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Abstract: Model predictive control is considered an attractive control strategy for the operation
of hydropower station systems. It is due to the operational constraints or requirements of the
hydropower system for safe and eco-friendly operation. However, it is mandatory to tune the
model predictive control to achieve its best and most efficient performance. This paper determines
the appropriate tunning on the weight parameters and the length of the prediction horizon for
implementing model predictive control on the Dalsfoss hydropower system. For that, several test
sets of the weight parameter for the optimal control problem and different lengths of the prediction
horizon are simulated and compared.
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1. Introduction

As global warming has become a severe problem, the world has been trying to reduce
the use of fossil fuels. Renewable energy has been spotlighted as the key technology to
mitigating the emission of greenhouse gas. Renewable energy has been actively adopted
globally for the green shift [1].

Hydropower plays an essential role in the green shift. It is because hydropower is
the only renewable technology that can provide energy on demand. Most of the other
renewable technologies, e.g., solar and wind, can generate power intermittently depend-
ing on the weather conditions. Despite the advantages of hydropower, its operation is
challenging owing to strict operational constraints. The operational constraints are to
prevent damage to the environment and residents around watercourses and reservoirs.
For example, the change of the discharged water flowrate from the hydropower plant must
be inhibited as much as possible to keep the fauna and the resident environments safe
along the water course [2,3].

The complicated operational requirements make model predictive control (MPC) an
appealing control approach for the operation of hydropower. MPC is a control approach
that computes control input sequences for the future by solving a finite horizon open-loop
optimal control problem (OCP) based on the current state and given information of the
system as the initial point. Then, the first control input in the control sequence is applied
and this process repeats in every sampling time. In other words, MPC has the capability to
deal with a dynamic system with multiple inputs, outputs, and constraints [4–6].

There has been a series of studies on the implementation of MPC in the Dalsfoss hy-
dropower plant system. The Dalsfoss hydropower plant is an impoundment type of hy-
dropower plant that is located uppermost in the Kragerø watercourse [7,8]. The operation of
the Dalsfoss hydropower plant must comply with the constraints that NVE regulated, e.g., the
water level, the change of discharged flowrate, and the minimum flowrate of discharged
water [9]. There was an initial attempt to simulate MPC on the Dalsfoss hydropower plant.
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This work suggested the model of the system and formulated the reference tracking OCP
to keep the water level within a specific range. By keeping the buffer space in the reservoir,
this MPC obtained the capability to deal with the system uncertainties [10]. A model was
updated with new parameters after the severe mismatch between the model and the reality
was found during a flood in September 2015 [11]. For better operation under the uncertainty
of water inflow forecast, multi-objective optimization(MOO) MPC was implemented with
the reference region tracking OCP [12]. Then, the new OCP that maximizes the water level
in the reservoir was suggested and compared to the conventional OCP. Although the new
OCP gives the advantage of not wasting water at the reservoir, it shows a weakness in the
robustness of the constraint satisfaction under the presence of the system uncertainty [13].
This robustness problem was solved by adopting multi-stage MPC [14].

Although there has been a series of research on using MPC for the operation of the
hydropower station, parameter tuning for the rigorous operation has not been performed
yet. Therefore, this work aims to tune MPC for operating hydropower safely and eco-friendly
with minimized computational demand. To determine the appropriate tunning of MPC for
the rigorous operation, four test sets (including the conventional setting) and seven different
lengths of prediction horizons (including the conventional setting) are used for the simulations.
Furthermore, for a more realistic simulation, the historically stored actual data of the water
inflow and the power production are applied. By comparing the simulation results, the proper
tuning of weight parameters and the appropriate length of prediction horizon are obtained.

This paper is organized as follows: Section 2 explains the system model, operational
constraints, and optimal control problem. Section 3 presents simulation settings such as
test sets of parameters and simulation conditions. The result is presented in Section 4 and
the conclusion is made in Section 5.

2. System Description
2.1. System Model

The Dalsfoss hydropower plant is operated by using water from its reservoir, lake
Toke. For the effective and efficient operation of the hydropower plant, it is important
to control the level of the reservoir. Figure 1 shows the simplified layout of the reservoir.
The reservoir, lake Toke, is divided into two parts. The left side of Figure 1 depicts the
upper part of the reservoir, called Merkebekk, and the right side describes the lower part of
the reservoir, called Dalsfoss, which is near the dam and the plant. The water inflows into
the reservoir, V̇i [m3/s] come from various sources such as precipitation and ice-melting.
A certain proportion, β, of the water inflow, goes into Dalsfoss and the rest goes into
Merkebekk. The water is discharged through floodgate, V̇g [m3/s], and turbine, V̇t [m3/s].
The system model of lake Toke is derived in [10] as follows:

Figure 1. Schematic of lake Toke [10].
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There are two states in the system. One is the water level at Merkebekk and the other
is the water level at Dalsfoss, denoted as h1 [m] and h2 [m] respectively. Both states are
measurable and observable. xM [m MSL] and xD [m MSL] mean the water level above the
sea level (m MSL) at Merkebekk and Dalsfoss. They are calculated as:

xM = h1 + xmin
LRV (1)

xD = h2 + xmin
LRV (2)

where xmin
LRV [m MSL] means the low regulated value of the water level.

Due to the curvature shape of the lake, the area of the lake surface changes depending on
the water level at lake Toke. The minimum area of the lake surface is specified as 28× 106 m2.
Therefore, the area of the lake according to the water level, A(hi) [m2], is computed as:

A(hi) = max(28× 106 · 1.1 · h
1
10
i , 103) (3)

The area of lake toke can be divided into the areas of Dalsfoss and Merkebekk based
on the proportion, α.

The flow from Merkebekk to Dalsfoss denoted as V̇12 [m3/s], is calculated based on
the height difference of the water levels at both places as follows:

V̇12 = K12 · (h1 − h2)
√
|h1 − h2| (4)

where K12 is the flow coefficient in lake Toke.
Two control inputs in the system are the opening heights of two floodgates at the

reservoir. The structure of the floodgate is shown in Figure 2. The floodgate opens upwards.
Therefore, the minimum value of water level at Dalsfoss, h2, or the opening height of the
floodgate, hgi is used to calculate the flowrate through the floodgate. The floodgate is
located above the low regulated value of the water level, xmin

LRV. When the water level at
Dalsfoss, h2 is lower than the low regulated value of the water level, xmin

LRV, the water does
not flow out through floodgate. The opening heights on floodgates are denoted as hg1
and hg2. The openings of floodgates and the level of the water at Dalsfoss determine the
amount of water thrown out through floodgates, V̇g [m3/s], as:

V̇g = Cd · w ·min(hg, h2)
√

2g ·max(h2, 0) (5)

where Cd is the discharge coefficient and g is the acceleration of gravity. The width of the
floodgate is denoted as w. The maximum opening height of floodgates is limited by 5.6 m.

Figure 2. Structure of floodgate [10].

The power production plan is denoted as Ẇe [MW] and it is decided by optimization
based on many factors such as water level, price, demand, etc by Skagerak. The water
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flowrate through a turbine, V̇t [m3/s], is determined by how much power must be generated
according to the power production plan as:

V̇t = a
Ẇe

xD − xq
+ b (6)

In Equation (6), xq[m] means the water level at the quay where the water is discharged.
a and b indicate parameters obtained from the data fitting method. The water level at the
quay is calculated by solving the following cubic equation:

0 = c1x3
q + (c2 − c1xD)x2

q

+ (c3 − c2xD + c4V̇g)xq

+ Ẇe − c3xD − c4V̇gxD − c5

(7)

where c1, c2, c3, c4, and c5 are coefficients that are obtained by the polynomial data fitting method.
For this method, the historically stored data in the Dalsfoss hydropower plant are used.

The total flowrate at downstream from the Dalsfoss power station, V̇o [m3/s], is
computed as:

V̇o = V̇t + ∑ V̇g (8)

The dynamic model is described by the following equations:

dh1

dt
=

1
(1− α)A(h1)

((1− β)V̇i − V̇12) (9)

dh2

dt
=

1
αA(h2)

(βV̇i + V̇12 − V̇o) (10)

Parameters for the system model are specified in Table 1.

Table 1. Parameters for Lake Toke model.

Parameter Value Unit Comment

α 0.05 - Fraction of surface area in compartment 2
β 0.02 - Fraction of inflow to compartment 2

K12 800 m
3
2 /s Flow coefficient

Cd 0.7 - Discharge coefficient, Dalsfoss gate
w1 11.6 m Width of Dalsfoss gate 1
w2 11.0 m Width of Dalsfoss gate 2

xmin
LRV 55.75 m MSL Minimal low regulated level value
g 9.81 m/s2 Acceleration of gravity
a 124.69 Pa−1 Coefficient in Equation (6)
b 3.161 m3/s Coefficient in Equation (6)
c1 0.13152 W/m−3 Polynomial coefficient in Equation (7)
c2 −9.5241 W/m2 Polynomial coefficient in Equation (7)
c3 1.7234 · 102 W/m Polynomial coefficient in Equation (7)
c4 −7.7045 · 10−3 Pa/m Polynomial coefficient in Equation (7)
c5 −8.7359 · 10−1 W Polynomial coefficient in Equation (7)

2.2. Operational Constraints

Several operational constraints ensure operational safety, securing ecological fauna
and avoiding damages to properties around the water course and hydropower plant.
The main constraints are listed below:

1. The sudden change in the flowrate at downstream, V̇o, can endanger the properties
and ecosystem along the watercourse. Therefore, the flowrate at downstream must be
kept as constant as possible. The change of the flowrate at downstream is desired to
keep less than 50 m3/s on every time step.
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2. The flowrate at downstream, V̇o, must be more than 4 m3/s. This constraint is to
ensure that fishes in downstream can move freely along the water course.

3. The water level at Merkebekk, xM, must be maintained within a certain range as:

xM ∈ [xLRV, xHRV]

where xLRV and xHRV mean the low and the high regulated value for the water level,
respectively. The range changes seasonally as shown in Table 2.

4. The maximum flowrate through the turbine, Vt, is limited up to 36 m3/s.

Table 2. Seasonal level requirement.

Date xLRV[m] xHRV[m]

1 January–30 April 55.75 60.35
1 May–30 August 58.85 59.85

1 September–14 September 55.75 59.35
28 October–11 November 55.75 59.85

12 November–31 December 55.75 60.35

2.3. Optimal Control Problem

During the operation of a hydropower plant, it is desired to minimize the use of the
floodgates unnecessarily and maximize the water level at the reservoir while considering
operational constraints. Otherwise, it would result in loss of water which otherwise could
be used to produce electricity. Therefore, to achieve the desired operation while satisfying
the operational constraints, the objective function in the OCP is suggested in [13] as:

min
u

Np

∑
i=1

ωRR2
new(xt+i) + ωuu2

c,t+i−1 + ω∆u∆u2
c,t+i−1 + p2ωp (11)

The first term in Equation (11) is designed to increase the water level at Merkebekk til
the value of HRV and is expressed as:

Rnew(xt+1) = xM,t+1 − xHRV (12)

The second and third terms in Equation (11) are to minimize the use of the floodgate
openings and to minimize the change of floodgate openings, respectively. uc indicates the
control action taken in open-loop optimization through the prediction horizon. ∆u2

c,t+i−1 in
the third term in Equation (11) ex expressed as (uc,t+i−1 − uc,t+i−2)

2 . The last term, p2ωp,
is the penalty for violation of level constraints. The variable, p, is the slack variable that is
automatically decided by the optimizer. It is necessary to allow the violation on xLRV to meet the
minimum flowrate constraints. ωR, ωu, ω∆u, and ωp are the weight parameters for the objective
function on the OCP. If the higher value is set on a certain weight parameter, the term with the
weight parameter is treated more importantly when solving the OCP. Therefore, the desired
operation can be achieved.

3. Simulation Setting

This section introduces the test sets of parameters and simulation conditions to run
deterministic NMPC in the Dalsfoss hydropower plant.

3.1. Test Sets of Parameters

The ideal operation of the hydropower plant is not to waste water inside of the
reservoir by minimizing the use of the floodgates and keeping the water level at the
reservoir as high as possible. Yet, it is important to keep the flowrate at downstream as
constant as possible which is related to the change of the floodgate openings for the sake
of safe and eco-friendly operation. Although the goals to achieve from the operation are
known, it is impossible to obtain a set of parameters without simulations and tests. Tuning
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weight parameters for the implementation of MPC is often done by the trial and error
method. Four test sets of weight parameters are suggested in Table 3 to run the simulation.
Testset1 is the same set of the weight parameters in the conventional setting.

Due to the importance of maximizing the water level, ωR is set as 10 equally. ωp is set
equally high as 10,000 to encourage the satisfaction of the operational constraints. ωu is
chosen as 1 on all the test sets. Therefore, the only variable on the test sets is ω∆u. It inhibits
the change of the floodgate openings more when ω∆u has a higher value. To show the
differences in the simulations, the parameters for tests are set as 1, 10, 100, and 1000.

Various lengths of prediction horizon, N [day], are tested as:

N = [1, 3, 5, 7, 9, 11, 13] (13)

Conventionally, the test set 1 and 13 days of prediction horizon are used for imple-
menting MPC on the Dalsfoss hydropower plant. In this paper, each test set of weight
parameters, shown in Table 3, is tested together with seven different lengths of prediction
horizon as shown in Equation (13). Therefore, one conventional simulation and 27 other
simulations are run and compared to each other to find a set of parameters for the rigorous
operation of the Dalsfoss hydropower plant.

Table 3. Parameters of test sets for the simulations.

Parameter Test Set 1 Test Set 2 Test Set 3 Test Set 4

ωR 10 10 10 10
ω∆u 1 10 100 1000
ωu 1 1 1 1
ωp 10,000 10,000 10,000 10,000

3.2. Simulation Condition

To obtain a realistic simulation result, the historically stored data of the water inflow
and the power production plan are used. Figure 3 shows the historical power generation
of the Dalsfoss hydropower station from 15 April 2020 to 15 May 2020. In the simulation,
the perfect prediction is assumed in power production.
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Figure 3. Historical power production plan during the simulation period.
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The water inflow forecast is updated every 24 h. It contains how much water may flow
into the reservoir for the next 13 days. The historical data from 2020 are used for simulation.
Figure 4 is a water inflow forecast updated on 15 April 2020. Then, one of the ensembles is
picked to run the deterministic MPC and the first value of the picked ensemble is realized
in the next time step of simulation.
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Figure 4. 50 ensembles of the water inflow prediction to lake Toke on 15 April 2020.

The simulation follows the order of the block diagram shown in Figure 5. The MPC
optimizes the optimal control sequence based on given information of measured states
x̂, water inflow forecast data V̇i, and power production plan Ẇe. The first input of the
optimal control sequence, u∗, is applied to the system with the first value of the water
inflow forecast. In this simulation, the perfect model is assumed that there is no mismatch
between the model and the system.

Figure 5. A block diagram of the closed of MPC.

The simulation period is set from 15 April to 15 May because this period contains a big
change in the water level requirements. The IPOPT solver in CasADi is used to solve OCP [15].

4. Simulation Result

In this section, the summary of 28 simulations, the combination of four weight param-
eter test sets and seven lengths of prediction horizon, are presented.

Figure 6 shows the change of the water level at Merkebekk, xM, and the water level
bound, xHRV, during the simulation with different lengths of the prediction horizon. In la-
bels of Figure 6, Np:i means that the length of the prediction horizon is set as i days.
The upper figure describes how the water level at Merkebekk changes depending on the
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length of the prediction horizon when the weight parameters are set as the test set 1 (con-
ventional setting) shown in Table 3. The lower figure displays the comparison of the water
level changes with different lengths of the prediction horizon when the weight parameters
are set as the test set 4 (ω∆u = 1000) in Table 3.
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Figure 6. Change of the water level at Merkebekk during the simulations with parameter test set 1
and test set 4.

In the upper figure of Figure 6, as ω∆u is set as 1 and ωR is set as 10, the operation
aims to maximize the water level at the reservoir. Except for when the horizon length is
set as 1 day, labeled as Np:1, most of the simulations show similar results which maximize
the water according to the water inflow forecast, power production plan, and the level
requirement change. However, when the horizon length is set as 1 day, labeled as Np:1,
the prediction horizon is so short that the water level requirement change could not be
foreseen sufficiently. Therefore, a drastic water level drop is observed.

In the lower figure of Figure 6, as ω∆u is set as 1000 and ωR is set as 10, it aims
to minimize the changes of the floodgate openings. As result, it was not prioritized to
maximize the water level at the reservoir. The most of simulation results with various
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lengths of the prediction horizon display similar water level performance. However, when
the prediction horizon length is set as 1 day, labeled as Np:1, the water level is significantly
dropped at approximately 400 h where the maximum water level requirement changes.

Both figures in Figure 6 demonstrate that when the prediction horizon length is set
too short as 1 day (24 h) MPC controls the system in undesirable manners. However, when
the prediction horizon length is set longer than 3 days, the water level changes throughout
the simulation time are quite identical.

The average water level at Merkebekk, xM, from simulations with different lengths of
prediction horizon, Np, and different parameter test sets are described in Table 4. The aver-
age water levels become identical on each test set of weight parameters when the prediction
horizon length is longer than 7 days. Then, the average water level deviates as the predic-
tion horizon is getting shorter. The deviation becomes bigger when the value of ω∆u is
higher and the prediction horizon is set as 1 day. When the length of the prediction horizon
is 3 or 5 days, no big differences are found.

Table 4. Average value of water level (h1) throughout simulations [m].

Np [d] Testset 1 Testset 2 Testset 3 Test Set 4

1 4.2637 4.2625 4.2595 4.1644
3 4.2554 4.2537 4.2472 4.2314
5 4.2545 4.2528 4.2463 4.2290
7 4.2542 4.2526 4.2462 4.2294
9 4.2542 4.2526 4.2462 4.2294
11 4.2542 4.2526 4.2462 4.2294
13 4.2542 4.2526 4.2462 4.2294

Figure 7 displays the total discharged flowrate, V̇O, from the hydropower plant de-
pending on the test sets of the weight parameters when the prediction horizon is set as
3 days. The flowrate changes more delicately when the value of ω∆u increases. It is because
when ω∆u is high, the optimizer compensates the high value for the change of the floodgate
openings and aims to minimize it. It is beneficial to set the value of ω∆u high to maintain the
flowrate at downstream as constant as possible. Therefore, test set 4 shows the smoothest
change of flowrate at downstream as shown in Figure 7.
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Figure 7. Flowrate of water at downstream, VO, with different sets of parameters when the length of
prediction horizon, Np, is set as 3 days.
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The maximum change of the flowrate at downstream of each simulation is stated in Table 5.
This table gives a guideline of which set of parameter sets must be desired or avoided. The red
area displays the combinations of parameter sets and prediction horizon lengths that must
be avoided. It is because the maximum change of flowrate exceeds 50 m3/s. It violates the
operational constraints. The yellow color is the combination of parameters and prediction
horizon set which can be used. However, these yellow combinations exceed 60% of the
constraint, 30 m3/s. Therefore, these combinations must be applied with caution. The green
area shows the recommendable combinations of parameters and prediction horizon sets since it
shows the reasonable amount of maximum changes in flowrate at downstream.

Table 5. Maximum change of water amount discharged from the plant throughout simulations [m3].

Np [d] Testset 1 Testset 2 Testset 3 Test Set 4
1 139.1463 71.9443 38.7613 31.4636
3 57.2664 33.3261 18.6869 17.2223
5 57.0969 33.1774 19.7069 14.8696
7 57.0943 33.1746 19.6943 16.4958
9 57.0941 33.1746 19.6950 16.3057
11 57.0941 33.1746 19.6935 16.3650
13 57.0941 33.1746 19.6934 16.3708

Figure 8 shows the average computation time taken for each loop time. The computational
demand increases as the length of the prediction horizon is longer. It is because the size of
OCP becomes smaller when the prediction horizon is shorter. Therefore, it is beneficial to set
the prediction horizon shorter yet, long enough to foresee the future and to generate a proper
control sequence because then it is possible to keep the size of OCP compact.
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Figure 8. Average computational time taken depending on the length of the prediction horizon when
the test set 3 is used.

5. Conclusions

In this work, 28 simulation results were compared to each other to find a proper set of
parameters to achieve rigorous operation at the Dalsfoss hydropower station. The conven-
tional MPC tunning, which is the test set 1, and 13 days of the prediction horizon is found
not only computationally inefficient but also does not satisfy the constraint of the constant
flowrate on downstream. When looking into the other 27 simulation results alternatively,
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regardless of the prediction horizon length, test set 1 and test set 2, are considered bad
choices due to the operational constraints on the change of the flowrate at downstream.
When the prediction horizon is too short as 1 day (24 h), the performance of MPC becomes
very bad in terms of water level control. It is because the prediction horizon is not long
enough to foresee the change in the water level requirement.

Therefore, the proper combinations of parameters are test set 3 and test set 4 with the
prediction horizon set longer than 3 days. However, as discussed in Section 4, the longer
length of the prediction horizon increases computational demand without benefiting the
operation. In conclusion, it is right to use the test set 3 if the shorter length of the prediction
horizon, 3 or 5 days, may lead to faster convergence of OCP. It is appropriate to use test
set 4 with a prediction horizon longer than 7 days if more smooth changes of the flowrate
at downstream are desired.
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