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Abstract: A comprehensive review of modelling techniques for the flow-induced vibration (FIV) of
bluff bodies is presented. This phenomenology involves bidirectional fluid–structure interaction (FSI)
coupled with non-linear dynamics. In addition to experimental investigations of this phenomenon in
wind tunnels and water channels, a number of modelling methodologies have become important in
the study of various aspects of the FIV response of bluff bodies. This paper reviews three different
approaches for the modelling of FIV phenomenology. Firstly, we consider the mathematical (semi-
analytical) modelling of various types of FIV responses: namely, vortex-induced vibration (VIV),
galloping, and combined VIV-galloping. Secondly, the conventional numerical modelling of FIV
phenomenology involving various computational fluid dynamics (CFD) methodologies is described,
namely: direct numerical simulation (DNS), large-eddy simulation (LES), detached-eddy simulation
(DES), and Reynolds-averaged Navier–Stokes (RANS) modelling. Emergent machine learning (ML)
approaches based on the data-driven methods to model FIV phenomenology are also reviewed (e.g.,
reduced-order modelling and application of deep neural networks). Following on from this survey of
different modelling approaches to address the FIV problem, the application of these approaches to a
fluid energy harvesting problem is described in order to highlight these various modelling techniques
for the prediction of FIV phenomenon for this problem. Finally, the critical challenges and future
directions for conventional and data-driven approaches are discussed. So, in summary, we review
the key prevailing trends in the modelling and prediction of the full spectrum of FIV phenomena
(e.g., VIV, galloping, VIV-galloping), provide a discussion of the current state of the field, present
the current capabilities and limitations and recommend future work to address these limitations
(knowledge gaps).

Keywords: flow-induced vibration; mathematical modelling; numerical modelling; machine learning
techniques; fluid energy harvesting

1. Introduction

Flow-induced vibration (FIV) of bluff body structures is a classical bidirectional flow–
structure interaction problem, which is linked to various fluid dynamics phenomena (e.g.,
boundary-layer separation, vortex formation and shedding, hydrodynamic loading on
the structures) as well as structure vibrations. These phenomena occur widely in various
structures (e.g., bridges, transmission lines, marine cables, riser pipes) exposed to wind,
tidal waves, or river flow. As a consequence, FIV phenomena have attracted increasing
attention over the past few decades owing to complex physics and important practical
value [1].

Flow-induced vibration involves the strong interaction between flow and structure.
This interaction consists of highly non-linear dynamical phenomena which pose a great
challenge for its modelling. FIV itself is also a multi-parameter problem, involving a
number of flow properties (e.g., Reynolds number Re, Strouhal number St, inflow speed,
turbulent intensity), the geometry of the moving body (e.g., cross-sectional shape), and
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the elasticity of the supporting structure (e.g., mass ratio, damping ratio, spring stiffness).
Furthermore, the complete analysis of FIV phenomena must include not only the oscillatory
(vibrational) motion of the body (e.g,. displacement, frequency, phase angle), but also the
complex dynamics of the flow past the body responsible for this motion (e.g., vortex mode,
wake evolution, boundary-layer separation and reattachment). Needless to say, FIV is a
very complex physical phenomenon that poses a grand challenge for modelling.

Flow-induced vibration is a general term encompassing various structure oscillations
stimulated by the fluid flow, such as vortex-induced vibration, galloping, flutter, buffeting,
and wake galloping. Generally speaking, the inducing mechanisms and the response
characteristics of these FIV phenomena are distinctive. A key component of research in FIV
concerns the underlying mechanisms leading to the structural oscillations—the mechanisms
facilitate the identification of the type of FIV and, as a result, lead to improvements in our
current understanding of this important physical phenomenon [2].

To study FIV of a bluff body, the most direct and effective approach is to undertake
wind-tunnel or water-channel experimental investigations. However, these investiga-
tions need to be supplemented with the mathematical or numerical modelling of the
phenomenon—this modelling effort provides the required insights and intuition into the
physical mechanisms underpinning the observed FIV phenomenon. General modelling
methods are based on physical theory or numerical investigations. The main difference
between these two approaches concerns the dynamical behavior of fluid—the hydrody-
namic forces acting on the structure is either represented (approximated) using a simplified
dynamical system model (mathematical modelling) or numerically computed using various
approximations of the Navier–Stokes (NS) equations (numerical modelling). In general,
mathematical modelling is more efficient and plays a critical role in our understanding
of the underlying physical nature of the FIV phenomenon. By contrast, numerical mod-
elling can obtain more accurate predictions of the FIV response and provide much more
detailed information of flow field, albeit at much greater computational cost especially for
a fully three-dimensional (3D) numerical simulation. In addition to these more traditional
approaches for modelling FIV phenomena, there are newly emerging (nascent) machine
learning procedures that can potentially be utilized to address the FIV problem. Indeed,
ML has been applied recently in the context of fluid dynamics to address a number of
different problems of engineering and practical interest [3–5].

In terms of practical applications, the suppression of FIV in structures in order to
mitigate structural damage has been the dominant area of research. However, in light of
an emerging trend toward sustainability goals for clean energy generation in recent years,
there is increasing interest in the utilization of FIV phenomena for clean energy production,
especially as it relates to the development of small-scale (portable) wind generators—
indeed, the energy that can be harnessed from an oscillating body undergoing FIV can
be effectively utilized and converted into usable forms of energy, such as electricity, by
certain piezoelectric or electromagnetic materials [6–8]. In consequence, there is a growing
body of research whose objective is to amplify and harness the oscillations of a bluff body
immersed in a flow, rather than trying to suppress these oscillations (which is the focus of
more traditional research to maintain structural integrity).

This review will focus on providing an extensive and systematic overview of tra-
ditional as well as novel (emerging) approaches for modelling FIV phenomena. To this
purpose, we elaborate on how these different modelling methodologies can be applied to
specific engineering applications of FIV phenomena which we believe will be of interest
to both the general and specialist reader. The end goal is to provide a comprehensive
survey of traditional (mathematical and numerical) and data-driven (machine-learning)
approaches for addressing the modelling of FIV phenomena which we hope will serve as a
reference point for both researchers and practitioners (both in and out of the field) not only
by providing a categorization of the existing methods, but also providing recommendations
for their applicability to various problems. Towards this objective, the application of FIV
phenomena to energy harvesting is used as a representative application case to discuss how
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these various modelling methods can be implemented to address a specific engineering
problem. Finally, an outlook focused on the challenges and future directions for research in
FIV modelling is provided.

To reiterate, we believe that a comprehensive review of the principal prevailing trends
in the modelling and prediction of all aspects of FIV phenomena (e.g., VIV, galloping, VIV-
galloping) presented from an integrated and unified perspective will provide an important
impetus to advance our current state of knowledge in this field. Indeed, we expect that
this new clarity can improve our current understanding of FIV phenomena and enable
robust progress—indeed, in this work, we present current limitations in the modelling of
FIV phenomena and, based on these limitations, we propose various settings within the
current modelling progress of FIV phenomena that are under-explored but are potentially
critical for real-world applications of FIV (e.g., energy harvesting).

The paper is organized as follows. Section 2 provides the fundamental concepts
and necessary background for the general reader to understand FIV phenomena which
includes key definitions and the classification and the characteristics of critical response
characteristics of FIV. Two conventional (traditional) modelling approaches based on math-
ematical (semi-analytical) modelling and numerical modelling (Navier–Stokes equations)
are summarized in Sections 3 and 4. This is followed by a survey of the use of emerging
artificial intelligence (or data-driven) approaches for modelling FIV phenomena in Section 5.
Section 6 describes the application of these modelling approaches to an FIV energy har-
vester. Finally, the challenges and prospects of FIV modelling (and their applications to
energy harvesting) and new research directions are discussed in Section 7.

2. Fundamental Concepts and Background of FIV

Flow-induced vibration refers to the alternating motion of a structure due to the
aerodynamic force exerted by a moving fluid over the body surface. The flow regime that
results is significantly affected by this structural motion—in consequence, FIV is a classical
bidirectional FSI problem.

In 1977, Blevins [9] first coined the term “FIV” and classified FIV mechanisms accord-
ing to steady and unsteady flow conditions. In a steady flow, the interaction of the fluid and
structure always has a fixed pattern which is predictable. On the other hand, an unsteady
FSI can involve either random patterns dominated by transient forces (e.g., turbulence and
sudden changes of the flow), or very regular patterns generated by a known excitation
(e.g., forced vibration). Nakamura et al. [1] further identified two-phase flow where the
changes of flow momentum and pressure over time are the major causes of the structural
vibration. Among these flow regimes, the two-way interactive impact of fluid and structure
in a steady single-phase flow is the most common case investigated, where the mechanisms
responsible for FIV can be further classified into two general categories based on the source
of the unsteady forces (viz., resonance-type and instability-type) [1].

The resonance-type structural oscillation is essentially a kind of forced vibration,
which is typically driven by external oscillatory forces arising from multiple sources, such
as vortex shedding behind the structure (VIV) and vibrations in the incoming (incident)
flow (buffeting). When the fluctuation frequency of external excitation is very close to
the natural frequency of the structure, a resonance response may occur resulting in a
much larger amplitude in the oscillations. By comparison, if some initial unsteady flow-
induced forces are applied to the body to make it move first, the moving body will induce a
periodically hydrodynamic force on itself. The motion-induced force and oscillating system
mutually reinforce each other until a dynamic equilibrium is reached—a phenomenon that
is referred to as an instability-type oscillation. In other words, the structure undergoing an
instability response requires an initial small disturbance to begin the motion and then this
motion is gradually converted to significant periodic oscillations autonomously—this is
similar to a self-excited motion with no upper limit in the amplitude of vibration. These
representative instabilities include galloping and flutter [10]. These four common forms of
FIV will be explained in detail below.
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2.1. Vortex-Induced Vibration

As a resonance-type response, the well-known vortex-induced vibration is generated
by unsteady aerodynamic forces exerted by the fluid on an immersed structure. When a
viscous flow passes over an elastically-supported rigid body, a boundary layer forms and
then separates from near the rear of the body. This action results in vortex shedding from
either side of the body producing a von Kármán vortex street in the wake. This alternate
vortex shedding from the back of the body causes an asymmetric pressure distribution on
body surface giving rise to the fluid forces responsible for VIV of the bluff body [9].

“Lock-in” or synchronization occurs when the vortex-shedding frequency fvs is ap-
proximately equal to the structural natural frequency fn. This results in a resonant os-
cillation of the body that is characterized by a larger but, nevertheless, limited vibration
amplitude. The phenomenon of lock-in occurs for a certain range of inflow (incident)
wind speeds (cf. left panel of Figure 1). From these considerations, VIV is an inherently
self-governed, self-regulated, and self-limiting phenomenon which can occur in one- or
multi-degree-of-freedom dynamical systems. In addition to the “lock-in” phenomenon,
VIV also exhibits various forms of stronger non-linear oscillatory behavior. These include
resonance delay (where the amplitude of vibration reaches its maximum at a velocity
greater than the resonance velocity UR ≡ fnD/St where St is the Strouhal number and
D is a characteristic length of the structure), hysteresis (producing different amplitude
responses as the flow speed is increased or decreased), and a multi-valued response (where
a given fixed velocity can result in multiple values for the vibration amplitude) [11].

Figure 1. Comparison of amplitude-velocity and frequency-velocity of FIV phenomenon: VIV (left);
instability like galloping and flutter (middle); and, wake galloping (right).

The dynamical characteristics of lock-in makes VIV an ideal choice for fluid energy
harvesting. More specifically, a VIV-based energy converter exhibits a better power perfor-
mance and a higher energy efficiency when the incoming (incident) wind speed lies in the
synchronization range [7].

2.2. Buffeting

Buffeting is also a resonance-type response, but the resonance results from a fluctuating
incoming (incident) flow rather than from a vortex-related instability as in the “lock-in”
phenomenon. As an example, the fluctuations in the incident flow can arise from the
natural atmospheric turbulence as is commonly observed in long-span bridges [12] or from
the oscillating wake generated by structures upstream of a bluff body as in multi-body
system—this phenomenon is also referred to as wake galloping [10] (cf. right panel of
Figure 1). Investigations undertaken with regard to bridge structures and aeronautics
have shown that a buffeting response may occur even at low wind speeds, accompanied
by a smaller oscillation amplitude and a wider frequency range than that obtained from
VIV [10].

These characteristics suggest that buffeting can be utilized to harness fluid energy in a
multi-body design and the power performance from such a design is expected be strongly
dependent on the precise layout (arrangement) of the various oscillating bodies.
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2.3. Galloping

As a representative instability response, a body subjected to galloping will first un-
dergo a very small oscillatory motion induced by an initial perturbation. These motions
result subsequently in significant oscillations once a critical incident flow velocity is ex-
ceeded (cf. middle panel of Figure 1). Galloping can occur in the transverse direction for
an elastically-mounted body or in torsion for an hinged body. Torsional galloping is a
much more complex phenomenon in terms of the angle of attack, the angular displacement
and velocity, the phase difference and other complex dynamics involving rotational mo-
tion. It is noted that torsional galloping is not as common as transverse galloping in the
context of actual engineering applications [13]. In consequence, only transverse galloping
will be discussed in this paper—for simplicity, transverse galloping will be referred to as
galloping hereafter.

After the onset of galloping, the vibration amplitude will increase monotonically
with the increasing flow velocity and will not come to rest again even at very large flow
velocities. This is the most distinct difference between instability and resonance. Galloping
is associated with a much lower vibration frequency than that of vortex shedding. The
characteristics of a monotonically increasing amplitude with increasing flow velocity ampli-
tude and a frequency that is not determined by any form of lock-in is what fundamentally
distinguishes a galloping (or instability) phenomenon from a resonance (VIV) phenomenon.

In general, galloping is considered to have a greater energy potential in terms of
energy harvesting than VIV owing to its much larger vibration amplitudes and extended
range of wind speeds for which galloping occurs, once the critical velocity for onset is
exceeded. Moreover, galloping occurs only for cylinders with specific cross-sectional shapes
(e.g., square, rectangular, D-section) or for cylinder–appendage systems (e.g., cylinder
with an attached splitter plate)—indeed, galloping does not occur for flow past a circular
cylinder. As a consequence, an energy converter utilizing galloping will require a special
geometrical design in order to allow the occurrence of galloping or of the interaction of VIV
and galloping.

2.4. Flutter

Flutter is also a typical non-self-limited and self-sustained fluid instability usually
applicable to dynamical systems involving two or more degree of freedoms. This phe-
nomenon is closely related to the coupling of resonant bending and torsion deformation of
a body, and has some common features with galloping.

Figure 1 compares the oscillation characteristics of VIV, galloping, flutter, and wake
galloping in terms of the amplitude and frequency response. As shown, all of these
oscillatory phenomena have a threshold flow speed for onset—the wind speed for VIV
onset is lower than that for galloping and flutter. Only VIV exhibits a lock-in of frequency
and a limited displacement—the other forms of flow-induced vibration are non-self-limiting
with respect to the oscillation amplitude and are associated with a frequency lower than the
natural structural frequency. As discussed previously, FIV exhibits a complex taxonomy—
each category in the classification corresponds to a different generating mechanism and is
associated with different response modes. Furthermore, the vibration of a given bluff body
can exhibit a number of different resonances and/or instabilities [1].

3. Mathematical Modelling of FIV

Mathematical modelling of FIV involves the formulation of set of ordinary differen-
tial equations (ODEs) that describe the complex physical processes associated with this
phenomenon. This set of ODEs is solved numerically when given appropriate initial and
boundary conditions. The success of this modelling approach depends critically on an
accurate and deep intuitive understanding of the physics underlying FIV phenomena. This
is the key to formulating a good theoretical model that meets the following conditions [11]:
(i) simplicity of formulation; (ii) inclusion of all essential (important) characteristics of
the underlying physical phenomena; (iii) utilization of concepts and quantities of interest
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that are physically meaningful (interpretable and explainable); (iv) capability to provide
accurate and universal predictions; (v) wide applicability especially to complex cases; and
(vi) possibility for model to be further developed and generalized. It should be noted
that frequently the terminology of mathematical modelling as it relates to FIV concerns
the theoretical analysis of the phenomenon and, in this context, it is also referred as a
theoretical or analytical model. Generally speaking, a mathematical model of FIV can-
not be directly derived from first principles but needs to be supplemented with various
semi-empirical relationships that are obtained from experimental investigations. From this
perspective, a mathematical model for FIV can also be referred to as a semi-empirical or a
phenomenological model.

3.1. Classification

Presently, there are two common methods used to classify mathematical models of
FIV. One was proposed by Gabbai and Benaroya [14] and involves the following three
classes of models: namely, a wake oscillator model, a single-degree-of-freedom (SDOF)
model and a force decomposition model. The other classification scheme was proposed by
Paidoussis et al. [15]—the scheme involves also three classes of models: namely, a forced
system model, a fluid–elastic system model and a coupled system model. Based on this
background, we present a new formalism for the classification of FIV models that we
believe makes the ordering of FIV models more legible to researchers and practitioners and
makes discussing new research directions easier. From the perspective of a bidirectional FSI
problem, a structural oscillation can be modelled in terms of the motion displacement using
a mass–spring–damper system. However, there are a number of different strategies that can
be used the model the dynamics of the fluid (in the fluid–structure interaction). Depending
on the modelling methodology used for the fluid and for the coupling between the fluid
and the structure, mathematical models of FIV can be classified unambiguously into two
main classes: namely, a coupled wake-oscillator model and a single degree-of-freedom
model as exhibited in Figure 2.

Figure 2. Proposed classification of mathematical modelling of FIV used to predict the flow-induced
vibration of a bluff body.

The coupled wake-oscillator model involves the development of a fully non-linear
wake model (also referred to as a wake- or fluid-oscillator model) using either a Rayleigh-
type [16] or a van der Pol-type [17] oscillator. The model includes a negative damping
term in order to represent the excitation of self-sustained oscillations that are characteristic
of FIV. This model is then coupled to a structure equation through a forcing term that is
dependent on the state of motion of the oscillatory system. As a consequence, the coupled
wake-oscillator model is composed of two ordinary differential equations whose solution
can be obtained either analytically or numerically in order to predict the FIV response.
In contrast to the more intuitive representation of the structural motion using the readily
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interpretable concepts of displacement, velocity or acceleration of a moving body, the
wake-oscillator model is more abstract in the sense that it is characterized by state variables
that are more difficult to interpret. Finally, we note that the interactions between the various
components of the coupled wake-oscillator model involve the following processes—the
aerodynamic force acts on the structure whose motion determines the angular displacement
of near-wake field generated by the structure, as well as other dynamical state variables
describing the dynamics of the wake.

As the name implies, the single-degree-of-freedom model consists of only one ordinary
differential equation with a forcing term that is used to describe the dynamic behavior
of the structure. This model is applied primarily to predict the amplitude of the FIV
response [18]. The basic strategy that underpins the SDOF model is the decomposition of the
hydrodynamic force (viz., the forcing term) as well as the phenomenological representation
of all the force components—the self-excited response is induced on the structure by these
external forces. In accordance to the nature of the forcing term, the SDOF model can be
divided into two sub-classes: namely, one that is based on a mathematical formulation of
negative damping and another that is based on force data obtained from experiments.

The mathematical models of FIV mentioned above will be described in detail in
Sections 3.2 and 3.3 in relation to their modelling of various FIV phenomena—VIV, gallop-
ing, and combined VIV-galloping.

3.2. Vortex-Induced Vibration
3.2.1. Coupled Wake-Oscillator Model

(1) Aerodynamic force coefficient.

All the available coupled wake-oscillator models that use a physical quantity related
to the aerodynamic force as the fluid variable is a derivative of the seminal ideas of
Bishop and Hassan [19]. These investigators were the first to advocate using a fluctuating
lift force acting on a circular cylinder to model the dynamic behavior of the near-wake
region. Figure 3 displays a schematization of this kind of model—here, the instantaneous
displacement of the cylinder is y(t) and the wake dynamics are characterized by a specific
physical quantity q(t) (e.g., oscillating fluid force CL(t)). Following on from this effort,
Hartlen and Currie [20] formulated a widely used Rayleigh-type wake oscillator in terms
of the fluctuating lift coefficient CL and coupled this model with a damped linear system
through the cylinder velocity ẏ in order to predict the transverse VIV of an elastically-
mounted rigid circular cylinder. The dimensionless governing equations for this model are
given by

Ÿ + 2ζcẎ + Y = m∗ν2CL , (1)

C̈L − αν

(
1− 4

3CL0
2ν2

ĊL
2
)

ĊL + ν2CL = bẎ , (2)

where the dot over a quantity refers to the derivative with respect to the dimensionless time
τ ≡ ωnt; Y ≡ y/D, Ẏ, and Ÿ are the normalized transverse displacement, velocity, and ac-
celeration, respectively; ν ≡ ωvs/ωn is the ratio of the vortex-shedding frequency ωvs to the
natural structural frequency ωn; m∗ ≡ ρD2/(8π2St

2Mc) is the structural mass ratio where
Mc and D are the cylinder mass per unit length and cylinder diameter, respectively; St is
the Strouhal number; ρ is the fluid density; the structural damping ratio ζc ≡ Cc/(2ωn Mc)
is defined as the ratio of the structural damping coefficient Cc to critical damping; CL0 is
lift coefficient for the stationary cylinder; and α and b are constant coefficients that define
the model.
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Figure 3. A schematic model of an elastically mounted circular cylinder undergoing cross-flow VIV
due to aerodynamic fluid forces acting on the oscillating body.

A number of models (both variants and generalizations) have been formulated based
on the Hartlen–Currie model [20]. Skop and Griffin [21] and Griffin et al. [22] applied a
modified van der Pol-type wake oscillator with concomitant model parameters describing
structural properties, such mass and damping ratio and showed that the model agreed
very well with experimental data. Landl [23] reformulated the Hartlen–Currie wake oscil-
lator using a van der Pol-type oscillator and introduced a fifth-order non-linear damping
term (viz., γCL

4ĊL where γ is a model parameter) into the model in order to account the
hysteresis effect of VIV. It is noted that these model variants were developed to predict
the VIV of a rigid bluff body. Skop and Griffin [24] extended their earlier model [21] to
predict the VIV arising from a flexible circular cylinder (e.g., a slender cable). This was
accomplished by expressing the sectional vibration displacement and lift coefficient using a
modal expansion (normal mode) and formulating the governing equations for the various
terms in this expansion. Following on from this effort, Skop and Balasubramanian [25]
introduced a so-called stall component (viz., −2αẎ/ωvs where α is a model parameter) as
part of the forcing term in the structure equation. To this purpose, the transverse fluid
force consists of two components: namely, one component (modelled using a van der Pol
wake oscillator) that is used to cause the body to move and another component (which
proportional to the negative structural velocity) which is used to reduce the amplitude
of the lift coefficient for large (significant) structural motion (stall term). This innovative
modification of the lift force is significant because it confers on the model the capability to
predict the asymptotic VIV response in the vicinity of zero structural damping—this has,
up until then, never been realized. Skop and Luo [26] further refined the stall term (viz.,
−2αẎ(ωvs/ωn)

k/ωvs) in order to ensure the accuracy of induced asymptotic behavior.
The models described above (whether for a rigid or flexible body) have the following

common characteristic: namely, the wake variable is explicitly expressed in terms of the
fluctuating (instantaneous) lift coefficient CL. Facchinetti et al. [27] first introduced a
generalized dimensionless wake variable q in order to characterize the oscillating wake
(cf. Equations (3) and (4)). Although in their case the action of the fluid on the structure
was still considered as a lift force with q representing the reduced vortex lift coefficient
(q ≡ q0CL/CL0 where q0 = 2 is the finite amplitude of a stable quasi-harmonic oscillation),
Facchinetti et al. [27] demonstrated that q can be chosen to be other physical quantities that
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are capable of describing the fluctuation characteristics of the near wake. The dimensionless
governing equations for this model can be expressed as follows:

Ÿ +

(
2ζcν +

CD
4πStm∗

)
Ẏ + ν2Y =

CL0

8π2St
2m∗q0

q , (3)

q̈ + ε
(

q2 − 1
)

q̇ + q = AŸ/Ẏ/Y . (4)

The dimensionless quantities in this model have different definitions than those of the
Hartlen–Currie model [20]. These include the dimensionless time τ ≡ ωvst, the structural
mass ratio m∗ ≡ M/(ρD2) with M being the sum of the cylinder mass Mc and added mass
Ma, and the frequency ratio which is now defined as ν ≡ ωn/ωvs. Finally, ε and A are
constant coefficients that define the model.

Another contribution arising from the model proposed by Facchinetti et al. [27] and
inspired by the effort of Skop and Balasubramanian [25] for a flexible body was the in-
clusion of the stall term (i.e., a fluid-added damping term) in the structure equation of
motion using a drag coefficient CD—as a reminder to the reader, this term is given by
CDẎ/(4πStm∗). These investigators also examined different forcing terms for the wake
oscillator (displacement, velocity, and acceleration) and found that the use of the accelera-
tion provided the best conformance with the experimental data. The model formulated
by Facchinetti et al. [27] is so popular that many variants of this model have been used
in subsequent theoretical studies. For example, Ogink and Metrikine [28] introduced an
acceleration–velocity coupling term (Ã(ω)Ÿ + B̃(ω)Ẏ) that is dependent on the oscillation
frequency ω of the cylinder in order to provide good predictions for both forced and
free vibrations.

It should be noted that all the models described above are designed to predict the one-
degree-of-freedom (1DOF) transverse VIV motion of a bluff body. To be more realistic, some
theoretical studies focus on modelling both the in-line and cross-flow vibrations. A number
of two-degree-of-freedom (2DOF) phenomenological models have been developed based
on using two governing equations for the x- and y- directions of motion in order to simulate
the possible coupling between these directions of oscillatory motion. In comparison to the
1DOF models, the 2DOF models for VIV are still rather limited and will not described in
detail in this paper. Interested readers are referred [29–33] for more information concerning
2DOF models.

(2) Wake angular displacement.

Rather than representing the dynamic wake using an instantaneous lift force coefficient,
Birkhoff [34] developed a linear wake oscillator based on the concept of a wake rotation
angle (α) in order to simulate the oscillations in the near wake region behind a stationary
cylinder (see Figure 4a). This model assumes the following mathematical form:

2ρl̄3hα̈ + πρU2 l̄2α = 0 , (5)

where l̄ and h are half-length and width of the near-wake lamina which can be determined
using experimental data. It is noteworthy that Birkhoff’s wake oscillator is derived using
physically-based concepts, such as the Kutta–Joukowsky lift theory [35,36] and Newton’s
second law of motion. In this sense, Birhoff’s wake oscillator model is more of a physics-
based model than models that directly incorporate a van der Pol-type governing equation.

Funakawa [37] modified Birkhoff’s wake oscillator slightly based on experimental data
in the following two aspects: (i) the near wake develops from the rear (back) of cylinder
rather than from the cylinder center; and (ii) the location of the restoring force coincides
with the center of gravity as shown in Figure 4b. With these modifications, the governing
equation is given by

2ρl̄
(

D
2
+ l̄
)2

hα̈ + 2πρU2 l̄
(

D
2
+ l̄
)

α = 0 . (6)



Energies 2022, 15, 8719 10 of 63

Figure 4. A schematic of the wake oscillator model developed by (a) Birkhoff [34] and
(b) Funakawa [37].

Tamura [38] further assumed that the wake angular displacement α(t) and wake length
l(t) are dependent on the time t and replaced the constant wake length in Funakawa’s
wake oscillator with time-dependent wake length. The time dependence of α(t) and l(t)
were obtained from measurements of the wake dynamics behind a fixed cylinder. Further-
more, Tamura included a viscous force using a negative damping term into the ordinary
differential equation and derived the associated damping coefficient using the assumption
that the work done by the lift and viscous forces is equal. With these modifications, the
governing equation for Tamura’s wake oscillator is expressed as

2ρl̄
(

D
2
+ l̄
)2

α̈− C̄

(
1− 4 fm

2

CL0
2 α2

)
α̇ + 2πρU2 l̄

(
D
2
+ l̄
)

α = 0 , (7)

where C̄ denotes the damping coefficient of the near wake and fm is the Magnus factor
which has a value of 1.16 for a circular cylinder [38]. We note that Equation (7) reduces
essentially to a non-linear and self-excited van der Pol-type equation and, as a consequence,
it can potentially be coupled to a structural equation to predict self-sustained FIV phenom-
ena just like the lift oscillator described above. The consistency in the structure of the lift
oscillator and the wake-angle oscillator suggests that the van der Pol equation provides a
reasonable and effective paradigm for modelling the wake dynamics behind a bluff body
experiencing FIV.

Tamura and Matsui [39] extended Tamura’s non-linear wake oscillator for a stationary
cylinder to a vibrating system by coupling it to a linear mass–spring–damper system. The
external driving force in the structure equation is obtained from the transverse component
of the lift and drag forces, so Fy = FLy + FDy. The forcing term of the wake oscillator is
a linear function of the velocity and acceleration of the oscillation. The dimensionless
governing equations for this model are given by

Ÿ +

(
2ζc +

m∗νCD
2πSt

)
Ẏ + Y = − fmm∗ν2

(2πSt)
2

(
α +

2πSt

ν
Ẏ
)

, (8)

α̈− 2ζwν

(
1− 4 fm

2

CL0
2 α2

)
α̇ + ν2α = − Ÿ(

0.5 + l̄∗
) − (2πSt)νẎ . (9)

The quantities in these governing equations basically follow the nomenclature for
the Hartlen–Currie model [20], except that mass ratio per unit length m∗ is redefined as
m∗ ≡ ρD2/(2Mc), a damping ratio ζw of oscillating wake is included, and the normalized
wake length is defined as l̄∗ ≡ l̄/D. The characteristic wake variable α is related to the lift
coefficient through the Magnus effect, so CL = − fm

(
α + 2πStẎ/ν

)
. An obvious difference

between the Tamura–Matsui model [39] (which uses the angular displacement α in the
wake oscillator) and previous models (which use the lift (either CL or q) in wake oscillator)
is that all the parameters in the former model have a clear physical meaning (interpretation)
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and can be determined from direct measurements in wind-tunnel experiments, while the
latter set of models includes a number non-physical (tuning) constants (e.g., α and b in
Equation (2) or ε and A in Equation (4)) that can only be determined from curve fitting of
experimental data. The reason for this is that the Tamura–Matsui model [39] is derived
from series of physically-based concepts (as noted earlier) instead of assuming a priori the
applicability of a van der Pol-type oscillator. The Tamura–Matsui model [39] is designed
to predict 1DOF transverse VIV for a two-dimensional (2D) rigid circular cylinder and, as
a result, this model can reproduce the key non-linear characteristic of VIV for this case.
Finally, Tamura and Amano [40] extended the Tamera–Matsui model to a three-dimensional
circular cylinder. This was accomplished by utilizing the modal expansion method for the
sectional vibration displacement of the cylinder and the angular displacement of the wake.

In addition to predicting the VIV for 2D and 3D circular cylinders, Tamura and
his collaborators also combined the non-linear wake oscillator in terms of the angular
displacement with an equation of motion for a square cylinder in order to predict gal-
loping and VIV-galloping. This generalization of the model will be described in detail in
Sections 3.3 and 3.4. The series of models developed by Tamura and his collaborators
(which spanned the period from 1979 to 1987) are representative of mathematical models
that apply the rotation angle of the near wake in order to characterize the flow dynamics
behind a bluff body undergoing FIV. The interested reader can refer to a comprehensive
review paper by Tamura [11] for a broad overview of the motivation, development, and
derivation of these types of model.

(3) Other wake variables.

Among the theoretical models that use wake variables other than the lift coefficient and
the wake angular displacement, the most representative one is that proposed by Iwan and
Blevins [41]. This particular model is derived from the basic fluid mechanics underpinning
the von Kármán vortex street behind a cylinder (momentum equation in y-direction) and
involves the introduction of a hidden fluid variable z denoting the weighted average of
the transverse flow motion (e.g., velocity, acceleration) in order to formulate the vertical
momentum in a control volume. Interestingly, the Iwan–Blevins wake oscillator (which
is based on the physics of the flow field) also assumes the form of a van der Pol equation
which, in turn, provides further support for the use of the latter model from a purely
physics-based perspective.

Another interesting coupled model was proposed by Krenk and Nielsen [42], who
utilized a generalized fluid oscillation displacement w of the equivalent fluid mass as the
state variable in a wake oscillator. The non-linear negative damping incorporated in this
model was defined as the quadratic form

−
[
1−

(
w2 + ẇ2/ω2

vs

)
w2

0

]
ẇ , (10)

where ωvs = 2π fvs denotes the circular frequency of vortex shedding and ω0 is the vibration
amplitude of fluid oscillator over a stationary cylinder. In consequence, the wake oscillator
defined by this model is actually a combination of a van der Pol and Rayleigh oscillator.

3.2.2. Single-Degree-of-Freedom Model

The key to the formulation of a SDOF model is to correctly represent the forcing
term so that it can induce finite-amplitude vibrations on the bluff body. A forcing term
based on a negative damping is generally expressed as a forcing function F, for which the
aeroelastic damping term may be offset by positive mechanical damping and causes the
total system damping to be zero for a certain range of inflow (incident) wind speeds. This
is the reason why the energy of the fluid is transferred from the wake flow to the bluff
body, initiating the oscillation of the body. Concerning the mathematical formulation, F
is a function of the status of the body motion (e.g., displacement, velocity, acceleration,
oscillation frequency) and can be regarded as a “stack” of multiple vibration sources each
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multiplied by a corresponding prefactor that is dependent on the reduced frequency defined
as K ≡ ωnD/U (U is the inflow wind speed).

Motivated by an earlier linear model [43] as the basis for development, a representative
non-linear SDOF model was proposed by Simiu and Scanlan [44]. This model is given by

F = Mc

(
ÿ + 2ζcωnẏ + ωn

2y
)

=
1
2

ρU2(2D)

(
Y1(K)

(
1− ε(K)

y2

D2

)
ẏ
D

+ Y2(K)
y
D︸ ︷︷ ︸

motion−induced force

+
1
2

CL(K) sin(ωvst + ϕ)︸ ︷︷ ︸
vortex−shedding force

)
.

(11)

In this model, the hydrodynamic force that drives VIV on the structure depends on
two components. The first component is the motion-induced force that is expressed in
terms of y and ẏ, which is characterized by the following non-linear damping term:

Y1(K)
(

1− ε(K)
y2

D2

)
ẏ
D

. (12)

The second component is a linear stiffness term Y2(k)y/D where Y1(k), Y2(k), and ε(K)
are model parameters. The combination of these two terms, especially the inclusion of van
der Pol-type negative damping with a non-constant coefficient, induces the self-excited and
self-limited VIV response. The other force component in the model is the vortex-shedding
force that is directly related to the lift coefficient CL(k)—a term which forces the structure
to vibrate at the vortex-shedding circular frequency ωvs.

Ehsan et al. [45] further extended the Simiu–Scanlan model [44] for a rigid body to
a long-span flexible bridge. Inspired by the coupled wake-oscillator model proposed by
Billah [46], Goswami et al. [47] modified this model by replacing the direct forcing term
which is dependent on CL(K) in Simiu–Scanlan model with a parametric stiffness term
given by J2(K) cos(2ωvst)y/D. Here, J2(K) is a model parameter that excites the body to
oscillate at the frequency 2ωvs. This model can reproduce the non-linear characteristics of
VIV, such as lock-in and hysteresis.

Another type of SDOF model decomposes the fluid force according to its phase
difference relative to the motion of the structure. More specifically, the fluid inertial force
is in-phase with the acceleration, while the fluid damping force inducing the transfer of
energy from the fluid to the body (giving rise to structural oscillation) is in-phase with the
velocity and displacement. Rather than deriving a specific mathematical relationship, the
composed forces are obtained directly from measurements obtained from forced-vibration
experiments in which the lift force is measured at a given frequency. As a result, this type
of SDOF model is more suitable for the calculation of the vibration at a single distinct
frequency and can be used to obtain accurate predictions of maximum response. Interested
readers are referred to references [48–51] for more details regarding the development of
SDOF models based on fluid force measurements.

As an example of the application of the mathematical models described in this section,
Figure 5 shows the predictions obtained from three mathematical models of the normalized
maximum oscillation amplitude Amax/D as a function of the reduced velocity Ur for a VIV
system consisting of the flow past a circular cylinder of diameter D. The three mathematical
models are those proposed by Iwan and Blevins [41] (I&B), Tamura and Matsui [39] (T&M)
and Facchinetti et al. [27]. These model predictions are compared to some experimental
data reported by Feng [52] for VIV of a circular cylinder with a mass ratio of 0.00257 and
damping ratio of 0.00181. As shown, model proposed by Iwan and Blevins (which is based
on a hidden flow variable) predicts a quite narrow lock-in and a slightly larger amplitude.
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The model proposed by Tamura and Matsui (which is based on the wake inclination angle)
generally provides a good agreement with experimental data, although the model provides
a premature termination of the synchronization. Finally, Facchinetti et al.’s model with
regard to the lift coefficient gives a reasonably accurate prediction of the lock-in range, but
the onset of VIV occurs at a smaller value of Ur. It should be noted that the mathematical
model predictions depend critically on the appropriate selection of the parameters for each
model, and the values of these parameters can vary from case to case.

Figure 5. Comparison of predictions of the maximum oscillation amplitude Amax as a function
of the reduced velocity Ur of the VIV of a circular cylinder with diameter D obtained using three
mathematical models with a benchmark experiment conducted by Feng [52], Iwan and Blevins [41]
(I&B), Tamura and Matsui [39] (T&M) and Facchinetti et al. [27].

3.3. Galloping

Galloping is an important aeroelastic response of a bluff body—its analytical modelling
is generally based on the so-called quasi-steady (QS) hypothesis which states that the
instantaneous aeroelastic force exerted by the fluid on a vibrating structure is the same as
that on a stationary body at the same angle of attack.

Figure 6 displays the simplest physical model for the analysis of the galloping behavior
of a cylindrical body restrained to oscillate only in the transverse direction and subjected
to an uniform streamwise inflow (incident) wind speed of U [53]. As shown, the damped
spring-mounted system is characterized by the mass per unit length Mc, the mechanical
damping coefficient Cc, the spring stiffness k, and the characteristic length D of the body
normal to incoming flow. The structural motion is governed by the following dimensional
second-order ordinary differential equation:

Mcÿ + Ccẏ + ky = Fy , (13)

where Fy is the lateral aerodynamic force inducing the galloping which can be calculated
using QS theory. Once the body begins to move in the transverse y-direction (viz., ẏ 6= 0),
the relative velocity between the oscillating body and the fluid is Urel = (U2 + ẏ2)1/2

and the angle of attack (AOA) is determined using AOA = arctan(ẏ/U) which varies
periodically over time owing to the transverse oscillation of the structure. The time variation
of the AOA induces a time variation in the lift and drag forces given by FL(AOA) =
1
2 ρU2

rel DCL(AOA) and FD(AOA) = 1
2 ρU2

rel DCD(AOA). The lift and drag coefficients can
be determined from conducting static experiments.
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Figure 6. Schematic of a bluff body experiencing transverse galloping in a fluid flow.

The transverse fluid force Fy is a function of AOA and will vary with time. This force
component can be derived by projecting the lift and drag forces FL and FD along transverse
y-axis [2]:

Fy(AOA) = −1
2

ρU2
rel D

[
CL(AOA) cos(AOA) + CD(AOA) sin(AOA)

]
. (14)

The force component Fy can also be formulated in terms of the transverse force coeffi-
cient CFy as follows:

Fy(AOA) =
1
2

ρU2DCFy(AOA) . (15)

It should be noted that the velocity in Equation (15) is the inflow (incident) velocity U
(rather than Urel) which is referenced to a direction perpendicular to the direction used to
define CFy. Equations (13)–(15) can be combined to obtain the transverse force coefficient
given by

CFy(AOA) = −CL(AOA) + CD(AOA) tan(AOA)

cos(AOA)
. (16)

To model the incipient instability at the onset to galloping (viz., ẏ ≈ 0 implying that
α ≈ ẏ/U ≈ 0), one can apply a one-dimensional Taylor series expansion for Fy(AOA) about
the point AOA = 0. The Taylor series expansion of Fy(AOA) truncated at the first-order
term is given by

Fy(AOA) = Fy
∣∣
AOA=0 +

dFy(AOA)

dAOA

∣∣∣∣
AOA=0

AOA . (17)

Combining Equations (13) to (17), the equation of motion can be written as follows:

Mcÿ + Ccẏ + ky = Fy(0)−
1
2

ρU2D
(

dCL(AOA)

dAOA
+ CD(AOA)

)∣∣∣∣
AOA=0

ẏ
U

. (18)

The second term on the right-hand side can be treated as the contribution to the effec-
tive system damping (also called fluid dynamic damping) [9] arising from the aerodynamic
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forces. This term can be merged with the mechanical damping term (second term on the
left-hand-side), so that the total damping ratio ζtotal assumes the following form:

ζtotal = ζc +
ρUD

4Mcωn

(
dCL(AOA)

dAOA
+ CD(AOA)

)∣∣∣∣
AOA=0

. (19)

The prerequisite for galloping is the presence of a negative system damping (viz.,
ζtotal < 0). Because the mechanical damping is positive (ζc = Cc/(2ωn Mc) > 0), the second
term on the right-hand-side of Equation (19) is less than zero, so(

dCL(AOA)

dAOA
+ CD(AOA)

)∣∣∣∣
AOA=0

< 0 . (20)

Equation (20) is the well-known Glauert–den Hartog galloping criterion [54] setting
the necessary condition for aerodynamically unstable behavior of a SDOF oscillator. This
criterion can also be used to evaluate the galloping onset Ug by setting the mechanical
damping to be equal to the fluid dynamic damping giving

Ug = − 4Mcζcωn

ρD
(

dCL(AOA)
dAOA + CD(AOA)

)∣∣∣
AOA=0

. (21)

The rationale underlying the Glauert–den Hartog galloping criterion is related to the
boundary-layer separation and reattachment phenomenon at a certain angle of attack [55–57].

Parkinson and Brooks [58] combined the aerodynamic force derived from QS theory
with a linear dynamical system to develop a non-linear self-excited oscillation model for
a bluff body experiencing 1DOF “plunging” oscillation (viz., galloping). The variation of
the aerodynamic force coefficient in the transverse direction (CFy) as a function of AOA
(obtained from static test data of the lift and drag coefficients (CL and CD) for different
angles of attack) was fitted with a fifth-order polynomial. This polynomial approximation
for CFy as a function of AOA was then incorporated as a forcing term in the governing
equation for a linear mass–spring–damper system. Subsequently, a more accurate seventh-
order polynomial fitting of CFy(AOA) (see Equation (22)) was used in order to reproduce
hysteresis effects observed in wind-tunnel experiments [59]. The seventh-order polynomial
approximation for CFy(AOA) has the following form:

CFy = A1
ẏ
U

+ A3

(
ẏ
U

)3
+ A5

(
ẏ
U

)5
+ A7

(
ẏ
U

)7
, (22)

where A1, A3, A5, and A7 are fitting coefficients for the model. The corresponding dimen-
sionless equation of motion for a square cylinder can be written as follows:

Ÿ−m∗A1

[(
Ur −

2ζ

m∗A1

)
+

(
A3

A1Ur

)
Ẏ2

+

(
A5

A1Ur
3

)
Ẏ4 +

(
A7

A1Ur
5

)
Ẏ6

]
Ẏ + Y = 0 ,

(23)

where Ur ≡ U/ fnD is the reduced velocity. The Parkinson–Brooks model [58] can be solved
analytically using various approximation methods when the mass ratio is small (e.g., in air
m∗ is typically of order 10−3). As an example of this strategy, Parkinson and Brooks [58]
used the Krylov–Bogoliubov asymptotic method to solve Equation (23) and found that the
(approximate) solution provided a good agreement with some wind-tunnel measurements.
Furthermore, Equation (23) can be solved numerically (using, for example, the fourth-order
Runge–Kutta method). The form of Equation (23) resembles the SDOF model for VIV,
described previously in Section 3.2.2, in the sense of having one governing equation where
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the forcing term is related to the aerodynamic force acting on structure—the only difference
between these two models is that the force coefficient used to model galloping involves a
polynomial that has been fitted to experimental data of the static force as a function of the
angle of attack.

The result provided by the QS model is highly dependent on the polynomial fitting
CFy(AOA). Luo et al. [60] and Ng et al. [61] compared different high-order polynomials
and found the minimal order of the fitting polynomial needs to be seven in order to capture
the key characteristics of CFy as a function of AOA and to predict certain features of the
non-linear dynamics of galloping, such as hysteresis. Using a ninth- or eleventh-order
polynomial may provide a better fit to the variation of CFy with AOA, but this does not
change the characteristics of the governing equation, such as the number of positive real
roots representing the stationary oscillation amplitude of a bluff body, implying that the
predicted galloping hysteresis would be the same as that obtained from a seventh-order
polynomial approximation for CFy(AOA). Barrero-Gil et al. [62] and Joly et al. [63] also
incorporated the Reynolds number (Re) into the classical QS galloping model by expressing
the polynomial coefficients as a function of Re in order to investigate the occurrence of
galloping and the hysteresis effect of a square cylinder in the laminar flow regime.

From a physical and mathematical viewpoint, the underlying QS assumption is that
the transverse galloping force depends on the instantaneous position of the body, as well
as on the instantaneous relative velocity between the body and the fluid [64]—this is
true in certain circumstances, such as when vortex shedding frequency is much larger
than the structural oscillation frequency (viz., fc � fvs ≡ StU/D), implying that the
wake dynamics are essentially uncoupled from the body motion so that the influence of
the vortex force on the galloping driving force is negligible. In addition, the applicable
velocity range of the QS model is determined (approximately or better) by the condition
Ur = U/( fcD) � (U/D)(D/(StU)) = 1/St where the Strouhal number St often has an
order of magnitude of 0.1, suggesting that the QS assumption can be satisfied at large
values of Ur [62,64–66]. Even with these limitations, the easy-to-use QS model still plays
a fundamental role in the mathematical modelling of galloping, especially when few
experimental or numerical data are available.

The den Hartog criterion and QS galloping models are limited to 1DOF translational
galloping. There also exists some QS-based theoretical models for 2DOF galloping (vertical
and torsional) [13,67,68] or for 3DOF galloping (vertical, lateral, and torsional) [64,69,70].

3.4. Combined VIV and Galloping

Instead of undergoing VIV or galloping only, some engineering structures with aero-
dynamically unstable cross-sectional shapes can experience the mutual effect of both types
of FIV phenomena. Parkinson and Sullivan [53] and Parkinson and Wawzonek [71] con-
ducted some wind-tunnel experiments involving square and rectangular towers, which
demonstrated that the synergy between VIV and galloping can provoke large-amplitude
transverse vibrations that are not predicted using models for either galloping or VIV.
As a consequence, it is of practical importance to construct a simple and efficient math-
ematical model for a (combined) VIV-galloping response. Based on the discussion in
Sections 3.2 and 3.3, the essential problem still reduces to correct simulation of the unsteady
aerodynamic force responsible for the dynamic response—the most straightforward way to
accomplish this is to simply superimpose the VIV and galloping force components.

An early theoretical work following this methodology was proposed by Parkinson
and Bouclin [72] who used the Hartlen–Currie lift oscillator [20] to calculate the fluctuating
lift force due to vortex shedding that induces the VIV (CL) and the Parkinson–Smith quasi-
steady model [59] to represent the perturbational transverse force that triggers galloping
(CFy(Ẏ)). In this approach, the sum of both these forces is incorporated as the forcing term
in the structural equation of motion and used to predict either VIV or galloping response
of a bluff body.
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Corless and Parkinson [73] modified the Parkinson–Bouclin model [72] by adding
an acceleration coupling term in the wake oscillator. With the inclusion of this term, the
Corless–Parkinson model assumes the form

Ÿ + 2ζcẎ + Y = m∗ν2

[
CL + A1

(
2πSt

ν

)
Ẏ + A3

(
2πSt

ν

)3
Ẏ3

+ A5

(
2πSt

ν

)5
Ẏ5 + A7

(
2πSt

ν

)7
Ẏ7

]
,

(24)

C̈L − a(ν)
(

1− 4
3CL0

2ν2
ĊL

2
)

ĊL + ν2CL = b(ν)Ẏ + d(ν)Ÿ , (25)

where the coefficients a(ν), b(ν) and d(ν) are functions of ν. These coefficients can be deter-
mined by curve fitting of experimental data. The other quantities in Equations (24) and (25)
are consistent with those described earlier for the Hartlen–Currie lift oscillator [20] (see
Equations (1) and (2)). The system of ODEs here were solved using the Multiple Time
Scales (MTS) method.

Following the same strategy, Han et al. [74] incorporated the quasi-steady gallop-
ing force into another representative lift-type wake-oscillator model—Facchinetti et al.’s
model [27]—to give a coupled mathematical model for VIV-galloping of a square prism.
Using the same dimensionless terms as in the model proposed by Facchinetti et al. [27], the
formulation that incorporates acceleration coupling and a seventh-order polynomial fitting
of the galloping force reduces to the following form:

Ÿ + 2ζcνẎ + ν2Y =
1

8π2St
2m∗

(
CL0

q0
q + A1

(
2πStẎ

)
+ A3

(
2πStẎ

)3

+ A5
(
2πStẎ

)5
+ A7

(
2πStẎ

)7
)

,

(26)

q̈ + ε
(

q2 − 1
)

q̇ + q = AŸ. (27)

It is possible to combine not only the lift oscillator model with the QS model for gallop-
ing, but also the wake oscillator model with the wake rotation angle as the state variable (see
Section 3.2.1). Tamura and Shimada [75] proposed a mathematical model for the interaction
of the VIV resonance with galloping for 2D and 3D rigid square cylinders. In this model, the
unsteady vortex shedding and galloping forces were simulated using the Tamura–Matsui
VIV model [39] and the QS model developed by Parkinson and colleagues [58,59], respec-
tively. Following the nomenclature used earlier in Equations (8) and (9), the model recast
in dimensionless form is given by

Ÿ + 2ζcẎ + Y = − m∗ν2

(2πSt)
2

 fm

(
α +

2πSt

ν
Ẏ
)

︸ ︷︷ ︸
VIV transverse lift coefficient

+ CD
2πSt

ν
Ẏ︸ ︷︷ ︸

VIV transverse drag coefficient



− m∗ν2

(2πSt)
2

A1

(
2πSt

ν

)
Ẏ + A3

(
2πSt

ν

)3
Ẏ3 + A5

(
2πSt

ν

)5
Ẏ5 + A7

(
2πSt

ν

)7
Ẏ7︸ ︷︷ ︸

galloping transverse force coefficient

 ,

(28)

α̈− 2ζwν

(
1− 4 fm

2

CL0
2 α2

)
α̇ + ν2α = − Ÿ

0.5 + l̄∗
− (2πSt)νẎ . (29)
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The models described above have been important mathematical tools for the pre-
diction of combined VIV and galloping for a square cylinder. These basic models have
been validated and extended in a number of ways. An important contribution in this
respect is the body of work conducted by Mannini and colleagues [76–79]. In particular,
Mannini et al. [76] compared the Corless–Parkinson model [73] and the Tamura–Shimada
model [75] for the prediction of the FIV response of a rectangular cylinder and vali-
dated their model performance using their wind-tunnel test data. A key conclusion of
this investigation was that the Tamura–Shimada model [75] is more accurate than the
Corless–Parkinson model [73] in terms of their predictions of the correlation between
the oscillation amplitude and the wind speed over the range where galloping occurs.
Furthermore, Mannini et al. [77] modified the Tamura–Shimada model [75] by replacing
Funakawa’s wake oscillator [80] (see Figure 4b) with Birkchoff’s wake oscillator [34]
(see Figure 4a) and used an improved tuning process of the model parameters. These
investigators also incorporated the effects of turbulence into the modified the Tamura–
Shimada model [78]. Finally, Chen et al. [79] proposed a more reasonable definition of
the near-wake laminar for a rectangular cylinder—the modified model was shown to
provide better predictions of the (combined) VIV-galloping instability.

4. Numerical Modelling

Owing to the continuous advancement of computational fluid dynamics (CFD) and
computer-aided engineering (CAE) in recent years, numerical modelling of the complicated
FSI problems such as the FIV of a bluff body is now practical for real-world engineering
and industrial problems. The various forms of CFD that can be used to model numerically
the FIV of a bluff body include direct numerical simulation (DNS), large-eddy simula-
tion (LES), detached-eddy simulation (DES), delayed detached-eddy simulation (DDES),
and Reynolds-averaged Navier–Stokes (RANS) modelling, among others. The numerical
discretization approaches used to solve the fluid dynamics equations for these various
approaches encompass the finite-element method (FEM), the finite-volume method (FVM),
the finite-differencing method (FDM), spectral elements method (SEM) which is essentially
a Galerkin-based FEM with Lagrange shape functions, the discrete vortex method (DVM),
the entropy–viscosity method (EVM), the lattice-Boltzmann method (LBM), among others.
The fluid–structure interaction schemes include either a moving-mesh or a fixed-mesh
strategy. The commonly-used numerical codes for addressing FIV of a bluff body include
the various commercial programs, such as Ansys Fluent [81] (which uses FEM) from Ansys
Inc. and STAR-CCM+ [82] from Siemens PLM, as well as open-source software packages,
such as OpenFOAM [83] (which uses FVM and unstructured grids).

For the benefit of those readers who are unfamiliar with CFD—the key-enabling
technology underpinning the numerical simulation of FIV phenomena—we will provide a
brief overview of the key concepts. The basic idea of CFD is to use appropriate algorithms
to solve some form of the Navier–Stokes (NS) equations that describe the fluid flow. To this
purpose, the NS equations that govern a viscous, incompressible flow, whether laminar or
turbulent, express the conservation of mass (incompressibility of the fluid volume) and the
conservation of momentum, respectively, as follows:

∂ui
∂xi

= 0 , (30)

and
∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p
∂xi

+ ν
∂2ui

∂xj∂xj
, (31)

where xi is the Cartesian coordinate associated the i-th direction (so, (x1, x2, x3) = (x, y, z));
ui is the Cartesian fluid velocity component in the xi direction; p is the pressure; ρ is the
fluid density; ν is the fluid kinematic viscosity; and, t is time. In the above equations, the
Einstein summation convention is assumed to apply to repeated indices.
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In direct numerical simulation (DNS), the NS equations is solved numerically with the
entire band of scales of the flow from the large energy-producing to the small dissipative
motions fully resolved in space and time. Here, no ad hoc models are required to represent
the unresolved motions of the flow. The application of DNS is currently restricted to low
and moderate Reynolds numbers (laminar or weakly turbulent flows). For larger Reynolds
number flows (strongly turbulent flows which are prevalent in engineering and geophysical
applications), a simpler level of description is required. To this purpose, one can apply a
filtering (averaging) operation to the NS equations. The resulting filtered (averaged) NS
equations give rise to more unknowns than the number of equations—unknown subgrid
stresses or Reynolds stresses in the momentum transport equation—resulting in the so-
called turbulence closure problem. In large-eddy simulations (LESs), only the large-scale
portion of the turbulence is explicitly computed while the small-scale portion (subgrid scale
or SGS) of the fluid motions are represented using a so-called SGS model. Alternatively,
in the statistical simulation of the fluid flow based on the Reynolds-averaged NS (RANS)
equation, the averaged effect of the turbulence on the flow (embodied in the Reynolds
stress tensor) is modelled. Finally, there are hybrid methods of fluid flow simulation (e.g.,
detached-eddy simulation or DES) in which a RANS model is used to represent some parts
of the flow (e.g., near solid walls) while LES (with a SGS model) is used elsewhere, hence
providing a compromise between the computational expense of LES and the computational
efficiency of RANS. For more information on CFD, the reader is referred to [84].

The numerical modelling of FIV is capable of providing accurate predictions, as well
as deeper physical insights into the fundamental processes underpinning the FIV response.
In consequence, numerical simulations are a invaluable tool that complements physical
experiments for the practical design and analysis of a bluff body subjected to FIV. Even
so, we stress that the FIV problem involves very complex flow dynamics and non-linear
bidirectional interactions between the fluid and the structure—these complexities limit
the predictive capabilities of FIV simulations, especially in the high-Reynolds number
(and strongly turbulent) flows in the range of from 104 to 106. It should be stressed
that real-world FIV problems almost always involve flows in this flow regime where
either the three-dimensional flow transitions from laminar to turbulent or the flow is fully
turbulent [85]. These limitations prevent CFD being used exclusively to address real-world
engineering and industrial problems involving FIV phenomena. Nevertheless, it can be
stated that improvements of accuracy and reliability of FIV numerical simulations for
flows in the subcritical and high-Reynolds number range is essential in order to provide
confidence in the use of numerical modelling of FIV for addressing real-world applications.

4.1. Numerical Techniques for FSI Simulation

The numerical simulation of a two-way FSI problem, such as FIV involves both the
effect of the fluid flow on the motion of the structure and, conversely, the effect of the
structure on the local flow. As shown in Section 3, the precise mathematical description
of FIV consists of the governing equations for the fluid flow dynamics (NS equations)
which are then coupled to the equation of motion for the structure (which generally is
modelled as a mass–spring–damper system). This coupled set of equations needs to be
solved numerically. The use of an appropriate fluid–structure interaction strategy is critical
for the simulation of the coupled dynamics of the fluid–structure interaction. Depending on
the treatment of the computational mesh, the numerical methodologies for the simulation
of FSI can be stratified into two categories: namely, a moving mesh (or conforming) method
and a fixed mesh (or non-conforming) method [86].
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(1) Moving mesh.

The moving mesh method involves a dynamic re-meshing (or mesh updating) of the
computational grid at each time step (viz., the mesh moves to accommodate the dynamically
changing topology of the spatial fluid domain owing to the motion of the structure which,
in turn, necessitates the tracking of the fluid–structure interface at each time step). As a
consequence, an efficient moving mesh module and a fast and automatic mesh deformation
procedure are of great importance for the successful simulation of a FSI using this approach.

An often-used mesh diffusion scheme is exhibited in Figure 7. In this scheme, the
mesh around the moving body (green) moves with the body without any deformation as if
the mesh was “rigid” (viz., attached to the body). The outer boundary cells (white) in this
scheme remain fixed—only the portion of the computational grid lying between the inner
and outer boundaries (orange) are deformed and re-generated at each time step. This mov-
ing mesh scheme has been demonstrated to give almost no projection error in the solution
and, furthermore, improves the accuracy of the simulations by preserving the gradients in
the vicinity of the moving body [87,88]. Another key issue is the mesh morphing algorithm
that deals with the motion of the body. As an example, the displacement and velocity of the
mesh in the orange region of Figure 7 for each time step is obtained from the solution of a
Laplacian equation. The reader is referred to Ref. [89] for more details of mesh deformation
methods (remeshing or adaptive meshing strategies).

Figure 7. Schematic describing the components of a mesh moving scheme.

A classical and popular moving mesh technique is the arbitrary Lagrangian–Eulerian
(ALE) algorithm, which can both follow the moving boundary and preserve the mesh grid
shape even for large structural displacements at the same time. This algorithm accom-
plishes this by defining three domains: namely, a material domain to provide a Lagrangian
formulation of the moving body, a spatial domain described in an Eulerian (fixed) reference
frame, and an arbitrary domain involving an arbitrary motion that determines the defor-
mation of the moving mesh. The mapping of ALE to the NS equations involves explicitly
incorporating an arbitrary mesh velocity into the convective term of the momentum trans-
port equations, so that the body motion and the mesh deformations required to maintain an
adequate spatial discretization can be taken into account. It should be noted that in the ALE
scheme, the computational grids are allowed to move independently of the fluid velocity
in order to avoid an excessive distortion of the mesh. Another common moving mesh
technique is the so-called Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST)
algorithm, which has been used by Mittal and Kumar [90] and by Singh and Mittal [87] in
their numerical simulations of FIV.
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In general, the numerical computation involved in the application of a moving mesh
approach consists of three basic steps [91]: (1) the fluid dynamics computation; (2) the
structure dynamics computation; and (3) the mesh movement computation. A detailed
flowchart showing how these steps are implemented is displayed in Figure 8 for the ALE
algorithm (left panel). For examples of the application of the ALE algorithm to address
the FIV problem, the interested reader is referred to references [85,92–97]. The moving-
mesh method using a body-fitted coordinate system can generally achieve a high-mesh
resolution near the moving boundary and, as a result, can provide excellent simulations
in that critical portion of the flow field (viz., where the fluid and the structure interact).
However, this methodology requires frequent updating of the mesh (usually at every time
step) which may be computationally prohibitive—hence, limiting the wider acceptance
of the methodology for addressing FSI problems (particularly those involving very large
amplitudes in the motion of the body giving rise to large distortions of the mesh).

Figure 8. Numerical computational procedure for the simulation of FIV of a bluff body using the
ALE algorithm for a moving mesh scheme (left panel) and the immersed boundary method for a
fixed mesh scheme (right panel).

(2) Fixed mesh.

To circumvent some of the problems associated with using a moving and regenerating
mesh in the body-conforming formulation, a fixed mesh method can alternatively be used
for FIV simulation. This methodology uses the notion of an immersed method that em-
ploys an overlapping description of the fluid (in an Eulerian frame) and the structure (in a
Lagrangian frame) and a non-conforming fluid–structure interface in order to avoid the
movement of the mesh (and concomitant re-meshing) at each time step [86,98]. In this case,
the fluid–structure interaction can be taken into account by including an additional inertial
forcing term into the NS equations, resulting in the transformation from the dynamic La-
grangian coordinate system (for a moving body computation) to a fixed Eulerian coordinate
system (for the fluid computation). Needless to say, the method used to determine the body
force and how to distribute this force from the “immersed” points into the surrounding
Cartesian grid will significantly affect the accuracy of the immersed method [99].

The immersed boundary method (IBM) is a popular non-conforming mesh technique
that is based on a fixed Cartesian grid that is not fitted to the geometry of the moving
body [100]. This methodology considers the moving structure as a moving boundary that
is represented using a set of discrete Lagrangian points and resolves the fluid dynamics
on a fixed Eulerian mesh. In order to couple the Eulerian and Lagrangian variables, IBM
formulates the body force term (included in the momentum transport equations) as an
integral representation involving Dirac delta function kernels—these are generally replaced
with regularized delta function kernels in the numerical treatment. In comparison to
the moving mesh scheme, IBM is advantageous in that there is no need to regenerate
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the computational mesh at each time step as a result of the motion of the body. This
dramatically improves the computational efficiency for a complex FSI problem, especially in
cases involving a changing topology. However, it should be stressed that this computational
efficiency comes with a price: namely, the solution obtained using this methodology is
probably less accurate in the vicinity of the fluid–structure interface. The steps involved in
the application of IBM for FIV simulation are summarized in Figure 8 (right panel).

Apart from IBM, there are other fixed mesh schemes such as the fictitious domain
(FD) method [101], the embedded boundary (EB) method [102,103], the immersed interface
method, and the immersed body method. These methodologies are useful for the case
where the geometric complexity of the fluid–structure interface is so complicated that it
would be difficult to address using a moving mesh technique.

In summary, this section provides a brief review of two commonly used numerical
methodologies for the simulation of FIV of a bluff body. For a more detail description of
these methodologies, the interested reader is directed to references [86,98,104].

4.2. Two-Dimensional or Three-Dimensional Numerical Simulations of FIV

It is known that the FIV response of a bluff body is inherently three-dimensional at
a high-Reynolds number in the turbulent flow regime. As a consequence, 2D numerical
simulations of FIV for this case are not adequate to capture all the dynamical characteristics
of this three-dimensional turbulent flow. Moreover, it should be stressed that even fully
3D turbulence simulation or modelling methodologies (e.g., 3D numerical simulations
using LES, DES, RANS) can potentially not fully reproduce the complex flow dynamics
in this case, especially for a laminar–turbulence transition that can occur in wakes, shear
layers, and boundary layers [105]. In principle, the only numerical methodology that
can potentially simulate every aspect of turbulence is DNS which involves solving the
three-dimensional NS equations exactly. Unfortunately, a full numerical simulation must
provide a complete solution for both the fluid dynamics and fluid–structure interaction
which for high-Re turbulent flows is computationally, prohibitive (even insuperable using
current computational technology). Nevertheless, if we are interested in the modelling
(approximation) of the principal characteristics of the flow field, both the 2D and 3D
numerical solutions obtained using either LES or RANS do provide a reasonably accurate
approximation of the FIV response of a bluff body.

To this purpose, 3D numerical simulations should be used if the predictive accuracy of
the fluid forces and structural response is required, as in a research problem. However, for
addressing engineering and industrial FIV problems where parametric studies involving
a large number of test cases are required, 2D numerical simulations with modest com-
putational resources may be sufficient (indeed attractive). On the one hand, it has been
demonstrated that 2D simulations of the FIV of an elastically-mounted cylinder may be
sufficient owing to the fact that oscillations of the cylinder result in a significant increase
in the wake correlation length—an increase which drastically diminishes the 3D effects of
the vortex shedding [106]. This implies that 2D simulations can be used to provide good
predictions for various integrated parameters, such as the aerodynamic forces coefficients.
On the other hand, the largest discrepancy between 2D and 3D simulations is expected for
high-Reynolds number flows involving strong turbulence effects which are not completely
accounted for in a 2D simulation. As an example, the lift and drag coefficients obtained
from 2D simulations in this case are overpredicted. Indeed, a number of features in the
upper branch of the VIV amplitude response at high values of Re as obtained from experi-
mental data are not present in 2D low-Re simulations—and, moreover, the corresponding
vortex modes are different. In view of this, it is of great importance to ascertain whether
a 2D simulation is sufficient to capture the relevant physical mechanisms of FIV in the
problem of interest or whether it is necessary to resort to more computationally prohibitive
3D simulations [106] to address the problem.

To determine whether a 2D numerical simulation can be used to address an inherently
3D FIV problem to give useful results, it is necessary to consider firstly whether the wake



Energies 2022, 15, 8719 23 of 63

structures for the problem are essentially two-dimensional (viz., it is necessary to ascertain
the threshold Reynolds number for the onset of three-dimensional instabilities for the
bluff body under consideration). It is well known that with increasing Reynolds number,
the wake of a cylindrical body undergoes a transition from a two-dimensional flow to
a three-dimensional perturbation. The critical Reynolds number at which this occurs is
determined by the geometric shape and other constraints on the cylinder. A large body
of research has demonstrated that the threshold Reynolds number for the flow transition
to three-dimensionality over a stationary body occurs at a Reynolds number of about
Rec = 190 for a circular cylinder [107,108] and about Rec = 160 for a square cylinder [109].
For other cross-sectional shapes, such as a rectangular cylinder, an elliptic cylinder, and
a flat plate, the critical Reynolds number Rec is a function of the aspect ratio [110,111]. If
the cylinder is free to move, the value of the critical Reynolds number Rec is generally
larger than that for the stationary cylinder. For example, for a transversely oscillating
circular cylinder, Rec ≈ 250–300 [96,112]. Because the flow is essentially two-dimensional
(approximately or better) for Re . Rec, it is advantageous (in terms of both accuracy and
computational efficiency) to perform 2D simulations of FIV for flow Reynolds numbers
less than Rec. For these cases, it is expected that the results are reliable and effectively
identical to the 3D simulations of FIV (at least for the primary dynamic responses, although
some discrepancies may exist in the predictions for the vortex-shedding patterns). Another
consideration concerning whether a 2D numerical simulation can be used to address a
FIV problem stems from the fact that the inducing mechanism of relevant dynamics of the
flow and structure, such as the branching behavior, the frequency lock-in, the phase jump
and the wake mode has no direct relevance to the presence of three-dimensionality in the
flow, so that a knowledge of these 2D characteristics can provide valuable information for
the more complex 3D flow due to the qualitative similarities between them. To this point,
Leontini et al. [112] analyzed in detail the genesis of 3D higher-Re flow behaviors present
in a 2D flow in terms of the vibration amplitude, the frequency, and the phase difference.

If the above two considerations have been addressed, one efficient strategy to take
full advantage of both 2D and 3D numerical simulations would be to first carry out a
large number of 2D numerical simulation cases covering the whole spectrum of relevant
parameters at low-Reynolds number, and then conduct a few representative 3D high-Re
numerical simulations to investigate in detail the cases of interest from the perspective of
the three-dimensional flow structures.

4.3. Direct Numerical Simulation (DNS) of FIV
4.3.1. Two-Dimensional DNS in the Laminar Regime

Owing to the prohibitive computational cost and uncertainties in turbulence modelling,
most numerical simulations of FIV of a bluff body are conducted at a low-Reynolds number
for laminar flow. This involves solving the two-dimensional NS equations coupled with
the structure equation of motion. Indeed, a 2D DNS is an indispensable tool for exploring
the physical mechanisms and obtaining a fundamental understanding of FIV phenomena.

(1) Single cylinder.

Mittal and various collaborators conducted a series of seminal 2D simulations of the
VIV response of a single circular cylinder at a low-Reynolds number. Mittal and Kumar [90]
reported the “soft-lock-in” phenomenon (where fvs < fn) in a 2DOF-VIV of a circular
cylinder at a low mass ratio for Re = 325—a phenomenon that appears to be related to
a self-limiting mechanism of the cylinder. Using 2D DNS, Singh and Mittal [87] found
that the Reynolds number (Re = 50–500) has a significant influence on the VIV amplitude
and vortex shedding mode. More specifically, the latter transitions from a 2S mode for
Re < 300 to a P + S mode for Re > 300. Furthermore, blockage has an important impact on
the non-linearity of 2DOF-VIV-like hysteretic behavior at a low-Reynolds number [113].
Prasanth et al. [114] investigated the combined effect of mass ratio and blockage on the
transverse oscillation of a circular cylinder and found that the hysteretic behavior appears
when the critical mass ratio exceeds a value of 10.11. Prasanth and Mittal [115] conducted
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a comprehensive numerical study of 2DOF-VIV of a circular cylinder at a low-Reynolds
number of Re = 60–200 and discovered that a phase jump of 180◦ occurring in the middle
of the lock-in range is related to the self-limiting mechanism of VIV. Mittal [116] conducted
2D numerical simulations for flow past a circular cylinder under a number of different
conditions (e.g., increasing/decreasing Ur, unsteady/steady flow) and reported a multi-
branch VIV response of the cylinder at Re = 100—these results were used to define a new
branch which was referred to as Initial Branch II.

Leontini et al. [117] reported two branches in the VIV amplitude response at Re =
200 and suggested that a 2D low-Re numerical simulation can be used to garner deeper
physical insights into the results obtained from a 3D high-Re simulation (at least as it
concerns the nature of the underlying physical mechanisms responsible for important
VIV response features). Ji et al. [101] demonstrated the feasibility of using the fictitious
domain method for the simulation of a 2DOF-VIV of a circular cylinder at a low-Reynolds
number of Re = 200. These researchers focused on how the Skop–Griffin parameter (SG ≡
2π3S2

t m∗ζc), which encapsulates the combined effect of mass and damping on the structure,
determines the nature of the VIV response. Their numerical simulations showed that the
response amplitude decreased rapidly with increasing values of SG. Li et al. [118] conducted
numerical simulations at low-Reynolds number and at small mass-damping parameter
in order to analyze various non-linear phenomena associated with 1DOF- and 2DOF-VIV
(e.g., lock-in, beating, phase-switching, limit cycles, bifurcation) at low-Reynolds number
and low mass-damping parameter. These investigators concluded that the streamwise
vibrations influence the transverse vibrations. Étienne and Pelletier [119] utilized results
obtained from numerical simulations of a zero mass and zero damping vibrating circular
cylinder in order to define the regions in the (Re, Ur) plane where vibrations are either
absent or present—these results showed that transverse vibrations occur for a reduced
velocity Ur > 40. Bourguet and Jacono [120] performed a parametric study using 2D
numerical simulations to investigate the transverse VIV of a rotating cylinder with a given
rotation rate at Re = 100. These researchers reported a bell-shaped amplitude response, the
maximum amplitude of which was three times that of the VIV of a non-rotating cylinder.
In addition, the autorotation of the cylinder was found to affect the wake pattern, the
lift frequency and the phase. Zhao et al. [121] conducted numerical simulations of the
2DOF-VIV of a rotating circular cylinder at a low rotation rate at Re = 150 and found that
the forced rotation of the cylinder significantly enhances the in-line oscillation amplitude
and lock-in range.

Some recent numerical studies of the VIV characteristics of a single circular cylinder
in laminar flow include the following: VIV of a cooled circular cylinder in the presence of
thermal buoyancy [122]; some unusual behavior in the time history of the displacement,
frequency, and lift coefficient of VIV [123]; and the presence of a three-branch VIV response
for a low mass-damping cylinder at low Re = 300 [124].

A number of researchers have conducted 2D simulations of laminar flow past elastically-
mounted non-circular cylinders (e.g., elliptical, square, rectangular, triangular). A circular
cylinder can be considered as a special case of an elliptic cylinder with an aspect ratio of
unity. As a consequence, the effect of the aspect ratio (viz., ratio of the cylinder dimension
in the transverse direction to that in the streamwise direction) on the FIV response of an
elliptic cylinder can be studied numerically. For example, Yogeswaran et al. [125] system-
atically investigated the dynamics of a freely vibrating elliptic cylinder at eight different
aspect ratios AR (0.7 < AR < 1.43) in the laminar flow regime (60 < Re < 140). These
researchers examined the VIV response (amplitude, phase lag, fluid force), the flow pattern
in the wake, and the hysteresis phenomenon and found that the peak amplitude increases
with an increasing AR. Chen et al. [126] found that the aspect ratio has a significant effect
on the VIV response and on the heat transfer to the elliptical cylinder. Leontini et al. [127]
investigated the FIV response of an elliptic cylinder with a fixed aspect ratio of 1.5 for
various angles of attack AOA (viz., the angle between flow direction and major axis of
ellipse) in the range 0◦ < AOA < 90◦. These researchers observed that the VIV for the
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elliptic cylinder is very similar to that of a circular cylinder for AOA < 30◦. However, it
was found that a galloping-type oscillation may be triggered when AOA > 30◦, which may
be due to an enhancement of the lift force by the stronger wake vortices.

It is well known that the flow past a square cylinder can exhibit both VIV and galloping
owing to its asymmetry. Research conducted for the flow past a square cylinder has
focused primarily on the specific conditions that trigger galloping, such as the critical
values of the Reynolds number [128–131], the mass ratio [63,129–132], and the angle of
attack [95,133]. In general, the consensus is that a light square cylinder can undergo
galloping for AOA = 0◦, but exhibits VIV for AOA = 45◦ and for intermediate angles
of attack provided the Reynolds number exceeds some critical value. Two-dimensional
simulations at low-Reynolds number can also be utilized to generate a large dataset of
lift and drag coefficients which, in turn, can be used to determine the parameters of that
determine a quasi-steady galloping model [63]. The FIV characteristics of a square cylinder
under other conditions can also be investigated using 2D numerical simulation (e.g., shear
flow past a square cylinder [134]). A rectangular cylinder is the generalization of a square
cylinder having different aspect ratios (viz., an aspect ratio other than unity). Presently,
low-Re 2D numerical simulations of the flow past a rectangular cylinder have focused
primarily on the effect of the aspect ratio on the dynamic response of the vibrating system.
For example, Zhao [97] investigated the flow past a rectangular cylinder for five different
aspect ratios (namely, 0.3, 0.5, 0.7, 1, and 1.25) and observed that both VIV and galloping
occur provided the aspect ratio is larger than 0.3. Similar to square and rectangular
cylinders, a triangular cylinder is also prone to galloping due to the presence of sharp
corners in the structure, to fixed separation points and to the afterbody in the separated
wake. Wang et al. [135] investigated the streamwise and cross-flow FIV responses of a
triangular cylinder under three typically low incidence angles (namely, 0◦, 30◦, and 60◦)
at Re = 100. They found the dynamic response at the small incidence angles of 0◦ and
30◦ exhibited VIV similar to that for the flow past a circular cylinder, while for the larger
incidence angle of 60◦ the dynamic response exhibited galloping.

(2) Passive turbulence control cylinder.

Two-dimensional numerical simulations can be used to study the flow past a cylinder
with passive turbulence control (PTC) which is, perhaps, the simplest flow control strategy
employed to control the intensity of motion of a body. Passive turbulence control involves
either attaching to or placing around the body one or more small device(s) (e.g., rod, splitter
plate, roughness plate, fairing) to control the intensity of motion of the body.

Small controlling rods are one of the most commonly used PTC devices.
Zhao et al. [95] used numerical simulation to investigate the dynamical characteristics
of a PTC cylinder consisting of a circular cylinder of diameter D and a small rod (with diam-
eter 0.2 D) attached at different angular locations on the cylindrical surface. Liu et al. [136]
fixed the control rod upstream of a cylinder of diameter D and studied the effects of rod
diameter (0.4 D, 0.6 D, and 0.8 D) and center-to-center spacing between the cylinder and
rod (1.2 D and 2.8 D) on the dynamical response of the system. Liu et al. [137] used the
numerical simulation of a cylinder–rod system, consisting of a cylinder of diameter D and
six detached controlling rods of diameter 0.25 D in order to investigate the effect of the
separation (ranging from 0.1 D–2 D) between the cylinder and the multiple rods on the
dynamical response.

The splitter plate is another easy-to-use flow control device. Various configurations,
such as the relative location of the splitter plate with respect to the main cylinder (e.g.,
upstream, downstream, side-by-side), the type of connection (e.g., attached or detached),
the nature of the plate material (e.g., flexible or rigid), the constraints applied to the cylinder
and/or plate (e.g., fixed or free) and the plate length can be investigated using 2D numerical
simulations in laminar flow. For these various configurations, the effect of the mass ratio,
of the damping ratio, of the Reynolds number, of the plate length, and of the separation
between the cylinder and the detached plate can be studied [138–140].
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(3) Array of cylinders.

An array of cylinders is a more realistic and practical system to study than a single
cylinder owing to the fact that this configuration is found frequently in the form of offshore
platforms (floating or fixed), multiple marine risers, and a fluid energy harvester system. We
consider the simpler case where each cylinder in the cylinder array has the same diameter.
Needless to say, the dynamic response of a cylinder array is expected to be much more
complex than that of a single cylinder—an observation which highlights the challenges
that need to be confronted if such a system is to be investigated numerically using 3D flow
simulation at high-Reynolds number. In view of this, it is expected that 2D low-Reynolds
number numerical simulations are useful for providing the much needed physical insights
into the dynamic response and the underlying physics of a multi-cylinder system.

Carmo et al. [106] applied 2D numerical simulations at Re = 150 to study the effect of
the separation between two cylinders on the FIV response of the system. In this study, the
separation between the two cylinders is carefully selected such that the downstream freely-
vibrating cylinder experiences the transverse FIV (wake galloping) that results due to the
wake shed from the upstream fixed cylinder. The numerical results show that the tandem
two-cylinder system provokes FIV with a wider synchronization boundary, a larger maxi-
mum amplitude, and an overall larger vibration amplitude at high speeds in comparison
with that obtained for a single cylinder. This may be due to the presence of an oscillatory
flow between the two cylinders that is absent for a single cylinder. Other numerical studies
have focused on a number of different configurations of the cylinder array—key parameters
that determine the configuration include the number of cylinders, the relative location of
the cylinders (e.g., tandem, staggered, side-by-side), and the constraints imposed on each
cylinder (e.g., fixed or free) [94,97,141–143].

Table 1 summarizes the 2D numerical studies of FIV for various bluff bodies conducted
for low-Reynolds number flows. A 2D DNS is expected to provide detailed flow structures
and ameliorate the uncertainties associated with the turbulence modelling at low-Reynolds
numbers less than 300 where the 3D turbulent characteristics are not relevant. Moreover, a
2D DNS permits large simulations to be conducted at affordable computational cost—hence,
it is perhaps the most widely used numerical technique used to study the interactions
between the flow dynamics and the FIV response of a bluff body, especially for those cases
involving complex geometries and/or dynamics.

Table 1. Summary of representative 2D DNS studies of flow-induced vibration of a bluff body for
low-Reynolds number flows in the laminar flow regime.

Author/Year Motion Shape m∗ ζ Re CFD FSI Scheme

Mittal and Kumar [90] 1/1999 2DOF-VIV circular 4.72 0.0003 325 SST-FEM DSD/SST
Singh and Mittal [87]/2005 2DOF-VIV circular 10 0 50–500 SST-FEM DSD/SST
Prasanth et al. [113]/2006 2DOF-VIV circular 10 0 60–125 SST-FEM DSD/SST

Prasanth and Mittal [115]/2008 2DOF-VIV circular 10 0 60–200 SST-FEM DSD/SST
Prasanth et al. [114]/2011 2DOF-VIV circular 1–100 0–0.1 60–150 SST-FEM DSD/SST

Mittal [116]/2017 1DOF-VIV circular 70 0 100 SST-FEM DSD/SST
Leontini et al. [117]/2006 1DOF-VIV circular 10 0.01 200 SEM fixed mesh

Ji et al. [101]/2011 2DOF-VIV circular 1.27 0.003–3.3 60–300 FDM FD
Li et al. [118]2011 1DOF-VIV circular 1 0.003 200 ST-FEM moving mesh

Étienne et al. [119]/2012 2DOF-VIV circular 0 0 15–45 FEM ALE
Bourguet and Jacono [120]/2014 1DOF-VIV circular 10 0 100 SEM fixed mesh

Zhao et al. [121]/2014 2DOF-VIV circular 2 0 150 PG-FEM ALE
Garg et al. [122]/2019 1DOF-VIV circular 2 0 150 FDM IBM

Dorogi and Baranyi [124]/2020 1DOF-VIV circular 10 0–0.05 300 FDM fixed mesh
Shen and Chen [123]/2022 1DOF-VIV circular 2–50 0.041 150 FVM IBM

Yogeswaran et al. [125]/2014 2DOF-VIV elliptic 10 0 60–140 SST-FEM DSD/SST
Leontini et al. [127]/2018 1DOF-FIV elliptic 1 0 200 SEM fixed mesh

Chen et al. [126]/2021 1DOF-VIV elliptic 10 0 150 FVM moving mesh
Su et al. [133]/2007 1DOF-FIV square 3 0 100 FEM ALE
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Table 1. Cont.

Author/Year Motion Shape m∗ ζ Re CFD FSI Scheme

Sen and Mittal [128]/2011 2DOF-FIV square 10 0 60–250 SST-FEM DSD/SST
Joly et al. [63]/2012 DOF-FIV square 1–20 0–0.01 150 FEM moving mesh
He et al. [129]/2012 2DOF-FIV square 10, 20, 40 0 60–250 FEM ALE

Sen and Mittal [130]/2015 2DOF-FIV square 1, 5, 10, 20 0 60–250 SST-FEM DSD/SST
Zhao et al. [95]/2013 2DOF-VIV square 3 0 100 PG-FEM ALE
Sun et al. [134]/2017 2DOF-FIV square 2 0 80,160 FEM ALE

Sourav and Sen [131]/2019 2DOF-FIV square 3–4 0 60–250 SST-FEM DSD/SST
Zhao [97]/2015 2DOF-VIV rectangular 10 0 200 PG-FEM ALE

Wang et al. [135]/2014 2DOF-FIV triangular 2 0 100 FEM ALE
Zhao et al. [95]/2013 2DOF-FIV circular-rod 2 0 250 PG-FEM ALE
Liu et al. [136]/2020 2DOF-FIV circular-rod 2 0.007 150 FEM ALE
Liu et al. [137]/2022 1DOF-FIV circular-rod 2 0 200 FEM ALE

Sahu et al. [138]/2019 2 1DOF-FIV circular-plate 2–1000 0 92–150 SST-FEM moving mesh
Zhu et al. [139]/2020 3 2DOF-FIV circular-plate 6.9 0.01 120 FVM moving mesh

Wang et al. [140]/2018 4 2DOF-FIV circular-plate 10 0 100, 200 FEM ALE
Borazjani and

Sotiropoulos [141]/2009 2DOF-VIV 2-circular 2 0 200 IBM IBM

Carmo et al. [106]/2010 1DOF-FIV 2-circular 2 0.007 150 SEM ALE
Griffith et al. [142]/2017 1DOF-FIV 2-circular 2.546 0 200 FDM IBM

Zhao [94]/2013 1DOF-FIV 2-circular 2 0 150 PG-FEM ALE
Han et al. [143]/2015 2DOF-VIV 4-circular 6 0 80–160 CBS-FEM 5 ALE

Zhao [97]/2015 1DOF-FIV 36-circular 2.5 0 100 PG-FEM ALE
1 The new moving mesh scheme was utilized to remesh only as needed instead of frequent remeshing. SST:
stabilized space–time. 2 A circular cylinder with a splitter plate attachment. 3 circular cylinder with upstream
and/or downstream splitter plate attachment(s). 4 The flexible splitter plate was subjected to the wake from the
upstream fixed circular cylinder. 5 CBS-FEM: characteristic-based split finite-element method.

4.3.2. Three-Dimensional DNS in the Turbulent Regime

Three-dimensional DNS is needed in order to conduct the most realistic simulations
of the FIV of a bluff body and, indeed, is required for cases where 3D flow effects are
significant, such as spanwise wake correlations and the interaction of streamwise and
spanwise vortices in strongly turbulent flows. Newman and Karniadakis [144] used 3D
DNS to investigate the oscillation of an infinite flexible cable at Re = 200 (early transitional
regime) and compared these results with 2D numerical simulations conducted at Re = 100
(laminar flow). These researchers found that the transverse amplitude predicted by the
3D numerical simulation agreed well with experimental data. However, the transverse
amplitude was found to be larger than that obtained from the 2D numerical simulation.
Newman and Karniadakis [144] also used the spectral element-Fourier method for the
spatial discretization of the coupled system consisting of the fluid NS equations and the
cable equation. This numerical methodology has also been used in many subsequent DNS
studies [145–148].

Evangelinos et al. [145] used 3D DNS to simulate the transverse VIV of both rigid and
flexible circular cylinders at a subcritical Reynolds number of Re = 1000 and presented
results for the detailed force distribution along the cylinder span. These investigators also
modified the semi-empirical model proposed by Skop and Griffin [21] by using their DNS
data to provide improved model coefficients (using a least-squares fitting of the coefficients
of the model to their data). Lucor et al. [146,148] conducted 3D DNS of the transverse
VIV of a rigid circular cylinder in a uniform flow at three different Reynolds numbers
(Re = 1000, 2000, and 3000) with a low mass-damping parameter and a large aspect ratio
of 26. These investigators successfully reproduced the three-branch VIV and found that
the large-amplitude response in upper branch (lock-in range) was strongly dependent on
the Reynolds number. Furthermore, they confirmed the occurrence of a sharp drop in
the spanwise correlation of the force and wake near the transition from the upper to the
lower branch (still at a large amplitude)—a result which appears to be related to the phase
difference between the displacement and lift force.

Carmo et al. [106] and Zhao et al. [96] compared 2D and 3D DNS results for an oscil-
lating cylinder. Carmo et al. [106] also conducted a number of 3D numerical simulations
in the transitional regime (Re = 300) in order to elucidate the relationship between the 3D
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flow structures and the VIV of a rigid circular cylinder. By comparing these results with
2D numerical simulations performed Re = 150, these researchers found that the 2D and 3D
simulation results were very similar to each other in terms of the amplitude response—the
difference in the maximum amplitude between the two results was small, supporting the
notion that a 2D numerical simulation in the transitional regime can yield accurate results.
Zhao et al. [96] investigated the transverse VIV of a rigid circular cylinder at different
Reynolds numbers using a 3D DNS implemented with the Petrov–Galerkin Finite Element
Method (PG-FEM). A number of important results were reported in this investigation.
Firstly, the wake flow behind a circular cylinder undergoing VIV was shown to be two-
dimensional at Re = 150 (laminar regime) as the 2D and 3D numerical simulations yielded
almost identical results in terms of the vibration amplitude, the frequency, and the vortex
flow patterns. Secondly, 3D numerical simulations of VIV at Re = 1000 (turbulent regime)
were undertaken to study the variation of the flow along the cylinder span. Thirdly, the
numerical simulation of flows with Reynolds numbers varying from 200 to 800 was per-
formed at a constant reduced velocity in the middle of lock-in for both Re = 150 and 1000 in
order to determine the critical Reynolds number for the wake flow to transition from a 2D
to a 3D flow—for a vibrating cylinder, the critical Reynolds number was shown lie in the
range from 250 to 300.

Mittal [88] carried out a 3D DNS study of the streamwise and transverse VIV of a
rigid circular cylinder at Re = 1000. To this purpose, he used the stabilized space–time FEM
(SST-FEM) technique to solve the coupled set governing equations (fluid and structure), as
well as a moving mesh scheme for handling the fluid–structure interaction. A number of
interesting phenomena were reported in the work including the three-branch VIV response,
the beating of vibration amplitude and fluid force within the initial branch, the soft-lock-in
(viz., the vortex shedding frequency matches the vibration frequency, but is different than
the natural frequency) in the lower branch, the hysteresis effect in initial-upper transition,
and the intermittency in upper-lower transition. In particular, Mittal [88] observed a 2S
vortex mode in the upper branch which differs from the 2P vortex mode obtained from
experiments at higher Re.

Gsell et al. [149] used 3D DNS (based on FVM) to investigate the 2DOF-VIV of a
rigid circular cylinder at the moderate Reynolds number of Re = 3900. These researchers
reported a three-branch VIV response and, in particular, they examined the fluid force in
terms of the phase difference and the spectral content. In a recent effort, Chen et al. [150]
used 3D DNS to investigate 2DOF-VIV corresponding to the flow past an elastically-
mounted circular cylinder at Re = 500 with the cylinder positioned near a stationary wall—a
scenario that mimics an engineering application, such as a marine pipeline above the seabed.
These investigators reported a two-branched (initial and lower) VIV response accompanied
by two desynchronization regions. They observed a significant modification of the three-
dimensional wake structures, the vortex dynamics and the flow physics at each velocity
range due to the presence of the stationary wall and the concomitant boundary layer.

Table 2 presents a concise summary of the details of the 3D DNS studies of VIV of a
circular cylinder described above. It should be stressed that 3D DNS is only applicable for
low- and moderate-Reynolds number flow in the transitional regime owing to its prohibitive
computational cost. For high-Re flows (e.g., laminar–turbulent transition, fully turbulent),
various advanced turbulent modelling techniques have been developed and can be used to
predict the turbulent flow at an affordable computational cost (albeit at a lower fidelity).
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Table 2. Summary of 3D DNS of flow-induced vibration of a bluff body in the turbulent regime.

Author/Year Motion Shape m∗ ζ Re CFD FSI Scheme

Newman and
Karniadakis [144]/1997 1DOF-VIV circular 2 0 200 SEM fixed mesh

Evangelinos et al. [145]/2000 1DOF-VIV circular 2 0 1000 SEM fixed mesh
Lucor et al. [148]/2005 1DOF-VIV circular 2 0 1000–3000 SEM fixed mesh
Carmo et al. [106]/2010 2DOF-VIV 2-circular 2 0.007 300 SST-FEM ALE

Mittal [88]/2013 2DOF-VIV circular 10 0 1000 SST-FEM ALE
Zhao et al. [96]/2014 1DOF-VIV circular 2 0 1000 PG-FEM ALE
Gsell et al. [149]/2016 2DOF-VIV circular 2 0 3900 FVM fixed mesh
Chen et al. [150]/2022 2DOF-VIV circular 2 0 500 FDM IBM

4.4. Large-Eddy Simulation (LES) of FIV

The main idea of large-eddy simulation (LES) is to resolve the larger turbulent eddies
whose scales are larger or comparable to the size of a computational grid cell and to model
the smaller turbulent eddies whose scales are smaller than the grid cell size and so cannot
be resolved adequately. These smaller eddies are modelled using a so-called subgrid scale
(SGS) model. Typically, a spatial filter is defined either explicitly or implicitly and used is
to separate the resolved and unresolved turbulent flow scales. Naturally, the particular
spatial filter used and the choice of the SGS model will affect the accuracy of the LES results.
When using LES to simulate the FIV response of a bluff body, the boundary-layer flow
near the cylinder wall needs to be modelled carefully because the flow separation and the
vortex formation and shedding typically occur in this region—a region characterized by
large velocity gradients and an increased anisotropy in the turbulent fluctuations. When
compared to DNS, LES is computationally less costly and is capable of capturing the key
unsteady flow features. In consequence, LES provides the most accurate predictions of FIV
apart from DNS (where no modelling of the small-scale turbulence is required).

Large-eddy simulation using the Smagorinsky (SM) SGS model has been used to
investigate the free vibration of a 2D circular cylinder [105,151–153] and the forced vibration
of a 3D circular cylinder [154] for high-Reynolds number flows. These studies demonstrated
that LES using the Smagorinsky SGS model provided reasonably accurate predictions of
the FIV phenomenon. More recently, Pastrana et al. [155] investigated the transverse and
streamwise VIV of a rigid circular cylinder with low mass-damping for flows with Reynolds
numbers in the range Re =3900–11,000 using a high-fidelity LES with a wall-adapting local-
eddy (WALE) viscosity model that accounts for the near-wall scaling of the eddy viscosity.
These researchers concluded that LES provided predictions that are in good conformance
with the experimental data—the VIV maximum amplitude, the characteristic flow features,
and the non-linear VIV behavior in the super-upper branch (e.g., hysteresis, transition
delay) are well predicted using LES. In order to assess the reliability of strip theory for the
semi-empirical prediction of VIV, Wang et al. [156] conducted an LES study involving the
free vibration of a 3D flexible cylinder and the forced vibration of a 2D rigid cylinder. A
key result of this study was that the hydrodynamic force coefficients obtained in the two
cases were comparable, but the wake patterns predicted for the two cases were different.
Janocha et al. [157] performed a number of 3D LES calculations to investigate the VIV of a
circular cylinder at a Reynolds number of Re = 3900 for representative reduced velocities
within the initial (Ur = 3), upper (Ur = 5) and lower (Ur = 7) branches. These investigators
applied the multi-scale proper orthogonal decomposition (mPOD) technique to quantify
the three-dimensional structures in the wake flow. A very good agreement between the
predictions provided by the 3D LES and the experimental data were reported—providing
a validation for the accuracy of 3D LES for the prediction of VIV of a bluff body in the
subcritical flow regime.

Daniels et al. [158] used 3D LES to investigate the free motion (namely, heaving
and pitching) of a rectangular bridge deck subjected to the uniform and turbulent flow.
These simulations provided a detailed visualization of the complex vortex formation and
development in this flow and yielded accurate predictions of the peak loading. However, it
was also shown that the turbulence intensity in the incident flow significantly decreased
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the amplitude of oscillation, while the turbulent integral length scales in the free stream
enhanced the spanwise wake correlation and, as a result, increased the amplitude of
oscillation of the body.

Table 3 summarizes the key properties (e.g., physical parameters, Reynolds num-
ber, numerical scheme) of a number of LES studies of the FIV of a bluff body. It should
be stressed that the body of work here appears to suggest that LES can be used to ob-
tain high-fidelity simulations of the FIV response of a bluff body—albeit at a computa-
tional cost that is still prohibitive for real-world engineering and industrial applications of
practical relevance.

Table 3. Summary of LES studies of the flow-induced vibration of a bluff body.

Author/Year Motion Shape m∗ ζ Re Scale SGS CFD FSI Scheme

Zhang and Dalton [151] 1/1996 1DOF-VIV circular 10 0.02 13,000 2D SM FDM fixed mesh
Al-Jamal and Dalton [105] 2/2004 1DOF-VIV circular 7.85 0.02 8000 2D SM FDM fixed mesh

Tutar and Holdo [154] 3/2000 1DOF-
forced circular / / 24,000 3D SM FEM fixed mesh

Pastrana et al. [155] 4/2018 2DOF-VIV circular 2.6 0 3900–11,000 2D WALE FVM ALE
Wang et al. [156] 5/2021 1DOF-VIV circular 4 0.087 550–900 3D / EVM fixed mesh

Janocha et al. [157] 6/2022 1DOF-VIV circular / / 3900 3D WALE FVM ALE
Daniels et al. [158]/2016 1DOF-VIV rectangular 57 0.0021 40,000 3D MTS FVM ALE

1 The 2D LES predictions were in good agreement with the experimental data. 2 The 2D LES accurately predicted
the VIV response, but did not capture the vortex modes well. 3 The 3D LES provided more realistic predictions of
the flow field and the aerodynamic forces than those provided by the 2D LES. 4 LES results agreed well with the
experimental data for the VIV response and the flow pattern. 5 Comparison of LES results for the free vibration of
a flexible body and the forced vibration of a rigid body. 6 LES reproduces correctly the three branches of the VIV
response and the corresponding vortex modes: namely, the initial (2S), upper (2P), and lower (2P) branches.

4.5. Reynolds-Averaged Navier–Stokes (RANS) Modelling of FIV

RANS modelling decomposes an instantaneous flow quantity (e.g., velocity) into the
mean and fluctuating components using the Reynolds decomposition—the former compo-
nent is determined using from the time-averaged (or ensemble-averaged) NS equations
and the latter component is modelled using some form of semi-empirical approximations
(e.g., a turbulence closure model). With an acceptable computational cost while providing
a reasonable accuracy, RANS has become the primary numerical tool used in engineering
applications—and, more particularly, for the numerical modelling of the VIV of a circular
cylinder at Reynolds numbers in the subcritical flow regime (viz., 300 < Re < 3× 105) that
consists of a completely turbulent wake flow and a laminar boundary-layer flow on the
cylinder surface.

In 1996, Khalak and Williamson [159] undertook a series of experimental investigations
in order to elucidate the dynamic characteristics of transverse VIV of a rigid circular cylinder
for Reynolds-number flows in the range from 2000 to 12,000. These experiments provided
benchmark data that have been used since for the validation of various RANS modelling
studies of FIV [92,160–162]. As an example of this effort, Figure 9 displays the maximum
vibration amplitude Amax (normalized by the cylinder diameter D) as a function of the
reduced velocity Ur—the RANS modelling of an elastically-mounted circular cylinder
that can undergo transverse VIV conducted by Guilmineau and Queutey [160] (G&Q),
Pan et al. [161], and Wanderley et al. [162] are compared with some experimental data
obtained by Khalak and Williamson [159] (K&W).
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Figure 9. The variation with the reduced velocity Ur of the normalized maximum structural ampli-
tude (Amax/D) of FIV consisting of an elastically-mounted circular cylinder of diameter D with a
mass ratio of 2.4 and mass-damping ratio of 0.013. The results of three RANS modelling studies
are compared with some experimental data reported by Khalak and Williamson [159] (K&W). The
RANS modelling studies shown here were conducted by Guilmineau and Queutey [160] (G&Q),
Pan et al. [161], and Wanderley et al. [162].

Guilmineau and Queutey [160] applied RANS with the shear stress transport (SST)
k-ω model to investigate the influence of initial conditions on the transverse VIV of a
circular cylinder for flows with Reynolds number ranging from 900 to 15,000. A key result
reported in this modelling study is that initial conditions of rest and of decreasing velocity
reproduced the two-branch VIV response (initial and lower), while that of an increasing
velocity yielded a very narrow upper branch with an amplitude that is comparable to the
experimental data. Applying the same numerical methodology as used in Guilmineau and
Queutey [160], Pan et al. [161] focused their attention on the reason for failure of RANS
modelling to correctly predict the upper branch of the VIV response. These researchers
suggested that the reason was related to the random (stochastic) behavior of the vortex-
shedding process which cannot be achieved using a time-averaged (or ensemble-average)
RANS modelling strategy. Wanderlay et al. [162] applied RANS with the k-ε turbulence
closure model and demonstrated that this approach was able to provide very accurate
predictions of the three branches of VIV response, of the force coefficients, and of the
lock-in range.

Zhao and Cheng [92] conducted RANS modelling of the streamwise and transverse
VIV of a rigid circular cylinder of diameter D and correctly predicted the characteristic
behavior of the super-upper branch of the VIV response—a maximum amplitude of 1.5D
when the flow velocity is increasing. These researchers also reported three vortex shedding
modes of VIV in the near-wall region based on their RANS modelling study. Some numer-
ical studies apply RANS modelling to investigate the influence of the Reynolds number
on the VIV response of a circular cylinder. Wanderlay and Soares [163] used RANS to
model the 1DOF-VIV response of a circular cylinder at a small mass-damping parameter
for three different ranges of the Reynolds number (namely, Re = 2000–6000, 2000–12,000,
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and 2000–24,000) and for six fixed values of the Reynolds number (namely, Re = 100, 200,
300, 400, 1000, and 1200). It was found that the Reynolds number has a significant effect
on the amplitude response, the lift coefficient, and the vibration frequency for a low mass-
damping system and that the upper branch of the VIV response only appears as the value
of Re is varied, but not for a fixed value of Re. This study suggests that the combined
influence of Re and Ur on the VIV response requires more investigation.

Recently, Gu et al. [164] applied RANS with the SST k-ω model to study the effect
of Reynolds number on the VIV response at small and moderate values of Re. A non-
dimensional parameter α ≡ fnD2/ν was defined in order to deal with the combined
influence of Re and Ur on the VIV response—a parameter that can be varied by changing
the flow velocity, the cylinder diameter and the structural stiffness while ensuring that the
values of the mass and the damping ratio are fixed. These researchers concluded that the
VIV response is sensitive to the Reynolds number for moderate values of Re and, indeed,
it was shown that the maximum amplitude of the VIV response is strongly dependent
on Re. Kang et al. [165] used RANS to study Re effects for a 2DOF-VIV consisting of a
circular cylinder at small and large mass ratios for three different Re ranges: namely, Re
= 1450–10,200, 5800–40,800, and 13,050–91,800. With respect to the influence of mass and
damping on the VIV response, Khan et al. [166] and Anwar et al. [167] used RANS with the
SST k-ω turbulence closure to model the transverse VIV response of a circular cylinder with
a mass ratio of 11 at Re = 10,000. These researchers demonstrated that RANS can be used
to correctly predict the three branches and vortex modes in the VIV response for higher
mass ratio at a high-Reynolds number—albeit the peak amplitude within lock-in range
was underestimated. Martins and Avila [168] investigated different combinations of the
structural damping ratio and the Reynolds number on the VIV response using the RANS
SST k-ω model.

The studies summarized above involve RANS modelling of the VIV of an elastically-
mounted circular cylinder. However, RANS modelling has also been utilized to predict the
FIV of bluff bodies with more complex (non-circular) cross-sectional shapes. Cui et al. [169]
used 2D RANS modelling to investigate the transverse FIV of square and rectangular
cylinders for different inflow angles at moderate values of the Reynolds number. These
investigators reported that galloping is induced on the square cylinder at an inflow angle of
0◦ and on the rectangular cylinder at inflow angles of 0◦ and 90◦. Han et al. [170] employed
2D RANS to model the power performance of a low-mass square energy harvester based
on an 1DOF-FIV (VIV and galloping) at Re = 24,000–160,000 and investigated the effect of
the inflow angle and the structural damping ratio on the FIV response. One interesting
phenomenon observed in this study was that a large-amplitude response occurs at large
value of Ur for the square cylinder, regardless of the value of the inflow angle (0◦, 22.5◦,
and 45◦) or mode of response (viz., whether VIV or galloping). Other notable studies using
2D RANS modelling to investigate the FIV response of non-cylindrical bluff bodies include
Ding et al. [171] (for square, triangular, quasi-trapezoidal shaped bodies), Zhang et al. [172]
(for triangular, square, pentagonal, circular-shaped bodies), Zhang et al. [173] (for triangular,
square, hexagonal, octagonal, 24-sided, circular shaped bodies), and Wang et al. [174] (for
different rear edges such as semicircular, triangular, trapezoidal, rectangular). In these
studies, the RANS modelling provided predictions that agreed well with experimental data
in terms of the FIV response. Most of these studies also determined the power production
arising from the FIV of different shapes of the bluff bodies in order to provide practical
guidance for the design of a FIV energy harvester.

RANS modelling can be used to predict the dynamic response of a cylinder with PTC
involving, in particular, attached or detached appendages having more complex and/or
irregular geometric structure. To this purpose, Zhu and Yao [175] used 2D RANS to show
that the correct placement of multiple small rods around an elastically mounted circular
cylinder can result in a significant suppression of the streamwise and transverse VIV
response. With respect to the incitement of oscillatory motion, Ding et al. [176] used 2D
RANS with the Spalart–Allmaras (SA) turbulence closure to model the FIV response of a
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rigid circular cylinder of diameter D with two roughness strips for flows at high-Reynolds
numbers in the range from 30,000 to 110,000. These researchers showed the presence
of a five-branch FIV response for this configuration (viz., static, VIV initial, VIV upper,
transition from VIV to galloping, and galloping). Furthermore, it was shown that the
maximum amplitude was increased due to the presence of the roughness strips—indeed,
the maximum amplitude was as large as 3.5 D. Another parametric study was conducted
by Wang et al. [177] who showed that attaching two symmetrical small-diameter cylindrical
rods at angular locations of 55◦ to 65◦ around the circumference of the cylinder significantly
extended the range of aeroelastic instability of the vibrating system.

Zhao and Cheng [93] used RANS with the SST k-ω model to study a 2DOF-VIV
system consisting of a rigidly connected four-cylinder square configuration arranged with
a fixed center-to-center separation. The modelling was undertaken for flows with Reynolds
numbers in the range Re = 1000–20,000. A key result of this study was that the inflow angle
of the incident flow has a significant effect on the lock-in range, the mode of vibration
of the amplitude response, and the hydrodynamic force coefficients. RANS modelling
has been used to investigate the transverse VIV of a two-cylinder system, such as two
rigidly coupled side-by-side cylinders with different diameters [178], side-by-side and
tandem arrangements of cylinders [179], and two elastically coupled side-by-side cylinders
in symmetric and asymmetric configurations [180].

Table 4 provides a summary of a number of important studies involving the use of
RANS modelling to predict the FIV response for single or multiple bluff bodies of various
shapes (single cylinder, cylinder with PTC, array of cylinders). Some studies included
here involve very complicated FIV responses, especially those for flows in the subcritical
Reynolds number regime.

Table 4. Summary of a number of representative RANS modelling studies of flow-induced vibration
of bluff bodies.

Author/Year Motion Shape m∗ ζ Re 1 Turbulence CFD

Guilmineau and
Queutey [160]/2004 1DOF-VIV circular 2.4 0.0054 900–15,000 SST k-ω FVM

Pan et al. [161]/2007 1DOF-VIV circular 2.4 0.0054 2500–13,000 SST k-ω FVM
Wanderlay et al. [162]/2008 1DOF-VIV circular 1.88 0.00542 2000–12,000 k-ε FDM
Zhao and Cheng [92]/2011 2DOF-VIV circular 2.6 0.005 1000–15,000 SST k-ω PG-FEM

Wanderlay and
Soures [163]/2015 1DOF-VIV circular 1.88 0.00542 100–24,000 k-ε FDM

Gu et al. [164]/2022 1DOF-VIV circular 1.28, 2.4 0.01, 0.006 200–27,000 SST k-ω FEM
Kang et al. [165]/2019 2DOF-VIV circular 2.6, 13 0.005 1450–91,800 SST k-ω FVM

Anwar et al. [167]/2022 1DOF-VIV circular 2.4, 11 / 10,000 SST k-ω FEM
Martins and Avila [168] 2/2019 2DOF-VIV circular 2.4 0.005–0.01 750–130,000 SST k-ω FEM

Cui et al. [169]/2016 1DOF-FIV rectangular 2.4 0.0054 385–19,250 SST k-ω PG-FVM
Han et al. [170]/2021 1DOF-FIV square 1.45 0.01–0.7 24,000–160,000 SST k-ω FEM

Ding et al. [171] 3/2015 1DOF-FIV various varied 0.017 10,000–130,000 SA FVM
Zhang et al. [172]/2017 1DOF-FIV various 0.93 0.1076 2800–12,000D SST k-ω FEM
Zhang et al. [173]/2019 1DOF-FIV various 2.4 0.0054 16,100–242,000 SST k-ω FEM
Wang et al. [174]/2020 1DOF-FIV various 2.6 0.002 8000–56,000 SST k-ω FEM

Zhu and Yao [175] 4/2015 2DOF-FIV cir-rods 2.4 0.0054 1631–6,387.1 SST k-ω FEM

Ding et al. [176]/2016 1DOF-FIV cir-strips 1.896 0.04 30,000–
110,000D SA FVM

Wang et al. [177] 5/2020 1DOF-FIV cir-rods 1.68 0.016 30,000–10,0000 SST k-ω FVM

Zhao and Cheng [93]/2012 2DOF-VIV 4-circular 2 0.001 1000–20,000 SST k-ω PG-FVM
Rahmanian et al. [178]/2014 1DOF-VIV 2-circular 5 0.0008 5000D SST k-ω PG-FVM

Cui et al. [180]/2014 1DOF-VIV 2-circular 2 0 5000 SST k-ω PG-FVM
Zhao et al. [179]/2016 1DOF-VIV 2-circular 2.5 0 5000 SST k-ω PG-FVM

1 The Reynolds number Re was varied by changing the reduced velocity Ur . 2 Three-dimensional RANS modelling.
3 The mass ratio varies with the cross-sectional shape with the mass per unit length fixed at a value of 11.76 kg m−1.
4 A circular cylinder with multiple rods placed around it. 5 An overset mesh is used in the numerical solution of
the FSI problem. All other studies summarized in this table use a moving mesh in the numerical solution of the
FSI problem.
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4.6. Detached-Eddy Simulation (DES) of FIV

To strike a balance between simulating (resolving) and modelling turbulence, detached-
eddy simulation is a hybrid LES/RANS approach that can be used to predict the flow over
a stationary or vibrating cylinder. DES involves modelling the small-scale (unresolved)
turbulence in the near-wall regions of the flow with a sufficiently fine grid using RANS and
simulating (resolving) the turbulent flow in the regions away from the wall using a grid
that is appropriate for LES. The governing equations of DES can be written in a general
form applicable for both RANS and LES depending on how the mean quantities are defined
(viz., ensemble-averaging for RANS and spatial filtering for LES). DES is more applicable
for the simulation of highly separated flows in the high-Reynolds number regime at a
computational cost that is intermediate between those of LES and RANS.

Nguyen and Nguyen [181] used a DES based on the SST k-ω model to simulate an
1DOF-VIV system consisting of a single circular cylinder subjected to free (undisturbed)
incident flow and a 2DOF-VIV system consisting of a downstream cylinder subjected to
the wake flow generated in the upstream direction by a fixed cylinder. Both cases involve
a high-Reynolds number flow. These investigators reported a very good agreement of
their predictions with experimental data and suggested that DES yielded more accurate
predictions of the fluid forces, the VIV response and the phase difference than a comparable
2D RANS model. Joshi and Jaiman [182] applied the delayed detached-eddy simulation
methodology to simulate the VIV of a slender flexible riser immersed in a turbulent flow
at a subcritical Reynolds number. In this study, the response amplitudes and the motion
trajectories were found to be in good agreement with the experimental measurements.
Recently, Ma et al. [183] used DDES to investigate FIV associated with a cylinder with
passive turbulence control (involving, as such, attachments of two strips to the cylinder of
different thickness at different locations to give different coverage). Their numerical results
agreed very well with the experiment data and successfully reproduced almost all the key
features of the FIV response, such as the maximum amplitude, the multiple branches in the
response, and the vortex shedding modes. Another similar DES study was conducted by
Ma et al. [184] but for a flow at the lower Reynolds number of Re = 3900.

Table 5 summarizes the details of these DES studies of FIV phenomena. Generally
speaking, this body of work suggests that DES is a very promising methodology for the
prediction of the FIV response for rigid/flexible circular cylinders and and for cylinder–
appendage system at high-Reynolds numbers.

Table 5. Summary of some key DES studies of the flow-induced vibration of bluff bodies.

Author/Year Motion Shape m∗ ζ Re Dimension SGS

Nguyen and Nguyen [181]/2016 2DOF-VIV circular 2.6, 11 0.001, 0.005 3000–30,000 2D SST k-ω
Joshi and Jaiman [182]/2017 2DOF-VIV circular 2.23 / 4,000 3D SST-DDES

Ma et al. [184]/2021 1DOF-FIV cir-strips 2.4 0.0054 3900 3D SST-DDES
Ma et al. [183]/2022 1DOF-FIV cir-strips 2.4 0.0054 3000-19,000 3D SST-DDES

All studies in this table use the FVM numerical method and the ALE FSI technique.

5. Machine Learning and FIV

The numerical modelling described in Section 4 is a full-order model (FOM) based
on the numerical solution of various forms of the Navier–Stokes equations coupled with
an equation of motion for the structure (body). This is a useful strategy to study the
FIV of a bluff body, but is limited to low-Reynolds number flow (if DNS is used) or
requires significant computational resources for flows in the strongly turbulent regime
at very high Reynolds number. Furthermore, as noted by Hollenbach et al. [185] and by
Sanders [186], the traditional CFD technology has no ability to provide physical insight
into the mechanism underpinning the FIV behavior.

Fortunately, the recent advancements in data-driven modelling based on machine
learning make it possible to address the issue of the high computational cost of con-
ducting CFD simulation/modelling of FIV phenomena. Data-driven modelling using
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machine learning can be applied in two different contexts: (1) construction of a reduced-
order model (ROM) of the FIV phenomena (viz., a simple mathematical representation
of the principal characteristics of the full-order model based on CFD) as discussed in
Section 5.1; and (2) use of a deep neural network (DNN) either to accelerate the conven-
tional numerical solution of CFD or to map the non-linear relationship between inputs
(e.g., flow and structure properties) and outputs (e.g., dynamic response, FIV forces, wake
patterns) as described in Section 5.2.

For readers who may not be familiar with machine learning, we will provide a brief
introduction to certain machine learning techniques that have been applied to modelling
FIV phenomena (described later in this section). Machine learning is a rapidly developing
discipline that lies at the intersection of computer science, statistics, and applied mathe-
matics. Machine learning algorithms are data-driven in the sense that these algorithms are
used to generate models from data—as more data are used, the models can improve. From
this perspective, machine learning can be used in any data-rich field (more specifically, for
the modelling of FIV phenomena considered herein) that generates a great amount of data
(big data).

In the application of machine learning to FIV modelling, the non-linear dynamical
system that generates the relationship between the inputs (e.g., flow) and output (e.g.,
transverse displacement) is characterized through the training data. Machine learning
algorithms can be used to build input–output models using time series data obtained
from either experimental measurements or numerical simulations of the dynamical system.
Examples of such machine learning algorithms are the autoregressive with exogenous
input model (and various extensions), the eigensystem realization algorithm (ERA), and
the dynamic mode decomposition (DMD)—all of which will be described below as it applies
to unravelling the dynamics associated with FIV phenomena. These methodologies can be
interpreted as model reduction methods that generate a low-dimensional representation
of the complex input–output relationship of the dynamical system from black-box data
streams (e.g., a series of “snapshots” or solutions obtained from a numerical simulation of
the dynamical system).

Other machine learning techniques include artificial neural networks (ANNs) (and,
more specifically, deep neural networks (DNNs)) as depicted in Figure 10a which consist of
a number of individual computational units (neurons) organized in a number of successive
layers. The computational units of the network are connected in a graph structure. A
DNN (unlike a shallow neural network) contains multiple computational layers—the
intermediate layers between the input and output layers are referred to as hidden layers
with the nodes in one layer connected to those in the next layer (in a architecture known
as a feedforward network). The output of the j-th computational unit (neuron) in the l-th
layer of a DNN (each layer of which consists of n neurons) is given by

al
j = σ

(
n

∑
i=i

al−1
i wl

i,j + bl
j

)
, (32)

where as
r is output of the r-th neuron in layer s, wl

i,j is the weight that connects the i-th

neuron in layer (l− 1) to the j-th neuron in layer l, bl
j is the bias imposed on the j-th neuron

of layer l, and σ(v) is a non-linear activation function. Typical activation functions include
the sigmoid function σ(v) = 1/(1 + exp(−v)) and the rectified linear unit (ReLU) function
σ(v) = max(0, v). The neural network has a number of unknown parameters, namely
the weights and biases, whose values are obtained by the neural network model so that it
provides a good fit to the training data (without overfitting these data so that the model
generalizes well—viz., gives good predictions of data not used in the training process).
Usually, these parameters (weights and biases) are determined by modifying their values
using a gradient descent algorithm to minimize a loss (or error) function that provides a
quantitative measure of the performance (or accuracy) of the neural network predictions
on the data.
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Figure 10. The architecture of a deep neural network (DNN). (a) A general deep neural network
consisting of a number of computational units (neurons) organized into a number of layers and
connected in a graph structure [187]. In this example, the neural network of an input layer having
two neurons (viz., input X is a two-dimensional vector), an output layer with one neuron (giving a
prediction of the output ŷ) and four hidden layers that pass information from a previous layer into
the next layer. (b) A physics-informed neural network (PINN) with an input t, an output η, and two
hidden layers with four neurons each [188].

A variant of DNNs is the so-called physics-informed neural networks (PINNs), an
example of which is exhibited in Figure 10b. A PINN is an example of a scientific machine
learning technique which integrates both data and mathematical physics models (physical
constraints and domain knowledge) in the learning algorithm. The mathematical physics
model (usually expressed as a partial differential equation) is embedded into the loss
function of the DNN using automatic differentiation. More specifically, the loss function
of a PINN consists typically of the weighted losses of the data and the partial differential
equations encoding the underlying physics of the problem. The PINN is then trained by
minimizing the loss using a gradient-based optimizer just as for the physics-uninformed
neural network (see Figure 10a).

5.1. Data-Driven Reduced-Order Models (ROM) of FIV

Reduced-order modelling in the context of fluid dynamics involves the development
of a low-dimensional mathematical model from a large flow dataset obtained either from
experimental measurements or from full-scale CFD simulations. The unsteady aerodynamic
models can be divided into three classes [189]. Firstly, there are the purely linear models
where the static and dynamic aerodynamic forces acting on the body are linear—these
models are most useful for steady or quasi-steady flows. Secondly, there are dynamically
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linear models where the flow is non-linear in space, but adheres to a linear relationship
in time (also referred to as a time linearization model). A projection-based ROM and a
system identification-based ROM are examples of this kind of model. The latter type of
ROM is typically used to characterize an unsteady flow past a structure subject to a small
disturbance (perturbation). Thirdly, there are the dynamic non-linear models. With an
increase in the amplitude of motion, the aerodynamic characteristics of the dynamic non-
linearity reveals itself and the implicit assumption of a small disturbance (perturbation) is
no longer valid. Dynamically linear and non-linear models are frequently used to represent
the FIV response of bluff bodies.

5.1.1. Projection-Based ROM

Proper orthogonal decomposition (POD) [190] and dynamic mode decomposition
(DMD) are two methodologies that are used to construct a projection-based ROM. The
datasets that are used to construct this type of ROM are sequences of snapshots of the
flow field (e.g., velocity, pressure). This type of ROM is frequently used to study the
characteristics of coherent wake structures in a flow.

The proper orthogonal decomposition (as referred to as principal components analysis
in the statistical literature) has been used in conjunction with the Galerkin projection method
to construct a reduced-order model. This consists of two steps: namely, (1) determine a
low-dimensional subspace where the dominant dynamics occur by decomposing a high-
dimensional flow field (assembled as a data matrix X) into a set of orthogonal modes; and
(2) project the high-order Navier–Stokes equations (partial differential equation, PDEs)
that determine this high-dimensional flow into this low-rank subspace to obtain a system
of ODEs using a Galerkin projection methodology [191,192]. It is noted that POD is an
efficient method for model order reduction in the flow dynamics of a system—it involves
computing the singular value decomposition (SVD) of the data matrix X and using the
information contained in the decomposition to construct the optimal basis modes (optimal
POD modes) that can be used to extract a low-rank, low-dimensional subspace of dynamic
flow evolution. Following from this analysis, it is possible to approximate the flow field
evolution given the NS equations using a Galerkin projection of the NS equations onto the
optimal POD modes to give the dimensionally reduced evolution equations.

One common shortcoming of the conventional POD/Galerkin methodology is the lack
of a clear separation of the individual dynamics embodied in the optimal basis modes—
this makes it difficult to build a high-quality ROM [193]. Moreover, certain low-energy
components that do not contribute to POD modes can have a large influence on the under-
lying mechanisms responsible for the flow features, implying that the POD-based ROM
may provide poor predictions in this case. As a result, many variants of the conventional
POD/Galerkin methodology have been developed to mitigate these shortcomings, such as
the balanced POD (BPOD) [194] and the spectral POD (SPOD) [193].

Recently, Schubert et al. [195] developed a data-driven ROM based on SPOD and
applied it to reconstruct the turbulent wake dynamics of a circular cylinder undergoing
VIV at Re = 4000. These researchers applied a sparsification procedure to determine the
temporal coefficients corresponding to the POD modes and enhanced the reliability and
robustness of the ROM.

Rather than basing a decomposition on the energy content of orthogonal modes while
ignoring the temporal information as in POD, DMD provides a modal decomposition of
the high-dimensional flow structures, where each mode in the decomposition embodies
spatially correlated structures that have the same linear behavior in time—in so doing, the
DMD provides not only a dimensionality reduction as in POD but also gives a model for the
time evolution of these modes. Each DMD mode corresponds to a single complex frequency
(oscillation that grows or decay) which is useful for providing a deeper understanding of
the flow mechanism, as well as for stability analysis. Moreover, the eigenvalue/eigenvector
decomposition provided by the DMD modes provides the flow evolution, obviating the
need to apply the Galerkin projection to obtain the dimensionally reduced evolution
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equations for the dynamical system. As an example, Kou et al. [196] employed DMD to
investigate the temporal evolution of the purely fluid modes at Reynolds numbers between
12 and 55—this information was used to explain the occurrence and disappearance of VIV
phenomenon in the subcritical regime.

5.1.2. System Identification-Based ROM

Another time-linearized ROM uses system identification to unravel the dynamical
relationship between the input and output data—two common data-driven methodologies
based on this approach are the autoregressive with exogenous input (ARX) model and the
eigensystem realization algorithm (ERA).

The key steps for the development of a system identification-based ROM are:
(1) perform full-order CFD simulations in order to obtain the required high-fidelity input-
output datasets; (2) train the unsteady fluid dynamics ROM, using either the ARX or ERA
methodology based on the data collected in the previous step; (3) couple the equation of
motion for the structure with the data-driven model to give an unsteady coupled ROM for
the (total) FSI system; and (4) conduct a linear stability analysis (LSA) of the dynamical
system using the coupled ROM. Note that either ARX or ERA is used to derive the ROM for
the fluid dynamics in step (2)—the other three steps are the same for both methodologies.

The ARX model is a linear time series model based on a discrete difference equation
for the input–output data, in which the current system output is expressed as the linear
superposition of the current input, as well as previous (in time) inputs and outputs, so

yF(k) =
na

∑
i=1

AiyF(k− i) +
nb−1

∑
j=0

Bju(k− j) , (33)

where the input u and output yF are obtained from full-order CFD simulations. The time
delay order parameters na and nb are specified by the user and the model coefficients Ai
(i = 1, 2, . . . , na) and Bj (j = 0, 1, . . . , nb) need to be estimated (either through a least-squares
fitting process or application of the maximum likelihood procedure). The development of
an unsteady fluid ROM based on ARX consists of four steps: (1) compute the steady-state
base flow for the FIV system (subject to a specific input signal) using a numerical solver; (2)
estimate the ARX model coefficients Ai and Bi defined in Equation (33); (3) construct the
reduced matrices using the estimated values for Ai and Bj; and (4) recast the fluid dynamics
ROM into a standard state-space format.

In general, a unit step signal can be used as the input (training) signal for computation
of the steady-state base flow. The requirement is that the prespecified training signal should
be persistently exciting (viz., its spectrum should contain a sufficiently large number of
harmonics) so that the input can trigger the unsteady linear flow dynamics. In the context
of the FIV response of a bluff body, the single input and output can be taken to be the
transverse displacement of the cylinder and the instantaneous lift coefficient acting on
the cylinder, respectively. The application of ARX to better understand FIV phenomena
has described in [197–200]. More specifically, Zhang et al. [197] constructed a fluid ROM
using ARX and this data-driven model is then coupled to the structure equation. This
coupled ROM for FSI was used to investigate the physical mechanisms underlying the
frequency lock-in in VIV for a flow at Re = 60. Utilizing linear stability analysis of VIV
based on the coupled ROM, these researchers reported two lock-in patterns: namely, a
“resonance-induced” lock-in (only the wake mode is unstable) and a “flutter-induced” lock-
in (both the wake mode and the structure mode are unstable). Moreover, Zhang et al. [197]
also investigated the effect of the natural frequency, the mass, and the damping of the
cylinder on the VIV dynamics using the FSI ROM. The main results concerning lock-in of
VIV reported by Zhang et al. [197] were further confirmed by other global LSA studies (e.g.,
Navrose and Mittal [201] applied LSA using a linearized Navier–Stokes equations in which
the equations for the steady flow and disturbance field were obtained separately).

The intrinsic mechanisms of various FIV response have been investigated using ARX
in conjunction with LSA. These include investigations of the transverse galloping of a
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square cylinder in laminar flow (at Re = 140–180) [199], the wake-induced vibration of two
identical tandem cylinders at Re = 60 [198] and the VIV suppression of a circular cylinder
by a tuned mass damper [200].

The eigensystem realization algorithm (ERA) is a data-driven methodology originally
presented by Juan and Pappa [202] who used it to identify modal parameters relevant to
modelling structures on the space shuttle. ERA is a linear system identification methodol-
ogy that uses the impulse response of the system to construct a ROM for the dynamics. The
development of a fluid ROM using ERA consists of the following key steps: (1) calculate a
steady-state base flow subject to an input impulse response using a numerical solver; (2) use
this impulse response data to construct a generalized Hankel matrix H obtained by stacking
shifted time sequences of the data; (3) compute the singular value decomposition (SVD)
of H; (4) calculate the reduced system state matrices; and (5) recast the fluid ROM into a
state-space format. In ERA, the dimension of the Hankel matrix H is a critical parameter
that controls the convergence of the constructed ROM.

In greater detail, ERA is applied with reference to a discrete-time state-space system
with the form

x(i + 1) = Ax(i) + Bu(i) , (34)

y(i) = Cx(i) + Du(i) , (35)

where x(i), u(i), and y(i) are the state vector, input vector, and output vector at discrete
time step i; and, A, B, C, and D are the system, input, output, and feed-through matrices,
respectively. ERA uses measurements of the impulse response of a dynamical system to
infer the matrices (A, B, C, and D) that define the state-space model. To this purpose, a
discrete Kronecker delta function input of the form

uδ(i) ≡ uδ(i∆t) =

{
I, i = 0;
0, i = 1, 2, 3, . . . ,

(36)

(I is the identify matrix and ∆t is the time-step size) gives rise to the impulse response
(output of the dynamical system) in the form

yδ(i) ≡ yδ(i∆t) =

{
D , i = 0
CAi−1B , i = 1, 2, 3, . . .

. (37)

This impulse response data are used to form a Hankel matrix H obtained by stacking
shifted time series of the data to give

H =


yδ(1) yδ(2) · · · yδ(s)
yδ(2) yδ(3) · · · yδ(s + 1)

...
...

. . .
...

yδ(r) yδ(r + 1) · · · yδ(s + r− 1)

 . (38)

Next, we take the SVD of H, truncate the small singular values in this decomposition
(viz., retain only the dominant singular values), and create a second shifted Hankel matrix
H’ (obtained by shifting the columns of H one time step to the left). The information in the
truncated SVD and in H’ can be used to construct estimates for (A, B, C, and D) that define
the discrete-time state-space model (reduced-order model) of the dynamical system.

Jaiman and colleagues conducted number of investigations of the FIV response of a
bluff body using the ROM/ERA methodology [203–207]. Yao and Jaiman [203] conducted
LSA on the transverse VIV of a circular cylinder. These researchers then investigated the
stability characteristics of FIV of a cylinder having different cross-sectional shapes (e.g.,
ellipse, forward triangle, diamond, and squares with various rounding radii). Generally
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speaking, these results demonstrated the effectiveness of using ROM/ERA to predict vari-
ous features of the FIV phenomenon. Indeed, ROM/ERA has been used to conduct stability
analysis of various vibrating systems, such as the FIV of a cylinder with different passive
suppression devices (e.g., fairings, splitter plate, connected-C) [206], of two cylinders in
either a tandem or side-by-side layout [205], and of active control of the VIV of a circular
cylinder [204] and a sphere [207].

The most useful aspect of the ARX and ROM/ERA methodologies is that once the
ROM is obtained using the data-driven process, it is straightforward to perform a linear
stability analysis of the dynamical system—an analysis that facilitates deeper insights into
the underlying mechanisms responsible for FIV through the examination of eigenvalue
trajectories (which allows one to better understand the competition between structure
and wake modes). For example, Cheng et al. [208] investigated the modal interaction
and transformation of a VIV system consisting of the flow past an elastically-mounted
circular cylinder for Reynolds numbers in the range from 20 to 180. These researchers used
ERA/ROM the explain the beating phenomenon observed in VIV which occurs in the initial
branch of the response and the significant lag time that arises between the initial branch
and the occurrence of a fully developed response in the lower branch. Other relevant
investigations utilizing LSA in the context of ROM/ERA in order to better understand
the FIV phenomenon include Bukka et al. [206], Yao and Jaiman [204], Chizfahm and
Jaiman [207], and Li et al. [199].

It is important to stress that the linear ROMs constructed using ARX or ERA cannot
be employed to study the non-linear characteristics of the flows associated with the FIV
phenomenon.

5.1.3. Non-Linear ROM

The projection-based ROMs based on either POD or DMD and the system identification-
based ROMs based on either ARX or ERA are linear models of the system dynamics (viz.,
they are time-linearized, dynamically linear or statically non-linear [209]). One common
weakness of these approaches is that they are difficult to generalize to high-dimensional
non-linear systems involving large-amplitude motions of the structure such as the FIV
response of a bluff body subjected to a strongly turbulent flow.

In order to predict the non-linear dynamics of a complex flow system using a ROM,
a general strategy is to incorporate within the linear model some mechanism to account
for non-linearities in the dynamics, such as the Koopman operator [210] and the discrete
empirical interpolation method (DEIM) [211]. In particular, Miyanawala and Jaiman [211]
combined POD and DEIM to present a non-linear ROM for the 2DOF-VIV of a sharp-
cornered square cylinder immersed in either a laminar or turbulent flow. These researchers
successfully used this non-linear ROM to interpret the most significant wake features and
their contributions to the forces on the vibrating body.

An alternative for the generation of a reduced-order non-linear model of a high-
dimensional flow field uses machine learning, especially deep neural networks. Some
DNN architectures can be interpreted as non-linear generalizations of either POD or DMD
in the sense that they decompose the high-dimensional flow fields into low-dimensional
non-linear modes. An example is provided by the convolutional neural network (CNN)
autoencoder proposed by Murata et al. [212]. Another strategy is to combine a DNN
with a traditional linear model decomposition in order to construct a hybrid ROM that
integrates the linear and non-linear characteristics of an unsteady flow. The conventional
POD performs well in dimensionality reduction based on a set of time-invariant orthogonal
modes. As a generalization, the temporal evolution of the POD modes (represented as
modal coefficients) can be learned using a deep neural network—examples include the
CNN [213] and the encoder–decoder recurrent neural network (RNN) using a long short-
term memory (LSTM) cell [214]. The effectiveness of these hybrid POD-DNN-based ROMs
has been demonstrated by their successful prediction of various aspects of the FIV of a bluff
body for flows at low- and high-Reynolds numbers.
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In order to identify non-linear low-dimensional features of a flow, Bukka et al. [215]
incorporated a CNN with an RNN to give a convolutional recurrent autoencoder network
(CRAN) model. In this framework, a low-dimensional embedding of the state variables
was learned by the CNN and the transient evolution of the dynamics was learned using the
RNN-LSTM. A conventional linear system identification technique can also be combined
with a DNN and used to investigate the underlying mechanism and stability characteristics
of a strongly non-linear dynamical system. To this purpose, Kou and Zhang [209,216]
proposed a hybrid ROM to accurately predict the integrated flutter and buffeting of an
airfoil. Here, an ARX model was trained and used to approximate the linear dynamics
while the non-linear deviations between the real outputs for large-amplitude inputs and
the ARX model was represented using a radial basis function neural network (RBFNN). In
the context of predicting the VIV of a freely vibrating sphere in the transverse direction,
Chizfahm and Jaiman [217] used a predictive RNN-LSTM as a DNN-ROM to provide the
non-linear mapping of the input-output dynamics of the FSI system. This was integrated
with a ROM/ERA to provide a linear approximation of the non-linear model for the
stability prediction.

5.2. Data-Driven Deep Neural Network Applied to FIV

Recent advancements in using machine learning within the broader field of fluid
dynamics [3] can be applied for the specific problem of simulating FIV. The possible
application modes can be divided into three types: (1) use machine learning to augment the
numerical solving procedure in standard CFD solvers; (2) use deep neural network to infer
the flow field and FIV response; and (3) use deep neural network to model the fluid force
of FIV. The above three applications are all data-driven methods, which will be reviewed in
detail below.

Deep learning is a subset of ML that refers to the use of highly multi-layered neural
networks to understand a complex dataset, with the intention of predicting certain features
in the dataset.

5.2.1. DNN-Accelerated Fluid Modelling

The first scenario integrates the machine learning technique into the standard CFD
solver to accelerate the key calculation steps. This is a hybrid application of traditional CFD
simulation and learned neural network in fluid dynamics. Duraisamy et al. [218] reviewed
various machine learning methods for augmenting numerical simulation techniques at
various levels of fidelity.

High-fidelity simulations of FIV require the use of DNS or of LES. While DNS sim-
ulations of high-Reynolds number turbulent flows is prohibitively expensive, recent ad-
vancements in applying machine learning to perform accurate DNS on a coarser grid
greatly reduce the computational expense [219]. In DNS, a major computational burden
is resolving the smallest physical scales in the flow through the use of extremely fine
grids. In order to accelerate the computation of DNS and LES without loss of accuracy,
Kochkov et al. [219] embedded a neural network interpolator into the standard CFD solver
on a coarser grid—specifically, in order to approximate the convective flux term for DNS
and model the residual correction for LES. The training dataset is high-resolution simula-
tions for Kolmogorov flow at Re = 1000. In this application, the isotropy of Kolmogorov
flow particularly lends itself to this methodology and the training procedure and model
structure can benefit from numerous invariances in this flow. In principle, the ML-based
CFD solver proposed by Kochkov et al. [219] can be applied to any flow since the output of
the neural network only depends on local features, which was validated by a test case with
large-domain size, decaying turbulent flow and a higher Reynolds number of 4000.

The traditional turbulence modellings in CFD apply some approximations for tur-
bulence effects at high-Reynolds numbers, such as a SGS model in LES or the SST k-ω
model in RANS, which is the main source of numerical errors. Therefore, an alternative
way to improve the accuracy of simulations and to speed up the calculation of LES and
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RANS is to modify the Reynolds stress or SGS stress through the application of machine
learning techniques. A notable machine learning technique within the field of LES is the
neural network SGS model of Maulik et al. [220], which allows for a more accurate closure
within LES. Compared to LES, machine-learning augmented RANS is a broad and rapidly
developing field. Several techniques have been developed to accelerate RANS modelling
and increase their accuracy. A popular approach is to integrate a richer eddy viscosity
closure relationship. For example, Ling et al. [221] used a tensor basis neural network
(TBNN) to predict the anisotropy tensor, a highly versatile closure relationship. Another
notable work in augmented eddy viscosity modelling includes the framework proposed by
Wu et al. [222].

The application of machine learning mentioned above is interpreted from an overall
perspective of fluid dynamics, focusing more on the general approaches instead of applica-
tion to a specific problem. There is no doubt that these ML-based techniques, regardless
whether it is the ML-accelerated DNS/LES, or the ML-modified turbulence modelling
of LES/RANS, could in principle be used to address numerically the FIV response of a
bluff body, increase the accuracy of LES/RANS simulation, or develop a highly-tuned
LES/RANS model for turbulent FIV simulations.

5.2.2. Physics-Informed Neural Network of FIV

Contrary to the ML-based DNS or LES or RANS models, the second application of ma-
chine learning in fluid dynamics is completely out of the traditional CFD simulations—that
is to say, no numerical calculations are needed during the inference procedure by a trained
deep neural network. It should be noted that the training dataset can be experimental data
or numerical results—if it is the latter, the necessary CFD simulations would be carried out
during the data preparation period. This data-driven deep learning technique has been
employed explicitly for modelling the FIV response of a circular cylinder.

Raissi et al. [188] conducted some seminal work to apply a physics-informed neural
network (PINN) model to accurately infer the lift and drag forces acting on a circular
cylinder undergoing a 1DOF-VIV from scattered simulation data of the velocity field for a
laminar flow at Re = 100. It should be noted that the PINN presented by Raissi et al. [188]
is not a black-box model like traditional data-driven neural networks based on large
training data, because it encodes the NS equations coupled with the structural motion
equation into the loss function as regularization (constraints on the output of the neural
network), which makes it have potential to infer target variables based on the governing
physical laws and on a limited training dataset. Inspired by the introduction of the eddy
viscosity νt in conventional turbulence models used in CFD (e.g., LES, DES, RANS) for
the closure of either the time-averaged or spatially-filtered NS equations, Xu et al. [223]
introduced an artificial viscosity νn in the RANS framework to formulate the parameterized
Navier–Stokes equations, which was treated as the physical constraint of the established
PINN. For the case of flow over a stationary cylinder at a high-Reynolds number of 105,
the physics-informed deep learning successfully reconstructed the missing flow dynamics
and inferred the lift and drag coefficient profiles. As an extension of the study reported
by Raissi et al. [188] and by Xu et al. [223], Bai and Zhang [224] further used both the
parameterized Navier–Stokes equations-based PINN (PNS-PINN) and the Navier–Stokes
equations-based PINN (NS-PINN) to infer the unsteady velocity field and force coefficients
for the transverse VIV of a circular cylinder in a turbulent flow. The training data for neural
network models consisted of 2D RANS data at Re = 10,000 and employed the SST k-ω model
and the SST-SAS turbulence closure models. These researchers also tested two kinds of
datasets based on the flow velocity and the dye trace, respectively. The results demonstrated
the predictive capability of the PNS-PINN trained by a velocity dataset for turbulent VIV
at subcritical Reynolds numbers, in terms of correctly predicting the flow field and the
lift and drag coefficients. Cheng et al. [225] applied a similar PNS-PINN approach to
study the 2DOF-VIV of a single circular cylinder at Re = 2889 and wake galloping of two
rigidly-connected circular cylinders at Re = 9000 and reported good success.
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The above four representative studies have demonstrated that the data-driven deep
learning technique underlying the PINN framework is capable of inferring the complicated
FIV response of a bluff body from a limited training dataset, in terms of dynamic parameters
(damping and stiffness), the entire velocity and pressure fields, and the lift and drag forces
acting on the vibrating system. Moreover, PINN can be applied in various scenarios, from
laminar to turbulent and for a single cylinder or multiple (array of) cylinders.

5.2.3. DNN-Based FIV Force Model

The last machine learning model is specialized in predicting the FIV modelling of
a bluff body, which involves some small-scale numerical calculations, not for the NS
equations (multiple PDEs) governing the fluid dynamics, but for the mass–spring–damper
(one ODE) system controlling the structural oscillation.

As an example of this approach, we focus on a recent work by Zhang et al. [187]
which will be explained in detail in order to help the reader understand what role machine
learning plays in the VIV prediction for a single circular cylinder. As shown in Equation (13),
the forcing term on the right-hand side represents the fluid force responsible for the VIV
response of a circular cylinder, which is closely related to the flow properties and the
vibration parameters. Zhang et al. [187] established a deep neural network to map the
relationship between these two, which has as the aerodynamic force coefficient as the
single output and multiple input features, such as the Reynolds number, the reduced
velocity, the oscillation amplitude and the velocity of the circular cylinder, as well as a few
parameters characterizing the oscillating incident flow. The neural network was trained
using a large dataset from forced-vibration experiments. To predict the transverse VIV
of flexible pipes, the trained neural network was applied to calculate the fluid force at
each time instant, which was then substituted into Equation (13), so that this second-order
ODE can be numerically solved. This was accomplished by using the Newmark-β method
combined with a finite-element discretization of the long flexible pipe. Another similar
case will be given in Section 6 for a VIV energy harvester.

It can be inferred that the excitation force coefficient model based on a deep neural
network is computationally efficient owing to the fact that the calculation of the mass–
spring–damper system is much simpler than the solution of the NS equations in the
first scenario.

6. Energy Harvesting Based on FIV

Sections 2–5 have provided a comprehensive overview of the various methodologies
that can be used to model the FIV response, such as mathematical modelling, numerical
modelling, and modelling based on machine learning approaches. Flow-induced vibra-
tion is essentially a FSI phenomenon and a deeper understanding of this phenomenon
is important for real-world engineering and industrial applications—the most common
is perhaps the control (suppression) of FIV in engineering structures such as offshore
production risers [226], heat exchanger tubes [227], suspension bridges [228], and power
transmission lines [229]. The efficient harvesting of the energy potential of FIV is a key
application arising from the growing demand for clean and renewable energy, as well
as the rapid development of related technologies, such as wireless sensor networks and
micro-electromechanical systems [7,230]. This section focuses on recent advancements in
flow-induced vibration energy harvesting (FIVEH)—this application is used to illustrate
how the various modelling methodologies described earlier can be used to address this
important problem.

The concept of FIVEH is to harness wind and/or water energy from the surrounding
environment by utilizing structures that oscillate in the flow (providing various FIV re-
sponses) and then converting this energy of oscillation into usable energy (e.g., electricity).
Therefore, FIVEH primarily involves two forms of coupling: namely, (1) the bidirectional
fluid–structure interaction converting fluid energy to mechanical energy and (2) the electro-
mechanical coupling transforming the mechanical energy to electrical energy. The former
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specifically refers to various FIV phenomena (see Section 2) consisting primarily of VIV
and galloping. The oscillatory energy arising from the FIV response can be converted
by various means—electromagnetic, piezoelectric, electrostatic, dielectric, triboelectric,
interface circuit, and power management [6]—to a usable form of energy.

Like other energy generators, the core research objective of FIVEH is to obtain the
optimal power performance—specifically, to enhance the oscillation by widening the
effective flow speed range and reducing the cut-in velocity of FIV so as to maximize the
energy harvesting efficiency and power generation. The performance of FIVEH can be
directly evaluated by the output voltage, or indirectly analyzed by examining critical
oscillation properties, such as the displacement amplitude, the vibration frequency, and the
lift force acting on the moving body.

Numerous efforts have been made to enhance the power performance of a FIV energy
harvester in a number of ways. The most direct and easiest way is to change the geometrical
shape of the bluff body which can include utilizing a cylinder with a non-circular cross-
section (e.g., square cylinder [231], rectangular cylinder [232], triangular cylinder [233],
D-section cylinder [234]) and incorporating a PTC device to change the surface roughness
of the cylinder (e.g., adding attachment(s) to a cylinder, such as roughness strips [176],
trip wires [235], a splitter plate [236], small rods [237], and a free-to-rotate impeller [238]).
The underlying strategy here is to obtain an asymmetrical geometry of the rigid body
which induces an instability in the shear layer to produce a negative damping in the
transverse (crosswind) direction and, hence, trigger galloping on the vibrating body. As
mentioned in Section 2.3, an energy harvester driven by galloping can potentially yield a
larger power production than that driven by VIV. In addition to incorporating appendages
on an oscillating body, the non-linear spring stiffness and damping can be changed on
the supporting structure to improve the harvested power and efficiency [239,240]. The
mechanical part of the energy harvester can also be designed as a dual-mass system
(i.e., one mass undergoing FIV is used to drive another mass with an attached magnet
that moves relative to a coil in order to produce electricity [241]), as a multi-degree-of-
freedom system [242], and as a multi-directional system [243]. All these strategies have
been shown to improve the extraction of fluid energy from the ambient flow. Moreover, an
hybrid energy harvester based either on two or more FIV phenomena (e.g., VIV-galloping)
or on utilizing multiple forms of renewable energy simultaneously (e.g., wind, water,
photovoltaic) based on multiple energy conversion mechanisms [244] can generally yield
higher energy production. Lastly, an array of cylinders with an appropriate (optimal)
layout can significantly increase the total power generation for the system.

Figure 11 summarizes some common FIV-based energy harvesters. The interested
reader can refer to the excellent review paper by Lv et al. [8] for more details concerning
the operating principles of various energy harvesters and for examples of various method-
ologies that have been used to improve the power production of a FIV energy harvester.
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Figure 11. Strategies to improve the power production from a vibrating cylinder undergoing FIV for
energy harvesting: (a) attaching small rods (circular, square, triangular, fin-shaped); (b) attaching
a splitter plate (solid and slotted) [245]; (c) attaching a free-to-rotate pentagram impeller [238];
(d) incorporating a dual-mass system [241]; and (e) utilizing a multi-degree-of-freedom system with
multiple piezoelectric elements [242].

6.1. Mathematical and Numerical Modelling of FIVEH

Mathematical and numerical modellings are important tools to study FIVEH, since
accurate theoretical models and CFD simulations can predict the dynamic response of the
system and the power production of the energy harvester. To provide a comprehensive
example of how mathematical and numerical modelling can be applied to FIVEH, we
consider, specifically, a piezoelectric energy converter for this illustration.

Figure 12 depicts the main components of a simple piezoelectric energy harvester. As
shown, the cylindrical rigid body connected to the free end of a cantilever beam undergoes
FIV as a result of the excitation from the incident flow. This motion deforms the piezoelectric
sheet bonded to the root of the cantilever beam—the deformation converts the mechanical
vibration of the body to electrical energy in the interface circuit with a load resistance of
R. Note that the fluid, the bluff body, and the piezoelectric transducer are considered as a
single dynamical system that can be modelled using a set of governing equations—these
equations can be solved to determine the vibration response and the power output of the
energy harvester.

The semi-empirical model described in Section 3 provides the coupling of a fluid
motion equation (wake oscillator) and an equation of motion for the body (mass–spring–
damper system). In addition, a governing equation for the piezoelectric circuit is required
to model the system. In accordance to Erturk and Inman [246], a SDOF lumped-parameter
model that describes the coupled electro-mechanical system can be expressed as

Mcÿ + Ccẏ + Kcy− θV = Fy , (39)
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θẏ + CPV̇ +
V
R

= 0 . (40)

Figure 12. Sketch of a simple piezoelectric energy harvester based on flow-induced vibration.

If we compare these equations to the mathematical model (Equation (13)) in Section 3,
the equation of motion of the structure given by Equation (39) has been modified to include
the mechanical force which is modelled as being proportional to the voltage V(t) across the
external electrical load resistance R with the coefficient of proportionality for the coupling
to the electro-mechanical system given by θ. Other physical quantities, such as Mc, Cc, Kc,
y, and Fy, have the same meaning as those in Equation (13). Equation (40) is the circuit
equation where V(t) arises from the capacitance of the piezoelectric layer Cp and the
electro-mechanical coupling θ.

If the rigid body in Figure 12 is replaced with a smooth circular cylinder, the system
becomes a VIV-based piezoelectric energy harvester. Dai et al. [247] developed a reduced-
order model for this device by utilizing the Euler–Lagrange principle and a Galerkin
discretization based on the wake-oscillator model proposed by Facchinetti et al. [27]. The
governing equations are given by
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Equation (41) models the motion of the free end of the piezoelectric beam where
ri (i = 1, 2, . . . , n) denotes the modal coordinates of the displacement; Lc and Ls are the
lengths of the cylinder and the substrate layer, respectively; ϕi(Ls) is the displacement
of the end of the cantilever beam. Equation (42) encapsulates the dynamics of the near
wake behind the cylinder based on Facchinetti et al.’s wake oscillator model with an
acceleration coupling term—here, λ = 0.3 and A = 1.2. Equation (43) is the governing
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equation for the piezoelectric circuit, similar to Equation (40). Dai et al. [247] validated their
non-linear mathematical model using some experimental results and reported a very good
agreement. These investigators applied this model to study the effect of the tip mass and
the piezoelectric sheet length on the maximum generated voltage and harvested power of
the piezoelelectri energy harvester.

The linear benchmark model [247] is a common theoretical form for the FIV piezoelec-
tric energy harvester. A number of researchers has modified this basic form and tailored it to
solve various engineering problems. For example, Hou et al. [248] introduced a non-linear
magnetic force term Fm into Equation (41) with the following form:

Fm =
3µ0M2

2πϕ1
3(Ls)

r

[
r2 +

(
d0

ϕ1(Ls)

)2
]−5/2

. (44)

Here, µ0, M and d0 are the vacuum permeability, the magnetization intensity, and the
distance between the magnets, respectively.

Rather than formulating the VIV aerodynamic force using a wake-oscillator model,
Wang et al. [249] presented a new semi-empirical model for the VIV piezoelectric energy
harvester using the Scanlan–Ehsan non-linear representation for the forcing term Fy in
Equation (39). This formulation was compared to some wind-tunnel data and found to
yield accurate predictions. A significant benefit of this model is that it can be used not only
for a smooth circular cylinder, but also for cylinders having different cross-sectional shapes
and for a cylinder–attachment system.

Galloping is provoked when a square or rectangular cylinder is incorporated in the
beam. For a piezoelectric energy harvester exhibiting galloping, the external excitation
can be modelled using quasi-steady theory—the modelling here is similar to that for the
polynomial expansion of the transverse force coefficient (see Section 3.3 for more details).
While the electro-mechanical coupling term is different, the model can be formulated in a
number of ways, such as: (1) using a simple SDOF mass–spring–damper system [250,251];
(2) using a distributed parameter model with Rayleigh–Ritz discretization [252]; and
(3) using a Euler–Bernoulli distributed parameter model [253]. A mathematical model can
also be derived for the piezoelectric energy harvester based on other types of FIV response,
such as a flutter converter [253] and a wake-galloping converter [254]. As a final note,
the use of a SDOF mass–spring–damper system [250,251] mentioned here involves simply
using an odd-order polynomial approximation for Fy in Equation (39) which results in

Mcÿ + Ccẏ + Kcy− θV =
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In addition to mathematical modelling (described above), numerical modelling based
on CFD can be employed to predict the dynamics of the FIV piezoelectric energy har-
vester. To this purpose, numerical modelling can be used in several different ways to
address problems related to FIVEH. Firstly, high-fidelity CFD predictions can be used
to validate various theoretical models of FIVEH (e.g., the analytical and semi-empirical
models mentioned above). Secondly, the distributed parameters in a semi-empirical model
of FIVEH can be determined using reliable data obtained from high-fidelity numerical
simulations (e.g., DNS or LES), especially when wind-tunnel experimental data are not
available. Thirdly, CFD can be used to predict the detail characteristics of the flow and the
power efficiency of a FIV energy harvester [255–261]. This is of particular importance when
it is difficult and/or impossible to develop a detailed mathematical model for an energy
harvester (e.g., a harvester that utilizes a bluff body having a very complex geometry).
Generally, CFD simulations generate more accurate predictions than those provided by any
analytical and/or semi-empirical mathematical model, frequently at only a fraction of the
cost required for conducting a detailed experimental investigation. As a result, numerical
modelling occupies a central role in research concerning FIVEH.
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Recently, Ramirez [262] proposed a new modelling approach which couples CFD with
an electro-mechanical model to obtain the flow dynamics and the electric power of multiple
interacting energy harvesters. The approach advocated here is to integrate the NS equations
for incompressible fluid flow with the Gauss law for the piezoelectric equations and the
mass–spring–damper system for the oscillating rigid body. The proposed model uses the
NS equations to make detailed predictions of the flow, rather than employing a simple
(semi-empirical) wake-oscillator model, so it can generate more accurate predictions of the
FIV displacement in the energy harvester.

In summary, employing reliable mathematical and numerical modelling can effectively
predict the aerodynamic response of a bluff body, such as the vibration displacement, the
frequency, and the lift force, as well as the power and output voltage of an energy harvester
of a specified design. Moreover, these powerful mathematical and numerical tools can be
used to undertake a parametric study of the influence of various aero-electro-mechanical
parameters relevant to the system on the performance of the FIV energy harvester.

6.2. Machine Learning for Modelling FIVEH

Until now, traditional research methods, such as theoretical analysis (mathematical
modelling), CFD simulations (numerical modelling), and wind-tunnel experiments, are
still the principal approaches used to investigate FIVEH, but these approaches have some
limitations. For example, a mathematical model is not always available for a complicated
FIV energy harvester that has an irregular cross-sectional shape, or attached with small
devices, or consists of a multi-cylinder system. On the other hand, CFD simulations
and experimental investigations are time-consuming and expensive. As a consequence,
machine learning approaches capable of addressing the FSI problem (see Section 5) is
another efficient and economical alternative methodology that can be used to predict the
dynamic response intensity and power generation capacity of a FIV energy harvester.

Some researchers employ machine learning and neural networks to wind assessment
(e.g., wind speed, wind pressure) and power forecasting of a large-scale horizontal-axis
wind turbine or a wind farm [263–266], which is instructional to the implementation of
these artificial intelligence (AI) approaches on a FIV energy harvester. However, to the
authors’ knowledge, there are very few studies that apply ML or NN in the prediction of
the dynamics associated with a FIV energy harvester. Two representative works will be
reviewed here in detail in order to help the reader understand and appreciate the possible
and feasible application of ML to support the design of current and future energy harvesters
for exploiting FIV.

Zhang et al. [267] investigated wake galloping in a piezoelectric energy harvester
consisting of an upstream stationary obstacle and a downstream piezoelectric cantilever
beam connected with a cuboid bluff body on the free end, as shown in Figure 13. These
researchers first conducted a series of wind-tunnel experiments to study the influence
of shapes and sizes of upstream obstacles, as well as the distances between the fixed
and vibrating body on the wake galloping response. Subsequently, they employed three
different algorithms (viz., a decision-tree regression (DTR), a random forest (RF), and
gradient boosting regression trees (GBRT)) to train a machine learning model based on the
large datasets collected from their experimental measurements, including multiple input
signals (e.g., wind speed and geometric variables), as well as two output signals (root-mean-
square voltage Vrms and the maximum displacement ymax). These researchers found the
GBRT model with best hyperparameters optimized using a ten-fold cross-validation method
can obtain the most accurate predictions of Vrms and ymax. This example demonstrates the
possibility of training a ML model with experimental data to predict the power output and
vibration intensity of a wake-galloping energy harvester. The modelling logic of this novel
approach is summarized in Figure 14 (left panel).
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Figure 13. Schematic of wake galloping in a piezoelectric energy harvester [267].

Figure 14. Machine-learning modelling procedure for a piezoelectric energy harvester based on wake
galloping [267] (left panel) and galloping [268] (right panel).

By contrast, Hu et al. [268] applied AI to model a galloping piezoelectric energy
harvester in a more mathematical way. As described in Section 3.3, the most-commonly
used theoretical model of galloping uses the quasi-steady assumption of the aerodynamic
force. Instead of representing the external excitation by an odd-order polynomial function
fitting the discretized experimental data points like others, Hu et al. [268] applied a well-
trained three-layer back propagation neural network (BPNN) to establish the non-linear
relationship between the force coefficient Cy (output) and the angle of attack α (input). To
demonstrate the superiority of using a neural network, these researchers first replaced
the polynomial expression of aerodynamic force on the right-hand side of the structural
equation (Equation (45)) with the output of the trained BPNN, and combined this with the
electrical circuit equation (Equation 40)) to form a BPNN SDOF model. Furthermore, the
authors proposed an architecture integrating the finite-element modelling of the electro-
mechanical structure with a trained BPNN of the aerodynamic force. Specifically, during
each time step of simulation, the body motion calculated from the finite-element model is
first passed as an input to the trained BPNN, which then predicts the aerodynamic force
acting on the body at the current moment and updates the fluid force in the finite-element
model in real-time. The simulation converges after an iterative process. In this case, the
use of BPNN only involves the action of the fluid on the body (viz., prediction of the
aerodynamic force), while the body motion and the electro-mechanical conversion are
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addressed by the finite-element model. A flowchart of the application logic is shown in
Figure 14 (right panel).

Obviously, the above two studies use completely different AI approaches in addressing
the problem of FIVEH. The first case [267] developed a non-linear black-box model for the
dynamical system without knowing the particular mathematical structure or underlying
physics, in which the relationship between the input and the output are obtained by training
a machine learning model using a large dataset. On the other hand, the second case [268]
actually lies at the intersection of machine learning and numerical modelling, in which
the former is used for prediction of the aerodynamic force and the latter is responsible for
calculating the motion of the bluff body and the output voltage of the energy harvester. In
addition, the second application mode of AI has a more solid theoretical foundation because
the flow information and the energy conversion are obtained by numerically solving the
NS equations and the electro-mechanical circuit equation—in this sense, it is more useful
and practical when there is a lack of training data.

In summary, AI approaches applied to the FIV energy harvesting is nascent, but as
these new techniques mature and become more widespread, they could certainly aid in
the design of FIV energy harvesting systems. Some of the previously mentioned PINN
techniques for flow field reconstruction in Section 5 could also be applied to in situ tuning
and control of a FIV energy harvester. By allowing for accelerated and more accurate
simulations of FIV devices, the design process will be better informed.

7. Outlook

Flow-induced vibration of a bluff body is a classical FSI problem with deep theo-
retical significance and practical value. The objective of this comprehensive survey is
to provide a systematic overview on the current modelling approaches for FIV—a full
spectrum of approaches is reviewed including mathematical modelling, numerical simu-
lation/modelling based on CFD and application of machine learning. These approaches
are illustrated through an application to a real-world problem—design of a FIV energy
harvester. Each modelling approach has its own strengths and weaknesses. In this section,
we consider some of the outstanding challenges (future issues) that remain to be addressed
and summarize some directions for future work and perspectives for the modelling of FIV
phenomena.

7.1. Future Issues

(1) Mathematical modelling.

• Mathematical modelling plays an indispensable role in our understanding of the
underlying physics of the FIV phenomenon. However, formulating an accurate math-
ematical model for a highly non-linear dynamical system, such as FIV phenomena is
highly challenging. The mathematical models proposed to date based on experimental
data and/or engineering experience are not purely analytical models derived from
first principles using a comprehensive theory and, as a result, these models have a
limited range of applicability. Is it possible to develop a more complete theory of
various aspects of FIV phenomena that will allow the formulation of more general
analytical models?

• Most theoretical models for FIV, whether a coupled wake-oscillator model or single-
degree-of-freedom model, are semi-empirical in nature—implying that the model
has unknown parameters whose values need to be determined (fitted) to available
experimental data. As a result, these models tend to have a very limited range of
applicability (viz., a model that has been developed for VIV for a particular bluff body
shape cannot be used for VIV for another body shape or for galloping for the same
body shape without changing either the structure of the model and/or re-fitting the
free parameters that define the model). More specifically, the need for reformulating
the structure of terms and/or inclusion of new terms in the model along with a re-
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fitting of the free coefficients using available experimental data need to be conducted
for new scenarios.

• Most of the current mathematical models for FIV phenomena have been developed for
VIV, which can also include galloping behavior in the formulation through use of the
quasi-steady assumption—this usually involves inclusion of an odd-order polynomial
approximation of the aerodynamic force responsible for galloping in the mathematical
model. Although some other methods (e.g., neural network mappings) have been
proposed to improve the curve fitting accuracy of the forcing term responsible for
galloping, it is stressed that the quasi-steady assumption has inherent limitations and
is applicable only under certain conditions.

(2) Numerical modelling.

• Owing to its moderate computational cost, RANS modelling will remain the workhorse
of CFD applications to engineering and industrial FIV problems of practical relevance
into the foreseeable future. The essential element for the successful use of RANS
modelling is formulation of turbulence closure models. Is it possible to simulate
FIV for these engineering and industrial applications using lower-fidelity numerical
models such as unsteady RANS?

• Even so, for FIV problems that require greater accuracy or detailed information on
the spatial and temporal fluctuations of the flow field, hybrid methods may be the
numerical tool of choice (at least in the near future) given that these methods are
not as computationally prohibitive as either LES or DNS. Hybrid methods represent
the amalgamation of closure modelling with eddy-resolving simulation. The key
question here is what blending and/or interpolation functions should be used in
hybrid methods to give the best prediction of FIV phenomena?

(3) Machine learning technique.

• In machine learning, the availability of large public datasets has spurred rapid progress
in computer vision, speech recognition, and other applications. Many sophisticated
machine learning techniques (including those for numerical simulation of turbulent
flows) require large datasets consisting of high-quality information. Perhaps the
biggest challenge for machine learning techniques within FIV simulation is the lack of
availability of data. Every investigator that applies a state-of-the-art machine learning
method to FIV simulation must generate their own dataset. Currently, it is impossible
to benchmark various machine learning techniques, such as PINN or augmented
RANS modelling as applied to FIV, because there exists no suitable public dataset for
this purpose.

• Aside from the lack of available data, there are major physics-based challenges for
applying machine learning technique to FIV simulation. Changes in the Reynolds
number, in the freestream turbulence, in vibration parameters, and in the body shape
all greatly affect the FIV response. Even without incorporating machine learning
techniques, traditional physics-based numerical methods, such as RANS and LES,
often struggle to reproduce the complicated interactions within FIV. When applying a
machine learning technique for FIV, the design of the training dataset will be of utmost
importance. Generalizability issues within machine learning greatly affect the model’s
ability to perform outside of the parameters given in the training dataset. For example,
a model trained at Re = 2000 may produce erroneous results at Re = 30,000, because
transitional turbulence regions in the former case become fully turbulent in the latter
case [269]. These small changes in turbulence can have large effects on the vibration
response. Therefore, the training dataset should be designed to incorporate a wide
variety of FIV parameters, so that the model can perform well for a variety of test
cases. The issue of generalizability within machine learning augmented turbulence
modelling is currently under investigation. Machine learning techniques may be better
suited to provide accelerated and higher-accuracy simulation results within a known
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range of parameters, rather than attempting to uncover new physics (for example, at a
higher-Reynolds number than any of the cases included in the training dataset).

• While several PINN techniques have been developed and applied to the unsteady
FIV problem, RANS-based machine learning techniques for unsteady cases are still
in development. The overwhelming majority of machine learning augmented RANS
investigations use a steady state flow for training and testing. Some techniques within
augmented RANS (e.g., iterative methods) are more suited for unsteady flows, but
have not been rigorously tested. Therefore, another key issue is the ability of aug-
mented turbulence models to be used for transient cases. Machine learning augmented
LES closures are more immediately applicable for unsteady flow simulation due to
the nature of LES. However, the suitability of these closure for the FIV problem is yet
to be demonstrated.

7.2. Future Work and Perspectives

In spite of important advances, much remains to be done with respect to research
concerning the modelling and prediction of the myriad of physical processes underlying
various FIV phenomena—there is much future work to be done. In light of the challenges
in current FIV modelling efforts identified in Section 7.1, we summarize directions for
future work.

• With respect to the mathematical modelling of FIV phenomena, the development of a
general theory for one or more aspects of FIV phenomena from first principles and the
comprehensive analysis following from the application of such a general theory is a
worthwhile (albeit extremely difficult) avenue of investigation.

• To allow mathematical models for FIV phenomena to have greater flexibility/generality
(and lacking a general theory for FIV at present), research into the application of im-
proved optimization methods for determination of model parameters along with
an uncertainty quantification of the prediction provided by such models would be
extremely beneficial.

• Work on the development of an improved mathematical representation for the inclu-
sion of galloping in mathematical models for FIV could potentially improve signif-
icantly the prediction accuracy of the current generation of models for a bluff body
experiencing either pure galloping or a combined FIV that includes galloping.

• More work needs to be done to improve the predictive accuracy of low-fidelity nu-
merical methodologies, such as unsteady RANS modelling for routine application to
FIV problems of industrial relevance. Schemes to provide improved closure models
for addressing the FIV problem need to be developed. From this perspective, the
application of data-driven approaches using ML (e.g., neural nets, gradient boosting
machines [270]) or inverse modelling (e.g., Bayesian optimization [271], likelihood-
free inference [272]) can be used to design application specific closure models for
FIV phenomena.

• More effort needs to be focused on the proper application of hybrid methods to the
prediction of FIV phenomena. To this purpose, more research should be conducted
on the appropriate selection of the mode of computation (whether RANS modelling
or eddy-resolving simulation) that is specifically tailored to address the peculiarities
of FIV phenomena (e.g., development of a specific hybrid blending or interpolation
function that more intelligently selects whether RANS or eddy-resolving simulation
should be used in various regions of the FIV flows).

• Methods of machine learning can be applied potentially to provided improved closure
models for numerical simulation of FIV phenomena. However, for this to occur, a
considerable effort should be made to obtain high-quality FIV datasets from high-
fidelity numerical simulation (DNS and/or LES). The authors strongly encourage the
future publication of public-domain FIV datasets that can be used for bench marking
machine learning techniques.
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• Work should be undertaken to better understand the synergy in mathematical, numer-
ical, and machine learning techniques for the modelling of FIV phenomena (and, more
specifically, on how to exploit this synergy to advance future modelling efforts in this
field of endeavor). For example, high-fidelity numerical simulation methodologies
(DNS and/or LES) provide the data for machine learning algorithms that can poten-
tially lead to improved closure models for low-fidelity RANS models. The predictions
obtained from these models provide the information required to obtain deeper insights
and a better understanding of FIV phenomenology—this better understanding can
potentially lead to the development of improved and more principled and general
mathematical models of FIV phenomena.

The key takeaway of this review is that modelling is arguably the most important tool
for investigation of various aspects of FIV phenomena. Advances in the modelling of FIV
phenomena will undoubtedly impact a number of engineering and industrial applications
of practical real-world relevance. A deeper understanding of FIV phenomena will allow
engineers to design potentially significantly improved fluid kinetic energy harvesting
devices (viz., enhance the energy harvesting efficiency of such devices). However, this
application will require development of a system-of-systems modelling approach involving
coupling models of FIV, electromechanics, and complex interface circuits. Alternatively,
modelling advances in FIV will lead to a better understanding of fatigue failure arising
from vibration in structures exposed to high energy fluid flow (e.g., transmission lines
critical to modern electricity generation infrastructure, fuel rod assembly in conventional
or small modular nuclear reactors and implications for nuclear safety, risers for deep water
applications, such as oil and gas production). An under-explored area of research in FIV is
multi-physics coupling in the simulation. For example, transmission lines in cold climates
during winter storms are subject to icing as well as to wind-induced (aeolian) vibration
that can cause outages—how the vibration response of the transmission line is altered with
ice accretion has not been studied to the authors’ knowledge.
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