reach 2 m, allow homogeneity of irradiance to
increase during the growing season, as the distance from the crop to the modules will be
smaller. The elevation level can also affect the microclimate below the PV modules. For
example, a variation of E from 0.5 to 2.7 m [106] causes significant differences in the average
temperature near the PV modules. The average relative humidity and wind speed were
also found to be different for different elevations. However, the choice of elevation depends
also on the height of the crop and the machine used for harvesting [98], and using a high
elevation also reduces the cost of the operation [19].
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Table 2. List of operational bifacial agricultural photovoltaic systems.

No Location Electricity Yield Capacity PV Tracking Cultivated Crops Technology Further Information Refs

1
Donaueschingen—

Aasen,
Germany

4850 MWh/year 4.1 MWp No Meadow used for
hay and silage N-Pert (100%)

It is the largest bifacial agrivoltaic system
in Europe. Was put into operation in 2020

and supplies electricity to
1400 households.

[107]

2 Eppelborn—Saarland,
Germany 2150 MWh/year 2 MWp No Meadow used for

hay and silage
N-Pert (60%),

Heterojunction (40%)

It is the first large-scale bifacial PV system
in Europe. It was launched in 2018 and
supplies electricity to 700 households.

[107]

3 Channay, France 265 MWh/year 237 KWp No
Test site for different

arable crops and
cattle farming

n-Type
PERT/Heterojunction

Bifacial Frameless

It is one of the first vertical bifacial
agricultural power plants in France. It

was put into operation in 2021 and
supplies electricity to 80 households.

[107]

4 Valpuiseaux, France 124 MWh/year 111 KWp No
Test site for different

arable crops and
cattle farming

n-Type
PERT/Heterojunction

Bifacial Frameless

It was put into operation in 2021 to
supply electricity to 40 households. [107]

5 Mälardalen University,
Västerås, Sweden 37 MWh/year 33 KWp No Test site for different

arable crops
n-Type PERT Bifacial

Frameless

It was the first bifacial agrivoltaic farm in
Sweden. It was put into operation in 2021
and supplies electricity to 11 households.

[107]

6 Seongang, South Korea 1300 KWh/year 30 KWp No No information N-Pert (100%) This is South Korea’s first agrivoltaic
plant, which started operating in 2020. [107]

7 Saarland, Germany 31 MWh/year 28 KWp No Pastureland Bifacial n-type cells
This is a pilot plant used for the

validation of Next2Sun’s vertical
assembly system; launched in 2015.

[107]

8 Guntramsdorf, Austria 23 MWh/year 22.5 KWp No
Arable land for the

cultivation of
potatoes

N-Pert (100%)
Austria’s first ground-mounted

agricultural photovoltaic-photovoltaic
plants. It started in 2019.

[107]

9 Heggelbach, Germany 245 MWh/year 194 KWp No
Winter wheat,

potatoes, celery, and
clover grass

No information

This project supplies electricity to
62 households and the preliminary result
of the project showed an increase in the

LER by more than 60%.

[108]

10 Bierbeek, Belgium No information 185 W
One-axis solar

tracking and fix tilt
set-ups

Orchard crops, and
pear trees

C-Si cells with
transparent backsheet

Started in 2021; designed to demonstrate
the viability of agrivoltaics in Belgium [109]
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4.2. Floating (Aquavoltaic)

Floating photovoltaic (FPV) solar power is a conception in which a solar photovoltaic
system is placed directly on a body of water (Figure 14), rather than on the ground or the
roofs of buildings [110]. The FPV installation is generally composed of a floating platform to
keep the photovoltaic panels above the water [111], and a mooring system to keep the panels
in the same position and prevent them from rotating or drifting away [111]. Additionally,
solar photovoltaic modules (mono or bifacial) are used; although for this application more
resilient modules, such as polymer, are required in salty environments [111]. The cables and
connectors to extract the electricity from the solar photovoltaic installation and transport it
to the shore have also to be adapted to the floating conditions. This means that the cables
have to be properly coated with waterproof material because they are generally passing
through water to reach the land [112].
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Figure 14. Schematic diagram of a floating photovoltaic power plant.

PV modules installed on water bodies can be very advantageous compared to PV
systems installed on land. FPV can lead to savings in land costs, reduction of water
evaporation, enhancement of water quality, minimizing the effect of dust, and lowering
FPV temperatures due to the water cooling effect [113]. The bifacial floating photovoltaic
system receives reflected irradiation from water. However, the albedo of water bodies is
very low compared to the normal albedo of the soil [114]. Several studies suggest using a
reflector under the bPV modules to overcome this drawback [115].

A comparison between monofacial and bifacial floating modeling and experimental
data was performed in [116]. The installations had capacities of 3.84 KW for monofacial
and 4.14 KW for bifacial modules. The results show that the bPV had a bifacial gain of 4.5%
and 7.3% in Frankfurt (Germany) and Catania (Italy), respectively. Another comparison
between mono and bPV floating PV systems was conducted in the tropical region of Lake
Mahoni, Indonesia [116]. The total capacity of the installation was 9.36 KWp, divided into
twenty-seven bPV panels and nine Mono PV panels. The bifacial strings showed better
results with a maximum difference in electrical energy in May of 8.04% and a minimum in
July of 6.13%.

Because of the young age of technology, there is limited field experience in FPV in
general. The data regarding floating bPV are even fewer and, to the authors’ knowledge,
there are not many large commercial installations made in the world. However, this is
expected to change, especially thanks to the falling prices of bPV modules. Currently, a
2.83 MW floating solar PV farm, with about 6900 bifacial modules has been installed in
Ratchathani, Thailand [117]. The expected energy production is 4440 MWh.

4.3. bPV Vertical Application

Bifacial PV modules have different dual applications when used vertically, including:

• as a solar fence to enclose properties and buildings and produce solar energy at the
same time (Figure 15a);

• as noise barriers to reduce noise levels between noise sources and receivers (Figure 15b); and
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• as a building-integrated photovoltaic (BIPV) system by integrating bPV modules into
the building envelope, such as the roof or façade (Figure 15c).
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The photovoltaic fences serve as protective shields for properties by applying bifacial
photovoltaic modules vertically as fences. In some cases, such as in Hitachi (Japan) [120], it
is possible to generate electrical energy even equivalent to the fixed south-facing mono-PV
with an optimal inclination. Additionally, it can be installed regardless of the azimuth angle
of the protected building [121]. Furthermore, replacing south-facing monofacial modules
with bifacial in solar fences can improve the electrical output by up to 150%, making this
application more suitable for bPV technology [122].

The bPV vertical noise barriers in roads can also be a very good synergistic appli-
cation, due to the high energy output for any road orientation, which is not the case for
conventional mono-PV modules. However, the use of bifacial photovoltaic modules as a
noise barrier requires an increase in the thickness of the module to be able to absorb noise
and withstand any stones the car’s wheels might launch, which can cast a shadow on the
rear face of the bifacial module. This can reduce the energy yield of about 3% [123]. Two
solutions can be considered to reduce the losses due to shading: placing the bifacial module
cells away from the module frame or adding more bypass diodes [124].

The installation of building-integrated photovoltaic BIPV modules is a growing do-
main, as they allow the production of energy locally and the replacement of conventional
building materials, resulting in reduced construction costs and increased energy autonomy.
Bifacial photovoltaic modules might be more suitable in this application due to the char-
acteristic of interception of rear and front lights. In [125], a bPV glass-glass facade could
increase the energy performance of the building by about 5% more than mono-PV. It can
serve as thermal insulation and a noise barrier to the building [126]. They are less sensitive
to snow and dust than an optimal sloped installation, so they are cleaner, thus reducing
soiling losses and cleaning costs [126]. In addition, the effect of orientation is less severe
than that of conventional monofacial PV modules [127]. An installations example using the
bifacial photovoltaic module as a solar fence and noise barrier is listed in Table 3.

Table 3. Examples of installations of solar fences and noise barriers with bifacial photovoltaic modules.

No Location Capacity Further Information Reference

Solar Fence

1 St. Martin bei Lofer,
Austria 52.55 kWp

This solar fence serves as an enclosure for the
chicken farm and for the self-consumption of

energy, with a yield of 50 MWh/year.
[107]

2 Maishofen,
Austria 3.42 kWp

The solar fence serves as a housing enclosure
and for self-consumption of energy, with a yield

of 3500 KWh/year.
[107]

Noise barriers
4 Switzerland,

Zürich, Aurugg 10 KWp The first bifacial PV noise barrier in the world. [128]

5 Delhi, India 100 KWp Noise barriers bifacial vertical panels for the
Delhi Metro. [129]
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5. Conclusions

Bifacial technology is growing in importance in the PV industry and is expected to
dominate it with a 70% share in 2030. The primary cause of this dominance is the increase in
energy output brought on by receiving irradiance from both sides. This advantage, however,
is highly dependent on a number of factors, such as ground reflectance, clearance, as well
as tilt and orientation. Bifacial technology can produce a lower LCOE than traditional PV
technology under optimal conditions. One of the main challenges of bPV technology is
the characterization of bPV modules. In order to facilitate the market’s wide adoption
of bifacial PV, a bifacial standard is needed, to help manufacturers in various parts of
the world to fairly and globally market their products. In general, this operation has
always been performed under standard bPV conditions, which provide unreliable results
for the characteristics and the development of the technology. The current market requires
standard bPV test conditions adapted to both sides of the module, especially the rear side.
In addition, the spectral irradiance of the backside tests must be unified, which was not
the case for monofacial systems due to the neglected effect of ground-reflected irradiance
on monofacial performance. The spectral albedo of the light soil can be adopted to unify
the back reflected irradiance. Different models are available in the literature to predict the
performance of bPV systems but in this paper, we see that all of the thermal simulation
models are derived from the monofacial model. A closer comprehension of thermal
behavior will advance the development of bPV technology. Additionally, combining
the models with the device structure to analyze the influence of the latter on the model
parameters can improve the accuracy of these models. The economic competitiveness of
the technology is another challenge that may limit its expansion in the market. However,
the application of bPV technology in suitable applications has shown promising results,
whether in agrivoltaics with simultaneous land use between agriculture and PV modules,
or in aquavoltaics, placing the modules on a water surface, or in vertical applications such
as building-integrated PV, or solar fences. Further research can be performed to examine
the implementation options and to concretize the benefits of adopting this technology in
order to better comprehend the various applications of bifacial photovoltaics.
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Nomenclature

Abbreviations
bPV Bifacial Photovoltaic
mono PV Monofacial Photovoltaic
LCOE Levelized Cost of Energy
BOS Balance of System
AR Anti-reflective
ARC Antireflection Coating
IR Infrared
PERC Passivated Emitter Back Contact
PERL Passivated Emitter Back Contact with Local Diffusion
PERT Passivated Emitter Back Contact with Full Diffusion
HIT Heterojunction, intrinsic thin film
IBC Interdigitated Back Contact
DSBCSC Double-side buried contact
EVA Ethylene-Vinyl Acetate copolymer
C-Si Crystalline Silicon
BSF Back Surface Field
BG Bifacial Gain
GHI Global Horizontal Irradiance
AM Air Mass
FF Fill Factor
STC Standard Test Conditions
SEM Single Exponential Model
APV Agrivoltaic
CPV Concentrator Photovoltaic
PAR Photosynthetically Active Radiation (µmoL m−2 s−1)
LCP Light Compensation Point
LSP Light Saturation Point
LER Land Equivalence Ratio
LPF Light Productivity Factor
ST Solar Tracking
RT Reverse Tracking
CT Customized Tracking
FPV Floating Photovoltaic
BIPV Building Integrated Photovoltaic
Symbols
Jsc Short-circuit Current Density (A/m2)
Voc Open Circuit Voltage (V)
Pm Power (W)
η Power Conversion Efficiency
ηF,R

stc Power Conversion Efficiency for the Front/Rear in STC conditions
Superscripts
F and R Front Side and Rear Side
ϕ Bifaciality Factor
Y Energy Yield (KWh)
Ybi f acial Bifacial Energy Yield (KWh)
Ymono f acial Monofacial Energy Yield (KWh)
GFront Front Irradiance (W/m2)
GRear Rear Irradiance (W/m2)
GT Sum of GFront and
SR Spectral Response (A/W)
α Ground Albedo
Ar Spectral Reflectivity
Gb Beam Irradiance on a Horizontal Surface
Rb Ratio of Beam Radiation on the Tilted Surface to Horizontal
Gd,tilt Total Tilted Diffuse Irradiance
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Gd Diffuse Horizontal Irradiance
β Photovoltaic Module Tilt Angle
F1 Circumsolar Brightness Coefficient
F2 Horizon Brightness Coefficient
θz Sun Zenith Angle
ε Sky Clearness Index
∆ Brightness Index
L Photovoltaic Modules Length (m)
h Module-to-Ground Clearance (m)
FRear

Sky Module to Sky View Factor
FRear

unshaded ground Module to Unshaded Ground View Factor
FRear

shaded ground Module to Shaded Ground View Factor
PPV Total Output Power
T Temperature (K)
βT Temperature Coefficient (%/◦C)
Pmpp Output Power at the Maximum Power Point
RS Series Resistance
RP Shunt Resistance
Ge Bifacial Equivalent Irradiance
Eg Band Gap Energy
q Electric Charge (1.6 × 10-19 C)
Ta Ambient Temperature (◦C)
TNOCT Nominal Operating Cell Temperature (◦C)
Gre f Irradiance under STC (1000 W/m2)
∆T Temperature Difference (◦C)
Tm Module Temperature (◦C)
U0 Constant Heat Transfer Coefficient (W/m2K)
U1 Convective Heat Transfer Component (W/m3sK)
Uw Wind Speed (m/s)
Cp,PV Specific Heat of the PV Layer (J/(kg K))

δPV Thickness of the PV Layer (m)
ρPV Density of the PV Layer

(
kg/m3)

τg Glass Transitivity (%)
TEVA2 Lower EVA Temperature (K)
RPV−EVA2 Conductive Thermal Resistance Between PV Layer and Lower EVA (K/W)
Pn Net Photosynthetic Rate
θAOI Angle of Incidence
IPV Electrical Energy Produced by the Bifacial Modules
GGR Global Ground Irradiance (W/m2)
PARth Saturation Photosynthesis Active Radiation (µmoL m−2 s−1)
YPAR Yield for a Precise Photosynthetically Active Radiation
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