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Abstract: Iron–chromium redox flow batteries (ICRFB) possess the advantage of low raw material
cost, intrinsic safety, long charge–discharge cycle life, good life-cycle economy, and environmental
friendliness, which has attracted attention from academia and industry over time. The proton
exchange membrane (PEM) is an important part of the ICRFB system, impacting the efficiency and
lifetime of the battery. Currently, the most widely used PEMs in the market are per-fluorinated
sulfonic acid (PFSA) membranes, which possess high electrolyte stability and achieve the separation
of positive and negative electrolytes. In addition, the complex preparation process and extremely
high market price limited the usage of PEM in ICRFB. In this paper, we developed a remanufactured
membrane (RM) strategy from waste PFSA resins. The RM has higher electrical conductivity and
better proton transport ability than the commodity membrane N212. In the cell performance test,
the RM exhibits similar coulombic efficiency (CE) as N212 at different current densities, which is
stabilized at over 95%. Furthermore, the voltage efficiency (VE) and energy efficiency (EE) of the RM
are improved compared to N212. At a current strength of 140 mA cm−2, the degree of energy loss
is lower in the RM, and after 60 cycles, the capacity decay rate is lower by only 16.66%, leading to
long-term battery life. It is a cost-effective method for membrane recovery and reformulation, which
is suitable for large-scale application of ICRFB in the future.

Keywords: waste membrane recycling; RM; iron–chromium redox flow battery

1. Introduction

At present, the problem of resource shortages is becoming increasingly severe. The
shortage of fossil energy resources worldwide is inevitable and the issue of energy and
security has been defined as a global topic [1]. Due to the shortage of fossil-fuel energy
and the problem of global warming, the demand for new energy sources is increasing [2].
However, renewable resources, such as solar [3] and wind [4], are limited by their instability
and intermittency [5], which is an obstacle to meeting actual power supply requirements.
At present, various technologies have been explored to store electricity from renewable
sources, including electrochemical energy storage [6], pumped hydro energy storage [7],
compressed air [8], flywheel energy storage [9]. As a new high-efficiency electrochemical
energy storage technology, redox flow battery (RFB) technology has the advantages of
high discharge capacity [10,11], excellent stability [12], and flexible assembly [13], and can
achieve a service life of 20 years or longer compared with traditional batteries. Therefore,
RFB is capable of meeting large-scale power storage demands, achieving low-cost and safe
long-term energy storage [14]. As the first proposed RFB model [15], the iron–chromium
redox flow battery (ICRFB) uses Fe3+/Fe2+ and Cr3+/Cr2+ as cathode and anode actives,
which are cheap and readily available. Moreover, it has attracted attention because of its
lower cost and longer cycle life than the most widely available commercial vanadium redox
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flow batteries. This technical route of ICRFB continues to attract more attention. With
breakthroughs in green electricity, green hydrogen, and green ammonia demonstration
projects in the chemical industry, and the rapid growth of sustainable energy, a second
wave of chemical power technology is imminent. New application scenarios will also
unlock new usage modes for RFB.

As one of the core parts of ICRFB, the proton conduction membrane can form a cell
pathway for proton transformation during electrifying. Meanwhile, it can also prevent cross-
contamination of active materials, which largely effects the cost and operating performance
of ICRFB [16–18]. Based on the proton conduction membrane, per-fluorinated sulfonic
acid (PFSA) is widely used in ICRFB because it has excellent chemical stability and good
electrical conductivity [19–21]. The largest PFSA membrane manufacturer is DuPont [22],
whose products have an extremely high market price due to the complex synthesis of
PFSA and the difficulty of sulfonation [23–25]. Therefore, more efficient and affordable
alternatives should be developed. Zhang et al. attempted to use sulfonated polyether
ether ketone (SPEEK) with polyethersulfone-resin porous composite membranes to replace
Nafion membranes, possessing excellent working performance achieved over a wide
pH range [26]. However, during the actual operation of the ICRFB, oxidation and high
temperatures degrade and damage the SPEEK membranes, affecting their service life.
Wang et al. used polyvinylidene fluoride/graphene to produce composite nanoporous
membranes [27]; this can improve membrane selection and conductivity. However, the
battery efficiency was lower compared to Nafion membranes. As noted above, the preferred
choice for ICRFB applications remains the Nafion membrane. When the membrane reaches
the end of its service life, it is often incinerated or discarded in landfills, which is not
environmentally friendly and further increases the ICRFB cost. Until now, no studies on
the recycling of PFSA resin and reapplication in ICRFB have been reported.

This paper proposes an effective method of recycling waste PFSA membranes in search
of lower costs and similar performance. The commercially available N212 membrane is
selected as the comparison item. The RM is made by dissolving and remanufacturing
at 230 ◦C. The RM exhibits a similar coulomb efficiency (CE) of 97.46% with N212 at a
current density of 140 mA cm−2. In comparison, the voltage efficiency (VE) and the energy
efficiency (EE) of the RM are 81.36% and 79.29%, respectively, which are 0.64% and 0.48%
higher than the original Nafion membrane. All results indicate that RM is a promising
choice for large-scale, low-cost applications of ICRFB.

2. Experimental
2.1. Materials and Methods
2.1.1. Materials

The FeCl2·4H2O, CrCl3·6H2O and HCI used in this work were supplied by Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). Commercially available Nafion membrane
N212 was selected as the control group and purchased from Kerun Company (Jiangsu,
China). In addition, N, N-Dimethylformamide (DMF) was supplied by Shanghai Aladdin
Biochemical Technology Co., Ltd. (Shanghai, China). H2O2 and H2SO4 were purchased
from Beijing Beihua Fine Chemical Co., Ltd. (Beijing, China). All agents were used without
further purification.

2.1.2. Method of Preparation and Reprocessing of Remanufactured Membrane

The discarded N212 membranes were cut into pieces smaller than 4 cm2. Firstly, they
were washed by boiling deionized water at 60 ◦C for 60 min to remove surface impurities.
They were boiled with 5 wt% H2O2 at 80 ◦C for 30–60 min, washed to remove the organic
matter, then soaked in 0.5 mol L−1 H2SO4 solution at 80 ◦C for 30–60 min, then washed
again. The cleaned and crushed PFSA membrane and DMF solution were put into the PTFE
reactor. The reaction kettle was set at 230 ◦C under a vacuum oven for 12 h and removed
after cooling. The filtrate was obtained and then centrifuged at 5000 r min−1 for 10 min,
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and the upper layer of liquid was discarded to obtain a 5 wt% H+ type PFSA resin organic
solution.

The PFSA resin solution was poured into the casting tray, and the solution was allowed
to spread evenly over the tray. The PFSA resin solution was heated from room temperature
to 180 ◦C in a blast drying oven and dried until the solvent evaporated from the membrane.
Once the solvent in the cast solution had evaporated, heating was continued for 10 min
to ensure uniformity of the RM. At the end of heating, the membrane was allowed to
completely cool before removal.

The RM was steamed in 1 mol L−1 H2SO4 at 80 ◦C and placed in a vacuum oven for
1 h. After removal, the membrane was rinsed with deionized water. Then it was soaked in
0.2 mol L−1 EDTA-2Naat 80 ◦C for 20 h. The membranes were repeatedly washed with
deionized water and placed in deionized water at 80 ◦C for 1 h for heat treatment to remove
the residual liquid inside the membranes altogether.

2.2. Characterization Methods
2.2.1. Membrane Characterization

Approximately 1 cm2 of the membrane sample was fixed to the AFM test paper with
double-sided tape. AFM tests were performed using DualScope C-26 (Danish Micro Engi-
neering, Saarbrucken, Germany) in the air by tapping to compare the surface morphology
of N212 membranes and RM specimens. The membrane samples were dried, and the
chemical structure of the samples was analyzed using Fourier transform infrared spec-
troscopy (FTIR, 1iS10, Waltham, MA, USA). The cross-sectional and surface morphology of
N212 and RM samples were tested using SEM (Sigma 500, Oberkochen, Germany) at an
accelerating voltage of 10 kV, and elemental analysis was performed. Membrane specimen
cross-sections were obtained through the friability of liquid nitrogen, and samples were
prepared on a T-table and coated using gold spray before imaging.

2.2.2. Water Absorption and Swelling Rate Test

The membranes were placed in deionized water for 72 h, and the excess water
was quickly wiped off the surface after removal. The membranes were tested for water
absorption and swelling before and after different impregnations, and their properties
were analyzed.

Water absorption test:

Water absorption =
Ws − Wd

Wd
× 100%

Ws and Wd are the weights of the saturated and dry membranes, respectively.
Swelling rate test:

Swelling rate =
Ls − Ld

Ld
× 100%

Ls and Ld are the lengths of the saturated and dry membranes, respectively.

2.2.3. Membrane Conductivity Measurement

A membrane was placed between two porous gas diffusion electrodes, and the three
were hot-pressed together in a hot press. The two electrodes were connected to the positive
and negative terminals of the conductivity meter, and the difference in conductivity be-
tween the RM and N212 membrane was compared qualitatively under different humidity
conditions by the conductivity meter.

2.2.4. Tensile Strength

The stress–strain curve of the membrane was measured using a universal dynamic
tester (WAW-2000E, Chenda, Jinan, China).
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2.2.5. Single-Cell Testing

The battery tests were all performed on a single-cell testing system (Neware CT-
4008-5V6A-DB-F, Shenzhen, China) with a homemade single-cell with a serpentine flow
field. Carbon cloth with an active area of 2.0 cm × 5.0 cm was used as the negative and
positive electrodes, and the different membranes were separated with remanufactured and
commercial N212 membranes, respectively. The electrolyte was circulated at a constant
flow rate of 9 mL min−1 by a two-way peristaltic pump (Shenchen, BT100N, Beijing, China).
N2 was bubbled to remove air from the electrolyte and reservoir to avoid undesirable
side effects.

3. Results and Discussion
3.1. Preparation and Characterization of Membranes

The hydrophobic structure of Teflon gives PFSA membranes excellent mechanical
properties and stable performance. During ICRFB operation, electrode puncture of the sep-
tum and electrolyte cross-contamination are not easily observed. Hydrophilicity from the
sulfonate improves the electrical conductivity of the membrane. It enables the construction
of a complete circuit in the battery structure by selective permeation of ions. Therefore,
it is of great practical importance to study the recycling of PFSA membranes. Hydrogen
peroxide and sulfuric acid were used as cleaning agents.

DMF was used as a solvent to facilitate remanufacturing PFSA polymer segments at
230 ◦C and to enable ionic cluster formation during solvent evaporation of the membranes
(Figure 1a). According to the previous report in [28], the high degree of ionic cluster binding
within the PFSA during heat treatment at a certain temperature contributes to improving
the membrane’s mechanical properties. In addition, Figure 1b shows the internal structure
of the battery.
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Figure 1. (a) Schematic diagram of RM preparation process, (b) battery structure schematic.

Compared with other Nafion membranes in different thicknesses, N212 has higher
cost performance assembled by ICRFB [29]; therefore, N212 is used as the template for
RM thickness selection. PFSA recycling is performed on discarded N212 membranes.
N212 is selected as a comparison term to examine the various properties of RM. Figure 2
shows the characteristic surface morphologies of N212 and RM. Figure 2a,e show the
SEM images of N212 and RM. The commodity membrane N212 and the RM have smooth
surfaces, indicating that the RM is relatively complete. Comparing SEM cross-sections,
the RM (Figures 2f and S1b) possesses a structure density and thickness similar to N212
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(Figures 2b and S1a), both of which are 50 µm thick. Possessing the same thickness elimi-
nates the effect of the membrane thickness itself on the performance of the ICRFB. The pore
distribution in the N212 membrane is uniform. However, the cross-sectional morphology
of the RM is much rougher, likely due to the irregular distribution of PFSA ion clusters
during the membrane remanufacturing process. This condition is also confirmed in the
AFM images, where the N212 surface-height distribution is very narrow (Figure 2c), while
the surface of the RM is much rougher. Also, many defects are distributed on the surface
(Figure 2g), which is most likely caused by excessive air bubbles due to DMF’s evaporation
during the RM preparation. As shown in Figure 2d,h, there is little difference between
the physical diagrams of N212 and the RM. Since the RM is rougher, the difference in
membrane surface thickness may affect the specific surface area of the membrane, which in
turn influences its battery performance.
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(h) physical image of the RM.

Elemental analysis of N212 and RM has been performed to further confirm the suc-
cessful preparation of PFSA membrane by recycling (Figure S2). The result shows that both
N212 and RM contain the important elements of S and F. The chemical structure groups of
N212 and RM have been analyzed by FTIR images (Figure 3a), and both membrane samples
contain several typical stretching vibrational bands, including S=O bonds at 1049 cm−1,
C-F bonds at 1156 cm−1, and S-O bonds at 750 to 1000 cm−1, showing that the RM forms
long chains of Teflon and lateral sulfonic acid groups. As shown in Figure 3b, the water
uptake of the RM membrane increased slightly after heat treatment at 230 ◦C. In addition,
the contact angles of the two membranes were tested with the electrolyte before the cell test,
and Figure S3 shows they have similar contact angles. Proton conductivity is an important
parameter in ICRFB applications to verify the utility and design advantages of membranes
in flow cell systems [30].

The RM needs to be high-strength and durable to prevent electrode punctures that
lead to electrolyte cross-contamination in ICRFB operation. The RM shows similar tensile
strength (Figure 3c) and Young’s modulus (Figure 3d) compared with N212, as well as
superior strain (Figure 3c) and toughness (Figure 3d). The strain at break of RM at 291%
is significantly higher than that of N212 at 229%, while tensile strength of 7.07 MPa is
also slightly higher than that of N212 at 6.74 MPa. High-temperature regeneration is
believed to be critical to membrane stretching and tensile properties. In the membrane
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preparation process, the temperature significantly impacts the remanufacturing of the
membrane solution. According to previous studies, heat treatment causes a significant
change in the spatial structure of PFSA. This spatial variation also affects the mechanical
strength and the electrochemical properties of PFSA membranes at the same time, indicating
that temperature is the key to effective membrane remanufacturing.
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3.2. ICRFB Performance and Stability of the Membrane

Figure 4a,b shows the setup and a diagram of the operation principle of the ICRFB. The
N212 and RM are assembled into ICRFB single cells to verify their operational performance.
As shown in Figure 4c, there are significant differences in the charge and discharge curves
at current densities of 80 mA cm−2. ICRFB exhibited a higher discharge capacity and a
significantly lower charge/discharge overpotential when using RM due to higher electrical
conductivity than N212. Also, the excellent charge/discharge performance may indicate
that the ICRFB has a better VE, as shown in Figure 4d. VE decreases with increasing current
concentration, mainly caused by the additional voltage required for the electrode reaction
and the extra electrical energy consumption.

In addition, the CE (Figure 4e) is usually influenced by the material’s structure, mor-
phology, and conductivity. Whereas, at higher current densities, the permeation and side
reactions of the electroactive materials of both RM and N212 are lower, the CE value
increases with the increase of current intensity. EE is the crucial process to estimate the
efficiency of the ICRFB system for energy resource utilization during the charge/discharge
cycle. VE is the determining parameter of EE. Figure 4f shows the EE variation trend with
CE and VE. Compared with CE, EE follows the same trend as VE. The RM exhibits optimal
ICRFB cycling performance due to the balance of ionic conductivity, metal ion crossover
and membrane resistivity.

To further verify the lifetime of the ICRFB, Figure 5 shows 60 cycles of the test for both
membranes at a current density of 140 mA cm−2. In the cell performance test, as shown
in Figure 5a–c, the CE of the cells assembled with N212 and RM are relatively stable and
remain around 98%, while VE and EE decrease slightly. As shown in Figure 5d, the capacity
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decay rate of the RM is even lower after 60 cycles. After 60 cycles of RM, the capacitor
volume decay rate is only 16.67%, which is about 0.28% per cycle. This indicates that during
the membrane remanufacturing process, the PFSA chains are structurally tighter and show
similar stability to N212, and a lower capacity decay rate in long cycles. From the above
cell test data, it is clear that RM has good electrochemical properties and good proton
conductivity. Figure 5e,f show the ICRFB constant current charge and discharge curves for
the second and 60th cycles at a current density of 140 mA cm−2. The results indicate that
RM has a high discharge capacity and a low charge–discharge overpotential after the initial
60 cycles, and can maintain a good battery capacity. As shown in Figure 6, the ions clusters
inside the membrane may be closely arranged after heat treatment, providing a good
channel for proton transport. By lowering the proton leap energy barrier, the protons can be
thoroughly combined with free water to form hydrated hydrogen ions, which is conducive
to the diffusive transport of protons within the membrane and improves conductivity
(Table S1).
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4. Conclusions

In this work, a method for preparing recycled RM was proposed and tested for
its performance in ICRFB. Heat treatment alters the PFSA spatial structure, indicating
that the RM has a higher electrical conductivity. The RM properties were prepared and
tested based on these theoretical results compared to commercial N212. In the battery
test, the RM’s VE was 81.36%, and EE was 79.29% at 140 mA cm−2, both of which are
improvements compared with N212. In addition, it showed excellent stability in 60 cycles
of charge/discharge testing. Recycling and remanufacturing the waste membrane is
economical, with broad application prospects in terms of RFB.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/en15228717/s1, Figure S1: SEM cross-sectional morphology of
(a) N212, (b) the remanufactured membrane; Figure S2: EDS elemental mapping of (a,b) N212, (c,d)
the remanufactured membrane; Figure S3: The contact Angle of (a) N212, (b) RM with electrolyte.
Table S1: Proton conductivity and resistivity of the membrane.
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