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Abstract: This publication explores how the existing synergies between conventional liquefied natu-
ral gas regasification and hydrogen hydrogenation and dehydrogenation processes can be exploited.
Liquid Organic Hydrogen Carrier methodology has been analyzed for hydrogen processes from a
thermodynamic point of view to propose an energy integration system to improve energy efficiency
during hybridization periods. The proposed neural network can acceptably predict power demand
using daily average temperature as a single predictor, with a mean relative error of 0.25%, while simu-
lation results based on the estimated natural gas peak demand show that high-pressure compression
is the most energy-demanding process in conventional liquefied natural gas regasification processes
(with more than 98% of the total energy consumption). In such a scenario, exceeding energy from
liquid organic hydrogen carrier processes have been used as a Rankine’s cycle input to produce both
power for the high-pressure compressors and the liquefied natural gas heat exchangers, generating
energy savings up to 77%. The designed terminal can securely process up to 158,036 kg/h of liquefied
natural gas and 11,829 kg/h of hydrogen.

Keywords: LNG regasification terminal; hydrogen; LOHC; neural network; modeling; energy
demand forecast

1. Introduction

Due to recent events, the security of energy supply has become a priority issue for most
European countries: greater diversification of supply sources, the guarantee of not being
dependent on a single supplier and the inflationary crisis resulting from high energy prices
are becoming strategic questions for preserving the continent’s industrial competitiveness
and social welfare.

All the above become even more palpable in territories that act as energy islands.
Their little or non-existent interconnection capacity and the absence, in most cases, of
energy resources originating in these territories mean that these regions tend to have more
polluting electricity generation mixes.

Within this paradigm, natural gas and LNG (Liquefied Natural Gas) midstream
infrastructures—mainly materialized in regasification terminals—emerge as technical so-
lutions. These facilities can provide a very significant improvement in the probability of
supply interruption, greater stability and operational ease of the electricity grid plus an
environmental improvement of emissions by displacing the use of heavier fossil fuels. With
a high degree of technological development, these facilities can store LNG at very low
temperatures (−160 ◦C) and returning it to its gaseous state through the application of heat
exchange processes, enabling it to be imported from LNG carriers and injected into the
transmission network after the corresponding compression stages (Figure 1).
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Moreover, hydrogen is becoming a renewable alternative with a significant role to 
play in replacing natural gas in energy systems, as the existing natural gas assets has great 
potential to be reused with this new energy vectors due to its evident synergies. Never-
theless, the introduction of hydrogen in this type of facility still presents numerous tech-
nological challenges (due to its extremely low liquefaction temperature) for which no clear 
solution has yet been found [1–3]: although there are certain methods based on thermo-
dynamic cycles [4–6] that have led to the development of recent liquid hydrogen transport 
projects [7], most of them require the design of complex conversion reactors to take ad-
vantage of ortho-hydrogen and para-hydrogen thermal properties. To avoid the above-
mentioned complexity, this paper proposes a chemical liquefaction method based on the 
use of Liquid Organic Hydrogen Carriers (LOHCs) through hydrogenation and dehydro-
genation stages.  

These processes rely on an unsaturated organic chemical agent in liquid state that 
can chemically retain the hydrogen atoms thanks to saturation reactions. These systems 
allow to release hydrogen by carrying out the opposite chemical reaction (generally var-
ying the conditions of pressure and temperature of the process). Due to this, the LOHC 
adds several advantages compared to traditional hydrogen liquefaction systems: 
• They allow to store the hydrogen in normal liquid conditions, rather than in ex-

tremely heat-insulated tanks.  
• They widely simplify the liquefaction processes for hydrogen applications. 
• They do not need as many resources (for example liquid nitrogen in traditional cry-

ogenic solutions) as other methods. This also implies a significant decrease in OPEX. 
On the other hand, neural networks have been used to model complex variables in 
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today is still far from being considered as a mainstream tool in most of the basic engineer-
ing stages, even though they constitute a widely proven solution that can correctly assist 
to improve project’s results. 

In this publication, the design of a hybrid regasification plant (capable of jointly man-
aging hydrogen and natural gas) is carried out through the basic engineering of the tradi-
tional process together with a hydrogen chemical-liquefaction system using LOHCs, per-
forming an energy integration analysis between both stages to achieve an optimization of 
the plant operation. The selected location for the plant is the Canary Islands (a clear ex-
ample of an energy island), whose energy demand has been previously modeled to 

Figure 1. LNG regasification—conventional process.

Moreover, hydrogen is becoming a renewable alternative with a significant role to
play in replacing natural gas in energy systems, as the existing natural gas assets has
great potential to be reused with this new energy vectors due to its evident synergies.
Nevertheless, the introduction of hydrogen in this type of facility still presents numerous
technological challenges (due to its extremely low liquefaction temperature) for which
no clear solution has yet been found [1–3]: although there are certain methods based on
thermodynamic cycles [4–6] that have led to the development of recent liquid hydrogen
transport projects [7], most of them require the design of complex conversion reactors to
take advantage of ortho-hydrogen and para-hydrogen thermal properties. To avoid the
abovementioned complexity, this paper proposes a chemical liquefaction method based
on the use of Liquid Organic Hydrogen Carriers (LOHCs) through hydrogenation and
dehydrogenation stages.

These processes rely on an unsaturated organic chemical agent in liquid state that can
chemically retain the hydrogen atoms thanks to saturation reactions. These systems allow
to release hydrogen by carrying out the opposite chemical reaction (generally varying the
conditions of pressure and temperature of the process). Due to this, the LOHC adds several
advantages compared to traditional hydrogen liquefaction systems:

• They allow to store the hydrogen in normal liquid conditions, rather than in extremely
heat-insulated tanks.

• They widely simplify the liquefaction processes for hydrogen applications.
• They do not need as many resources (for example liquid nitrogen in traditional cryo-

genic solutions) as other methods. This also implies a significant decrease in OPEX.

On the other hand, neural networks have been used to model complex variables in
many engineering and other science fields since its conception [8]. Nevertheless, their use
today is still far from being considered as a mainstream tool in most of the basic engineering
stages, even though they constitute a widely proven solution that can correctly assist to
improve project’s results.

In this publication, the design of a hybrid regasification plant (capable of jointly
managing hydrogen and natural gas) is carried out through the basic engineering of the
traditional process together with a hydrogen chemical-liquefaction system using LOHCs,
performing an energy integration analysis between both stages to achieve an optimization
of the plant operation. The selected location for the plant is the Canary Islands (a clear
example of an energy island), whose energy demand has been previously modeled to
establish a defined neural network architecture that is able to predict the long-term power
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demand considering the daily temperature of the territory. The results are used to calculate
the LNG and hydrogen demand as a design basis to perform the sizing general calculations
for all the proposed processes. For the sake of clarity, a block diagram including all
abovementioned study stages can be observed in Figure 2.
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2. Materials and Methods
2.1. Demand Modeling
2.1.1. Sociologic Factors

From a general point of view, energy consumption is clearly affected by the number
of customers that are located on a defined territory. For this reason, factors such as demo-
graphical tendencies should be considered whenever a demand scenario is being built,
particularly when it comes to support predictive calculations results.

In this case, public data from Statistics Institute of the Canary Islands [9] are collected
for the last 21 years including the total population and its rate of change, which will be
used to validate from a qualitative perspective the results of the predicted peak power
demand that will be used as a base to perform the sizing calculations.

2.1.2. Neural Network Architecture and Inputs

A neural network is a connectionist model whose basic unit of transmission/reception
of information and calculation is called a neuron. The main advantage that these systems
add comparing to other common predictive methods (such as SARIMA models) lies in
their autonomous ability to learn from historical data by applying certain algorithms that
tend to reduce the difference between the desired output—the real historical data- and the
actual output of the network, through the training process.

In this paper, and as the objective of the whole neural network is to precisely predict the
peak power demand, only Recurrent Neural Networks (RNN) are going to be considered,
as they give better results than other networks architectures when referring to time series
analysis [10–12].

Even though these systems are a well-known and effective tool to predict complex
systems using many variables, previous studies [12,13] show that acceptable results can be
reached by using temperature data as a single predictor for energy demand forecasting.

On the other hand, it should not be ignored that both temperature and power demand
are clear examples of self-regressive variables [14], which implies that their values as a
generic nonlinear mathematical function y on a certain time t significantly depend on its
previous values up to some past instant n:

y(t) = f (y(t − 1), y(t−2), . . . , y(t − n)), (1)
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With that being said, the optimal neural network model for this kind of applications
must be able to group the two abovementioned principles while providing a statistically
precise forecast. For that reason, the proposed architecture concatenates two different
neural networks that act as independent modules, as can be seen in Figure 3.
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The first module acts as a nonlinear autoregressive neural network that predicts
future values for temperature depending on the historical data, while the second uses
those predicted values as an exogenous input for another nonlinear autoregressive neural
network to calculate the future values of power demand.

This modular scheme adds some advantages when compared to conventional neural
network designs:

• Due to the independency of the modules between each other, parameters such as the
delay or the percentages of samples that are used for training, validation and testing
processes could be different.

• Each of the designed neural networks could be easily reused for other applications,
once correctly trained and tuned.

• More predictors and/or exogenous inputs could be added in the future without
modifying drastically the original scheme if the performance starts to drop.

• The specified parameters for each module can be found in Table 1.

Table 1. Neural network architecture parameters.

Neural Network Module Training Algorithm Delay (d) Number of Neurons (n)

Temperature Levenberg–Marquardt 5 35
Power demand Bayesian regularization 5 30

Namely for this study, the delay values represent the amount of equally spaced
previous data values (depending on raw data frequency) that are considered to adjust
values predicted by the neural network during the training process, while the number
of neurons show the network’s processing power (higher values imply more time for
training processes and may lead to overfitting phenomena in case that excessively less
generalization in predictions is reached [15]).

2.1.3. Data Treatment and Preparation

As the training process requires a significant amount of historical data to correctly tune
the neural network, values from Red Eléctrica de España (Spain’s Transmission System
Operator for the power grid) [16] and meteorological data [17] have been gathered for
the last 10 years, including total power demand per day for the Canary Islands grid and
average daily temperature respectively, both on a daily basis.
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Firstly, a qualitative analysis of the conditions in which data occurred must be con-
ducted, meaning that if some periods are under certain constrictions that are not likely
going to happen in the future they must not be considered, just to protect the network of
learn from unrepresentative data. Namely in this case, two different periods have been
identified that can lead to a non-convergence loop during the training process:

• The significant decrease that weekends or festivities causes on power demand.
• The outbreak and subsequent restrictions of COVID-19 during the first half of 2020,

which also affected drastically the power demand, eventually worsening the correla-
tion between temperature and power demand itself.

Due to the abovementioned reasoning, from all the initially collected data pool, non-
working days and data from dates ahead of 2020 are not considered.

Afterwards, a statistical analysis is carried out to determine from a quantitative point
of view the outliers that remains basically to identify statistically anomalous data once raw
data are free from long-term periods with externally affected causes. For this study, the
application of a Tukey test [18] is proposed for its reliability with significantly long datasets
and its great versatility to code in most of programming language. This test is essentially
based on calculating the quartiles of each input pool, discriminating data depending on the
deviation that the value represents from the interquartile ranges considering that a certain
data can be classified as an outlier if it meets one of the following conditions [19]:

Value < Q1 − 3 · (Q3 − Q1) [for downward outliers], (2)

Value < Q3 + 3 · (Q3 − Q1) [for upside outliers], (3)

This statistical analysis is performed for both historical datasets. However, as each of
these data corresponds to a certain date, whenever an outlier is detected, its correspond-
ing pair must be also not considered in order to maintain time-data coherence between
temperature and power demand time series.

By this point, the application of a smoothing method is carried out to improve the
response and convergence of the neural network. Even though there are numerous models
available, the Savitzky–Golay filtering [20,21] algorithm is proposed as the optimal solution
in this application for several reasons:

• It is a widely tested solution in data sets that present high rates of variation in short
intervals of time. In consequence, this type of approach has applications in many
fields, such as analytical chemistry or sensor electronics [21].

• It does not significantly alter the general shape of the processed signal.
• Implies that the filtered data must be discretely and equally time spaced.
• It is relatively easy to code through standard programming.

This filtering stage will basically identify those data that, although they are not stati-
cally anomalous, represent a significant disruption in the general tendencies (such as heat
or cold waves in temperature data set) that may lead to unrealistically repeat those patterns
in the calculated predictions. As the Savitzky–Golay approach generally maintains the
critical points location, it will simply increase or decrease those just to get rid of stational
micro-patterns that may not occur in the same date for future periods.

Lastly, it is also worth mentioning that the neural network training process uses a
standard sampling fraction [22] distinguishing randomly between:

• Training samples (70% of each dataset): as the samples that are presented to the
network during the whole training process. The tune of the whole architecture is
adjusted according to its error regarding the real historical data.

• Validation samples (15% of each dataset): as the samples used to measure the network’s
generalization. They are also used to halt the training process once the results stop
improving.
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• Testing samples (15% of each dataset): as the samples that are not used on the training
and validations processes, and consequently, provide an independent measure of the
network performance during and after the training process itself.

This distribution between the different types of samples has been chosen by the
authors as the length of the input datasets is considered enough to provide an acceptable
response. No further development has been carried out in this direction as overtraining
phenomena (which occurs when the neural network is not able to recognize the underlying
trends, resulting in poor generalization) need to be avoided as much as possible.

2.1.4. Considered Hypothesis for NG/LNG and Hydrogen Demand Estimation

Fossil fuels—mostly oil and its derivatives—are widely consumed on the Canary
Islands nowadays due to its nature as an energy island [23]. In this context, the main
idea of the terminal designed in this paper is to provide a reliable infrastructure to pro-
gressively replace the use of those heavy fuels by the combined use of hydrogen and
natural gas (blending mixtures) to reduce the emissions of the territory, as environmental
policies tighten to achieve increasingly ambitious climate goals in the upcoming years [24].
Therefore, it is assumed that the demand for both energy vectors will maintain a similar
segmentation by sector as the demand that heavy fuels have nowadays [23,25]:

• Conventional demand: as the group that adds all residential and domestic consumption.
• Industrial and other services demand: in reference to touristic services (such as hotels,

restaurants, small businesses, etc.) and industry (milk production, tobacco, refinery,
etc.) of the islands.

• Power generation demand: grouping all the uses of natural gas for electricity produc-
tion (mainly combined cycle plants).

• LNG and natural gas new uses: which include the potential demand due to the
switching in certain sectors, such as maritime fuel in vessels, ships and ferries that
transit the islands regularly.

Furthermore, and as the facility to be designed as a planned useful life of more than
35 years (2025 to at least 2060), a set of general long-term hypotheses must be established:

• The population amount, the distribution of consumers and their location within the
islands will remain stable over time.

• Hydrogen as an energy vector will progressively replace the demand for gas and
LNG from 2040, coexisting in a hybrid way with it until 2060, at which time the entire
demand will be covered through gas of renewable origin.

• There will be no significant variation in the internal productive structure of the Canary
Islands, as it will continue to be made up mainly of the services sector.

• If there were a drastic increase in power demand, its amount would be fully covered
through renewable energies.

With that said, the peak demand for natural gas and hydrogen (DNG,peak,year and
DH,peak,year, respectively) will be calculated at five years intervals depending on the peak
power demand (DPower,peak,year) forecasted by the neural network and a certain percentage
(PNG,sector,year and PNG,sector,year, respectively) for each demand segment, by using the
following expressions:

DNG,peak,year = DPower,peak,year · PNG,sector,year, (4)

DH,peak,year = DPower,peak,year · PH,sector,year (5)

Percentages considered for each group of years and sectors for natural gas and hydro-
gen can be found in Tables 2 and 3.
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Table 2. PNG,sector,year values.

Year Conventional Industry and New Uses Power Generation

2025 0.72% 7.97% 135.20% 1

2030 1.44% 23.06% 146.86% 1

2035 1.44% 30.09% 151.72% 1

2040 1.45% 30.37% 158.05% 1

2045 1.49% 25.22% 143.72% 1

2050 1.02% 17.88% 109.27% 1

2055 0.59% 11.36% 79.61%
2060 0.09% 4.18% 54.67%

1 Note that p values above 100% for power generation implies an efficiency factor of 50% for combined cycle
plants in days where thermal gap is very significant. The renewable capacity deployment in the near future at the
Canary Islands do not affect these values, as p represents the peak consumption day (for example, a day with
barely or non-existent wind resource).

Table 3. PH, sector, year values.

Year Conventional Industry and New Uses Power Generation

2045 0.00% 5.78% 17.60%
2050 0.44% 12.40% 48.30%
2055 0.89% 19.56% 81.27%
2060 1.37% 26.22% 103.53% 2

2 As is the case for natural gas’ power generation segment, p values above 100% for power generation implies an
efficiency factor of 50% for combined cycle plants that use hydrogen-ready turbines.

Standard properties [26] of natural gas and LNG used to perform conversion calcula-
tions are listed in Table 4.

Table 4. Natural gas, LNG and hydrogen properties.

Component Density (kg/m3) Gross Calorific Value (kWh/Nm3)

Natural gas 0.69 11.63
LNG 431.07 - *

Hydrogen 0.09 3.08 **
* LNG’s GCV (Gross Calorific Value) is not considered, as the LNG mass flow will be calculated only using the
relation between natural gas and LNG densities. ** Hydrogen’s GCV [27] considers a density of 0.089 kg/m3 and
a Wobbe Index of 11.29 kWh/Nm3.

2.2. Sizing and Simulation
2.2.1. Regasification Processes

For the traditional regasification process (Figure 1), this paper proposes a simplified
scheme in ASPEN HYSYS to size and simulate the main equipment of the facility [28,29],
considering the following stages:

1. Storage stage: as the part of the plant in charge of receiving the unloaded or reliquefied
LNG and maintaining its temperature to avoid its involuntary evaporation (boil-
off gas formation). It basically consists of the cryogenic tanks and the associated
pressurization units (submerged LNG pumps).

2. Liquefaction stage: referred to the part of the terminal responsible for liquefying BOG
(Boil-Off Gas). It consists of open heat exchange units capable of withstanding very
low temperatures and a small compressor.

3. Regasification stage: associated with the entire process of heating the LNG coming
from the storage and/or liquefaction stage, bringing together the heat exchange
processes for the temperature increase and ensuring its correct vaporization. It consists
of the heat exchange equipment using seawater as the hot fluid.

4. Compression stage: to pressurize natural gas into transmission network. It basically
consists of a group of high-pressure compressors.
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With that said, the simulated PFD (Process Flow Diagram) model can be found in
Figure 4 including certain particularities:

• HYSYS differentiate between material streams (mass flows, marked in blue in PFDs)
and energy streams (energy flows, marked in red in PFDs). Note how an energy
stream has been added to the storage stage just to represent the heat leak that the tanks
suffer, producing the BOG by involuntarily vaporizing the LNG.

• Control streams (marked in green in PFDs) have been used to calculate the maximum
limit of heat that the tanks can exchange with the environment to produce a defined
amount of BOG (in terms of mass flows).

• The liquefaction unit is modeled as a tank unit as HYSYS do not have any specific
system to simulate open heat exchangers. In practical terms, this means that BOG will
be turned into LNG by simply getting in contact with the LNG withdrawn from the
storage unit. Non-liquefied BOG will be directed to flare.
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Regarding the specified parameters, the simulated model considers the following
design requirements:

• The LNG and natural gas composition is assumed as 97.85% of pure methane (CH4),
0.85% of diatomic nitrogen (N2) and 1.3% of carbon dioxide (CO2). Unloading LNG
temperature and pressure are fixed at −164 ◦C and 0.875 bar, respectively.

• The storage unit dimensions must be able to store at least an amount of LNG equal
to the peak regasification capacity of the facility working in full rate for 15 days,
maximizing the security of supply [30].

• The maximum BOG rate allowed is defined as an 0.75% (on a mass per day basis) of
the total LNG stored [31].

• The vaporizer design will be carried out by minimizing seawater consumption consid-
ering that seawater cannot be returned to the sea if its temperature is below 11 ◦C in
the whole Spanish territory, as the minimum temperature allowed is 10 ◦C [32].

• The entry pressure of the transmission network is fixed at 60 bar [33], as it is considered
a high-pressure network.

• The whole design will be resolved using Soave–Redlich–Kwong (SRK) equation-of-
state [34–36].

2.2.2. Hydrogen LOHC Hydrogenation and Dehydrogenation System

Hydrogen liquefaction processes had always supposed a technical challenge due to its
low condensation temperature (approximately at −253 ◦C).

Although there are several significant lines of research about this methodology [37,38],
there are already a considerable number of organic components available that can meet
these needs in a very solvent way. In this case, the simulated process will use a naphthalene-
decalin system as the LOHC for hydrogen chemical liquefaction, whose simplified process
can be found in Figure 5.
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Contrary to the LNG regasification conventional process, hydrogen’s LOHC processes
will be modeled and resolved in ASPEN PLUS, as a more accurate thermodynamic solution
is required, considering the following stages:

1. LOHC saturation reaction: strongly exothermic by breaking the double bonds of the
unsaturated LOHC to add hydrogen atoms to the resulting molecule (usually referred
to as LOHC+).

2. LOHC desaturation reaction: once desired, the LOHC+ formation reaction can be
reversed by removing hydrogen from the saturated chain and forcing the appearance
of the multiple bonds of the original LOHC molecule (strongly endothermic).

3. LOHC recovery: after a considerable number of reaction cycles, it is advisable to
replace all or part of the LOHC used in the system to prevent the occurrence of
parasitic chemical reactions. This implies the existence of separation units that allow
to effectively remove the LOHC from the gas hydrogen once the dehydrogenation
reaction took place.

With that said, the simulated PFD model can be found in Figure 6 including the
following particularities:

• ASPEN PLUS does not only resolve material streams (mass flows). Therefore, no en-
ergy streams are defined as energy requirements will be calculated once the simulation
process solves the case.

• Both reactors’ units (hydrogenation and dehydrogenation) will use a Gibb’s free energy
formation minimization algorithm to predict the LOHC conversion to saturated and
unsaturated states.

• The separation unit will be modeled as a flash column, only being defined by tempera-
ture and pressure conditions to separate both fluid phases.

Regarding the specified parameters, the simulated model considers the following
design requirements:

• Input streams are considered pure for both LOHC and hydrogen. Additionally, these
streams are processed at 25 ◦C and 1 bar.

• A sensibility analysis will be carried out to optimize the reaction conditions (namely
pressure and temperature) for both reactions.

• Conditions in separation unit are calculated to not vary the chemical composition of
the gas and liquid phases that comes from the dehydrogenation reactor. Only physical
separation between both phases is required.

• The whole design will be resolved using the Peng–Robinson equation of state, as it is
the most widely used thermodynamic model [39,40] to predict liquid phases behavior.
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2.2.3. Energy Integration System

Once the hydrogen LOHC system have been fully designed, an energy integration
analysis between the LNG regasification processes and the hydrogen organic reactions is
carried out.

The main idea behind this study is based on achieving the greatest possible energy
savings within the LNG regasification stage thanks, to a large extent, to the energy pro-
vided by the strong exothermic reaction produced by saturating the LOHC bonds in the
hydrogenation reactor.

In this regard, the most energy demanding process must be identified, as it will be
the one more suitable to apply energy efficiency measures. For most LNG regasification
terminals, the highest energy consumption is at compression stages [41,42]. Due to this, a
power demand analysis is proposed by modifying the PFD on Figure 4 by including a new
stream material of pure hydrogen that is mixed with the regasified LNG until a specified
molar fraction of hydrogen in the blending mixture is reached, as can be seen in Figure 7.
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Once HYSYS resolve the proposed system, the available energy to be used on this com-
pression process (Eavailable) can be estimated by adding the heat produced at hydrogenation
(Qhydro) reactor plus the amount of cooling needed to reach the temperature conditions at
the separation (Qsepar) unit by using the following expression:

Eavailable = |Qhydro| + |Qsepar|, (6)
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Despite the fact this may represent a significant quantity of available energy, it cannot
be directly reused to power the compression stage as it must be converted to mechanical
or electrical energy. To perform this energy conversion, this study proposes the addition
of a simplified Rankine cycle, where the power turbine will be shaft-coupled with the
transmission network compressor, providing as much energy as produced by the cycle
directly to the compression stage (Figure 8).
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Lastly, if there is still available energy, it can be used to reduce the seawater consump-
tion during the LNG heat exchange stages (represented by the substitution of the seawater
material streams for just one energy stream on LNG Vaporizer). Regarding the specified
parameters, the simulated model considers the following design requirements:

• Seawater input stream is at 15 ◦C and 1 bar.
• One control stream is added to ensure that seawater does not surpass 600 ◦C at the

turbine’s entry. Once this temperature is reached, the rest of the available heat will be
used for LNG heat exchange energy savings.

• An extra energy stream is added to the one produced by the Rankine’s turbine just to
solve the cases that more energy is required to pressurize the blending mixture.

• The whole design will be resolved using Soave–Redlich–Kwong equation of state, to
maintain coherence between the results from the conventional LNG regasification
processes results.

3. Results and Discussion
3.1. Demand Estimation
3.1.1. Data Outliers’ Determination

The outlier’s determination analysis (described by Tukey’s test equations previously
mentioned) results are presented as standard box plots in Figure 9.
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Figure 9. Tukey test results.

The median for each dataset is illustrated as the horizontal line inside the box, whose
limits corresponds to Q3 and Q1 (in other words, the box defines the interquartile range).
The whiskers, on the other hand, represent the Q0 and Q4, meaning the lowest and highest
data point in the dataset, respectively, excluding any outliers. All data that do not fit into
those limits are noted with a red cross and qualified as an outlier.

The test results show that only four values of the whole temperature dataset represent
a statistically anomalous behavior, all of them being considered as upside outliers. For the
power demand data series, a total of 38 values are identified, labeling 4 of them as upside
outliers and the other 34 as downside outliers.

As has already been explained, to maintain time coherence between both temper-
ature and power demand datasets, all identified outliers from one data series and its
corresponding pair (date-coupled values) are not considered in further stages.

3.1.2. Filtering Process

The Savitzky–Golay filtering process results are displayed in Figure 10 individually
for each dataset.
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As expected, the filtering process does not significantly modify the general shape
of both series, maintaining an acceptable location of turning points. Nevertheless, it is
remarkable how power demand historical data show several minimum values that do not
correspond with weekend periods or with the main festivities, which may be due to many
reasons:

• Local festivities that have not been identified (as, for example, the Holy Week period
that varies its dates of celebration each year).

• Conjunctural conditions to the Canary Islands energy system that influence the de-
mand, such as for example national strike callings.

• Power shortages or energy distribution failures that may had occurred.

In any case, and even though the Savitzky–Golay approach allows to recognize these
data as minimums, their values are generally increased to reduce their impact on the neural
network training process. By correcting these minimums closer to the general range of
values of the power demand data, the variance ratio of the filtered data is considerably
reduced, and consequently, a better (and faster, in most of the cases) statistically acceptable
accuracy during the neural network tune can be reached.

For the maximum values, the case is simply the opposite, as they are the most impor-
tant values in which predictions must be based on. For this reason, the filter process firmly
maintains most of the original historical data, adding minuscule corrections.

3.1.3. Neural Network Training Process

As the architecture parameters considered for each module is fixed as described
previously, all that is left is to check that the whole system can reach enough accuracy
regarding the historical data during a reasonable time of training. The main results of the
process are collected in Table 5.

Table 5. Neural network’s training algorithm performance.

Neural Network
Module Training Algorithm Number of

Iterations
Time of Training

(s)
Average MSE (Training,

Validation & Testing Samples) 3

Temperature Levenberg–Marquardt 12 1 0.33 [◦C]
Power Demand Bayesian regularization 847 53 268.29 [MWhe] 4

3 The mean squared error (MSE) is usually used as the main risk function to calculate the performance of a neural
network [43]. Values closer to zero means a perfect prediction in which the model can exactly predict the training
data. 4 For the case of the power demand module, the average MSE calculations considered a value of 0 for
validation samples because of the Bayesian regularization algorithm. The average MSE represents 1.08% of the
average power demand historical data, which is considered an acceptable convergence.

As can be seen, the neural network reaches an acceptable solution in less than 1 min
of training in the case of the power demand module. The significant differences between
the number of iterations and the time of training for each module simply responds to the
architecture: for the temperature module, the network must process only non-coupled
values of the historical data, as there are no other inputs, while in the case of the power
demand module the network must deal with the paired data by the exogenous entry. This
could be corrected using lighter—in terms of computing power requirements—training
algorithms for the power demand stage (such as for example the scaled conjugate gradient
algorithm), generally implying worse quality of predictions. Regarding the MSE values,
both are considered as good enough for the application that this paper proposes.

In addition, all samples are regressed individually (Figure 11) depending on whether
it is easily proven that the random sampling methodology is working properly and there is
not any group that presents a significant deviation in respect to the others. No anomalous
tendencies were observed in this regard, so the sampling process is considered correct.
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Figure 11. Neural network training results: (a) temperature module; (b) power demand module. Note
how because of the use of the Bayesian Regularization algorithm for the power demand module, no
correlation between validation samples and neural network results are presented, as full correlation
(R = 1) is forced by the algorithm itself only for that category of samples.

Lastly, absolute and relative errors for the historical data are calculated (Figure 12).
The results shown a mean relative error of 0.039% and a highly zero-centered absolute error
histogram with equally upside and downside distribution. The main contribution to the
absolute error comes from the training samples (more than 80% of the instances), basically
due to the higher percentage of the sampling distribution for this type.
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Due to the abovementioned reasonings and results, the neural network is considered
reliable enough to provide a trustworthy prediction to be used as a base for the design stage.
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3.1.4. Power Demand Predictions

By the time neural network training process conclude, the whole system is set up to
start predictive calculations. The given solution can be observed in Figure 13 for the years
2020 to first half of 2060.
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Figure 13. Neural network prediction results.

The results showed a clear steadiness in both variables, which is considered as a
reasonable outcome for many reasons:

• No increase in population is expected on the Canary Islands, as most of the territory is
already being used (and a significant part of the area is environmentally protected) [44].

• Industrial expansion is barely expected, as their economic model is mainly based on
tourism and vessel traffic in the main ports [45,46].

• The temperature is highly influenced by the thermal inertia of the ocean and, therefore,
heat or cold waves are punctual phenomena [47].

With that being said, the peak power demand for five-year-long groups (starting with
the predicted data at 2020) is listed in Table 6.

Table 6. Peak power demand predicted by the neural network.

Year Predicted Peak Power Demand (GWhe)

2025 27.59
2030 27.75
2035 27.75
2040 27.49
2045 26.93
2050 27.57
2055 27.01
2060 27.47

3.1.5. NG/LNG and Hydrogen Peak Demand

Once the power demand prediction has been obtained, and by applying the equations
and percentages defined for each year that has been previously described, the natural
gas and hydrogen peak demand can be calculated. Namely, this peak demand adds the
individual peak demand of each considered sector, which in other words implies that no
simultaneity coefficients have been applied (the designed terminal will be able to supply
all the different demand sectors even if their corresponding peak demand occurs during
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the same day, which is one of the common principles of this kind of plants [48]). The results
for five-year-long groups are presented in Table 7.

Table 7. Peak demand estimation for natural gas and hydrogen.

Energy
Resource Year

NG Peak Demand
(Nm3/h)

LNG Peak
Demand (kg/h)

Maximum BOG
Production (Nm3/h)

Hydrogen Peak Demand 5

(Nm3/h) (kg/h)

Natural Gas
only

2025 156.456 84.750 1.000 - -
2030 187.393 143.958 1.200 - -
2035 200.398 153.917 1.500 - -
2040 205.718 158.036 2.000 - -

Natural Gas
plus

Hydrogen

2045 180.901 138.959 1.375 23.240 2.068
2050 139.273 106.994 1.042 62.223 5.538
2055 97.449 74.863 750 101.391 9.024
2060 63.791 49.006 458 132.910 11.829

5 No peak demand for hydrogen has been calculated for the period between 2025 and 2040 as this paper considers
that hydrogen will be introduced as a massive energy resource at the Canary Islands by 2045, as further renewable
energy deployment is needed to reach such hydrogen production capacities.

It also must be noted that, from a practical point of view, once this demand is estimated
designers may opt to select the closest peak demand value to perform sizing calculations,
making successive modifications to increase the capacity of the terminal in case of need if
the demand follows the forecasted way, just to obtain better profitability during the early
years of functioning or to avoid excessive oversizing costs [49]. In this case, the sizing
calculations will be based on the peak demand of 2040 for the natural gas conventional
regasification processes, while hydrogen LOHC processes will be assessed individually by
using all the above-presented peak demand values.

3.2. Sizing and Simulation
3.2.1. Regasification Processes

By the time natural gas’ peak demand has been already obtained, it is directly specified
in the HYSYS simulation environment as the mass flow for the LNG (from vessel) material
stream (refer to the previous Figure 4). Once this stream is fully defined, the software solves
all energy mass balances and sizes all the required units for the conventional regasification
process. The main results can be found in Tables 8 and 9.

Table 8. Energy balance results for the conventional LNG regasification process.

Max. LNG Tank
Heat Gain (kW)

BOG Compressor
Power (kW)

Low-Pressure
Pump Power (kW)

High-Pressure
Pump Power (kW)

High-Pressure
Compressor
Power (kW)

Total Energy
Input 6 (kW)

35.62 15.34 8.19 179.44 18,040.61 18,243.58
6 The LNG tanks maximum heat gain has not been considered as a necessary energy input, as it is an amount
of energy that is freely introduced in the system only driven by the difference of temperatures between the
environment and the surface of the cryogenic tank itself.

As expected, and as can be clearly appreciated by the energy balance results, the main
consumption is represented by the high-pressure compressor (more than 98.8% of the total
required energy). Pumps do not show significant consumptions as the pressure gaps that
they must provide (between 1 and 1.5 bar) are less significant than the ones needed at the
entry of the transmission network (between 50 and 55 bar), plus that the fact that methane
is a considerably small molecule [50], which in other words implies that its compressibility
factor plays a significant role when it comes to pressurization processes. It is also worth
mentioning that the listed results represent the worst operational scenario (in terms of
mass flows), which is a peak demand set point, while a maximum BOG generation is
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simultaneously happening, as the sizing process must be assessed to guarantee that the
facility is able to process the required flows even in such conditions.

Table 9. Sizing results for conventional LNG regasification process.

Liquefier Vaporizer

Volume (m3) 50.32

Cold side
(LNG tubes)

Length (m) 6
Height (m) 5.23 Outside diameter (mm) 20

Diameter (m) 3.49 Inside diameter (mm) 16
Type Cilindric body Thickness (mm) 2

Orientation Vertical Tubes per rack 160

Passes per rack 2
Angle arrangement Triangular (30◦)

Orientation Horizontal
Thermal conductivity (W/m·K) 45

Fouling factor 0.00018
TEMA heat exchanger

equivalent AEL

Hot side
(seawater in
open rack)

Seawater consumption (kg/h) 3,417,000
Number of racks 1

Deflector type Single
Deflector orientation Horizontal
Deflector cut (area %) 0.21

Deflector spacing (mm) 800
Body diameter (mm) 739

Total exchange area (m2) 60.34
Fouling factor 0.00018

Heat transfer
coefficients

U (kJ/h·m2·◦C) 9.447
U·A(kJ/h·◦C) 569.900

Flow type Countercurrent

In the other hand, liquefaction unit sizing results proposes a cylindric and horizontal
body as the optimal solution, which seems logic as this stage essentially works as an open
heat-exchanger between the BOG coming from LNG storage and the actual LNG mass flow
set point, implying that close contact must be carried out between gas and liquid phases
inside the equipment. Even though the establishing of the technical minimum of LNG
mass flow that has to be regasified to maintain the terminal under secure conditions is out
of the scope of this publication, it has been checked that the proposed dimensions are able
to fully liquify maximum BOG flows even with less than the half of the estimated natural
gas peak demand for 2025, implying that the possibility of having to burn BOG excess at
the terminal flare is also very low.

Regarding vaporizer results, LNG is set to flow inside the tubes while seawater would
run outside them conforming each rack’s module. It also must be noted that standard
fouling factors [51] have been considered, notwithstanding that correct maintenance plans
may reduce the value by internally minimizing salt depositions. It can be noted that the
significant seawater consumption is due to temperature legal restrictions that have been
already explained [32]. Lastly, it has been checked that the heat exchange stage can fully
regasify LNG flows corresponding with more than 10% of the peak demand of natural gas
for the 2040 (in case of need) with the proposed dimensions as a security factor.

3.2.2. Hydrogen LOHC Hydrogenation and Dehydrogenation System

As previously detailed, hydrogen units are resolved by using the LOHC chemical
approach. The simulations are carried out regardless the previous solutions of the LNG
regasification process, as no input from them is needed. The results obtained for both mass
and energy balances are listed in Tables 10 and 11.
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Table 10. Energy and mass balances results for LOHC (decalin-naphthalene system) hydrogen
processes.

Year Hydrogen
Production (kg/h)

LOHC Consumption
(kg/h)

Hydrogenation
Heat (MW)

Dehydrogenation
Heat (MW)

Separation Heat
(MW)

2045 2.070 22.276 −15.34 25.14 −10.24
2050 5.540 70.496 −41.13 67.41 −27.45
2055 9.025 114.972 −66.99 109.84 −44.75
2060 11.830 150.604 −87.82 143.96 −58.63

Table 11. LOHC (decalin-naphthalene system) hydrogen processes efficiencies.

Year
Hydrogenation

Efficiency 7
Dehydrogenation

Efficiency 8
Flash Conditions

Pressure (bar) Temperature (◦C)

2045 99.11% 99.98% 1 15
2050 99.32% 99.83% 1 15
2055 99.84% 99.84% 1 15
2060 99.97% 99.84% 1 15

7 Hydrogenation efficiency is defined as conversion for the saturated chemical form of LOHC after the first reaction
between hydrogen and naphthalene. 8 Dehydrogenation efficiency is defined as the percentage of hydrogen mass
flow recovery once the second reaction (naphthalene to decalin) has concluded.

The values provided by ASPEN PLUS show that, on average, the required LOHC
mass flow is more than 12.2 times the mass flow of hydrogen that must be processed.
This significant relation between both streams seems to be the weakest point of the LOHC
methodology use, as it is inherent to its molecular structure due to the stoichiometric
proportion between hydrogen and naphthalene (5:1, respectively) and the difference be-
tween molecular weights (128:2 g/mol, respectively), implying eventually that storage
facilities must consider tanks of considerable volume. In regard of energy streams, the
process provides a significant amount of heat coming mainly from the exothermic reaction
of saturation of the hydrogenation stage and the reduction of temperature that is required
to reach the conditions at the separation unit.

On the other hand, LOHC methodology shows practically a full efficiency for both
processes. These results imply, accordingly, that practically the whole naphthalene mass
flow can be reprocessed several times until it must be replaced with a fresh batch and
that the resulting hydrogen stream does not need any special separation unit to reach an
acceptable purity (as it will only contain LOHC traces).

Lastly, the sensibility analysis results to optimize reaction conditions are presented in
Figure 14.

For the hydrogenation process, the observed tendency aims to low pressure and
temperature conditions, which seems to be reasonable, as most of saturation reactions are
spontaneous processes as they produce more thermodynamically stable compounds than
the reactants and, ergo, they do not need any additional energy input in form of pressure
or temperature. The case is just the opposite for the dehydrogenation process, in which
mainly a high temperature seems to be enough to drive the reaction to release the hydrogen,
with no significant influence on the pressure from 15 bar and onwards.

With that said, the simulated conditions of 1 bar and 15 ◦C and 15 bar and 380 ◦C for
the hydrogenation and dehydrogenation reactors, respectively, are considered optimized
enough to provide a comprehensive view of the effectiveness of the methodology.
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3.2.3. Energy Integration System

As high-pressure compression has already been identified as the most energy-demanding
process, the results for the power demand analysis defined by the PFD in Figure 7 are
shown in Table 12.

Table 12. LOHC (decalin-naphthalene system) hydrogen processes efficiencies.

Year Hydrogen Mole Fraction
(Blending Mixture)

High-Pressure Compressor
Power (MW)

2045 13.72% 33.81
2050 29.77% 36.74
2055 49.67% 41.98
2060 66.40% 46.66

As can be observed, higher presence of hydrogen in the blending mixture implies a
higher power demand for compression. The explanation of such fact lays simply behind
the reasoning detailed at Section 3.2.1 for natural gas high-pressure compression energy
demand—if methane is such a small molecule hydrogen is even a wider case and, con-
sequently, whenever its mole fraction increases the compressibility factor of the mixture
follows the same path, requiring more energy to reach the same pressure gaps.

Once the energy need is quantified, the available energy of the hydrogenation process
and the separation unit can be obtained by simply applying Equation (6) on data listed in
Table 10 (Qhydro and Qsepar must be identified as hydrogenation heat and separation heat
rows, respectively), as described in Section 2.2.3. The results are presented in Table 13.

Table 13. Available energy from hydrogen LOHC processes.

Year Available Energy for Integration Process (MW)

2045 25.58
2050 68.58
2055 111.74
2060 146.45

In view of the results, the available energy eventually increases over the years. This
tendency is mainly justified by indicating that all this values essentially come from the
hydrogen-related process as a consequence of its increasing demand (Table 7), which
collaterally implies that energy need for hydrogenation reaction and separation will also be
higher, leading to more availability of this energy excess that can be reused at the facility.
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At this point, simulation on ASPEN HYSYS for the PFD that includes the Rankine’s
cycle (Figure 8) is solved considering that additional energy values introduced at the system,
in form of independent energy streams, must be up until values listed at Table 13 for the
corresponding hydrogen and natural gas mass flows considered for each year (as described
in Table 7). The results can be found in Table 14 and Figure 15.

Table 14. Energy integration process results.

Year
LNG Regasification

Energy Savings 9

(MW)

Rankine’s
Boiler Energy

(MW)

Steam Turbine
Produced

Power (MW)

Additional Power
for Compression

(MW)

Total Energy
Demand 10

(MW)

Total
Energy

Savings 11

2045 22,30 3,28 0,81 33,00 56,11 41,18%
2050 17,17 51,41 12,64 24,05 53,86 55,34%
2055 12,01 99,73 24,53 17,37 53,91 67,77%
2060 7,87 138,58 34,08 12,58 54,53 76,93%

9 Energy used for LNG regasification savings is obtained only when seawater steam’s temperature after the
Rankine’s cycle boiling unit reaches a temperature of 650 ◦C. Note how both rows (LNG regasification energy
savings and Rankine’s boiler energy) add a total amount equal to all available energy for each year, as detailed in
Table 13. 10 Rankine’s boiler energy requirement has not been considered to calculate total energy demand, as
it is an amount of energy that is only used to turn thermal energy into power through Rankine’s cycle. 11 Total
energy savings values have been obtained by dividing the sum of LNG regasification energy savings and the
vapor turbine produced power by the total energy demand.
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As can be seen, energy integration leads to considerable long-term savings in the
energy needs of the terminal. In particular, the percentage of savings increases as the mole
fraction of hydrogen present in the blending increases, which as commented earlier implies
a greater amount of previous hydrogenation, and therefore, a greater amount of heat release
in the form of reusable energy.

In addition, it can also be noted how the two components of total savings evolve over
time in favor of the compression term and to the detriment of the regasification term, which
is logical given that for the years in which hybridization (the year in which the facility will
manage natural gas and hydrogen simultaneously producing blending mixtures) can take
place, LNG demand is predicted to decrease (as hydrogen demand increases). This means
that the volumes of natural gas that the plant must regasify are smaller (and therefore, so
are its energy needs, so that subsequently a greater amount of surplus energy coming from
hydrogenation process in the Rankine’s cycle can be used for compression processes, whose
energy consumption starts to increase as more hydrogen is introduced in the blending
mixture, which eventually leads to smaller savings over the years).

In short, the results show that synergies between conventional regasification and LNG
storage processes are energetically very integrable with the hydrogen LOHC processes
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described above. This fact opens the door to the exploration and viability of hybrid
terminals that jointly operate both energy vectors, favoring decarbonization and being
able to give a second life to traditional natural gas facilities without a significantly high
amount of modifications or investment (given that, in principle, various parts of the
facility such as the storage tanks would already be practically compatible with LOHC
liquefaction technology, as it presents much less aggressive conditions than those of the
usual LNG storage).

4. Conclusions

In this paper, the sizing and energy integration process design for a hybrid LNG
and hydrogen regasification terminal have been carried out based on a long-term power
demand forecast estimated through a specifically tuned neural network architecture. The
main findings and conclusions that can be drawn of the publication are as follows:

• The results show that the performance of the proposed neural network can reach
high accuracy in power demand forecasting applications, reaching up to 1.08 MWh of
MSE with less than 1 min on training mode, while the described modular architecture
correctly allows to use temperature as a single predictor, reaching 0.33 ◦C of MSE
practically instantly for the corresponding module. It is also worth mentioning that
data preparation and filtering process played a crucial role during the network tuning
process, removing outliers, and consequently, improving consistently the solution’s
convergence. This fact makes its use advisable during the design, engineering and siz-
ing of any energy infrastructure that requires a rigorous prior study of characterization
and modeling of the demand itself. The choice and design of the architecture, together
with the training algorithm, are crucial to obtain the most reliable forecasts possible, as
well as acceptable usability in terms of efficiency in the processing of historical data.

• LOHC hydrogenation and dehydrogenation processes present outstanding efficiencies
(>99% as described in Table 11 for all the analyzed cases) when optimal reaction
conditions are met (which have been estimated at 1 bar and 15 ◦C and 15 bar and
380 ◦C, respectively), promoting hydrogen value chain development as they allow to
chemically store gas molecules in normal liquid conditions, rather than the already-
known cryogenic technologies that require extremely cold temperatures.

• The use of LOHC methodology collaterally implies the availability of a significant
amount of energy in form of heat (around 1 MW per 870–1200 kg/h of naphthalene-
decalin processed as stated in Table 10, depending on the mass flow of processed
hydrogen) that can be easily used to perform energy saving measures by integrating
these processes with LNG regasification. Within this paradigm, the designed system
using a Rankyne’s cycle can supply more than 77% of the most energy-demanding
process of traditional regasification when the produced natural gas is mixed with
hydrogen (blending), which have been identified as the high-pressure compression
(which takes 98% of the total energy consumption of the natural gas regasification
process), being able to additionally reduce the seawater-related energy consumption
on the heat exchange stages up to 62%.
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Abbreviations, Acronyms and Symbols

LNG Liquefied Natural Gas
NG Natural Gas
LOHC Liquid Organic Hydrogen Carrier
LOHC+ Saturated Liquid Organic Hydrogen Carrier
BOG Boil-Off Gas
SARIMA Seasonal Autoregressive Integrated Moving Average
RNN Recurrent Neural Network
GCV Gross Calorific Value
PFD Process Flow Diagram
SRK Soave–Redlich–Kwong (equation of state model)
MSE Mean Squared Error
TEMA Tubular Exchangers Manufacturers Association
GCV Gross Calorific Value
d Delay of the Neural Network Module
n Number of Neurons of the Neural Network Module
Qn N-quartile
DPower, peak, year Power Peak Demand for a certain interval of natural years
DNG, peak, year Natural Gas Peak Demand for a certain interval of natural years
DH, peak, year Hydrogen Peak Demand for a certain interval of natural years
PNG,sector,year Percentage of Natural Gas Demand by sector for a certain interval of natural years
PH, sector, year Percentage of Hydrogen Demand by sector for a certain interval of natural years
Eavailable Total Available Energy from LOHC Hydrogen Processes
Qhydro Energy (in form of heat) available from Hydrogenation LOHC Processes
Qsepar Energy (in form of heat) available from LOHC physical separation Processes
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