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Abstract: This paper aims to develop multi-objective optimized control methods to improve the per-
formance of retrofitting building heating systems in reducing consumed energy as well as providing
comfortable temperature in a multi-zone building. While researchers evaluate various controllers in
specific systems, providing a comprehensive controller for retrofitting the existing heating systems
of multi-zone buildings is less investigated. A case study approach with a four-story residential
building is simulated. The building energy consumption is modeled by EnergyPlus. The model is
validated with energy data. Then, the building steam system model is upgraded, and in the other
case, renewed by a hydronic system instead of a steam one. Three optimized controller groups are
developed, including Model Predictive Controller (MPC), fuzzy controllers (Fuzzy Logic Controller
(FLC) and an Optimized Fuzzy Sliding Mode Controller (OFSMC)), and optimized traditional ones.
These controllers were applied to the upgraded steam and hydronic heating systems. The control
methods affected the tuning of the boiler feed flow by regulating the condensing cycle and circulating
the pump flow of the hydronic system. Accordingly, renewing the heating system improves energy
efficiency by up to 29% by implementing a hydronic system instead of the steam one. The fuzzy
controllers increased renewing effectiveness by providing comfortable temperatures and reducing
building environmental footprints by up to 95% and 12%, respectively, compared with an on/off
controller baseline.

Keywords: optimization; model predictive control (MPC); fuzzy logic system; Optimized Fuzzy
Sliding Mode Controller (OFSMC); heating system

1. Introduction

The rapid growth of infrastructure, industries, and buildings has led to increased
energy needed for heating and cooling [1]. Globally, almost 50% of consumed energy is
used for heating and cooling, and 80% of this comes from residential and commercial
buildings [2]. Therefore, it is crucial to apply active control techniques to Heating, Venti-
lating, and Air-Conditioning (HVAC) systems to decrease energy usage [3] and maintain
comfortable indoor conditions [4]. Providing a comfortable condition while consumed
energy is reduced results in increasing the efficiency and sustainability of the systems [5].

So-called “intelligent” or “smart” building technologies provide opportunities to im-
prove energy efficiency and building comfort by means of implementing HVAC control
systems [6]. Through developments in computational simulations, it is possible to apply
optimization and control methods to buildings [7]. The literature describes three basic
types of controllers and optimization methods that improve building energy management
systems: Model Predictive Control (MPC) [7,8], fuzzy logic system [9,10], and Genetic
Algorithm (GA) [11]. While studies proposed optimal control methods based on specific
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system performances [12], the computational cost of tuning controllers leads us to design
a comprehensive controller that improves the energy efficiency of various systems. The
performances of optimization methods in building energy management systems or HVAC
components are investigated, but their integration and their behavior in providing com-
prehensive controllers are less studied. Additionally, evaluating the intelligent controller,
including GA, Fuzzy Logic Control (FLC), and MPC, in comparison to traditional ones
leads us to find the best applicable methodology [13,14]. In following our previous re-
search [15], developing a methodology to design a comprehensive controller for various
building heating systems is studied by means of combining fuzzy sliding mode controller,
GA, MPC, and the neural network temperature estimator. Considering the building details
in simulation by using the EnergyPlus model as well as investigating multi-zone residential
buildings, including 21 thermal zones and 53 radiators, is the other novelty of this paper.
Without this knowledge, the opportunity of finding an effective optimization method to
develop the next generation of traditional controllers is lost.

The unique contributions of this paper include: (1) Developing a four-story residential
building model including 21 thermal zones; (2) validate the building energy model with
real energy consumption data; (3) design multi-criterion optimized control methods based
on combining intelligent methodologies, constituting GA, MPC, Neuro-fuzzy temperature
predictor, and fuzzy logic system; (4) comparing the effectiveness of designed controllers
in two different building heating systems including steam boiler and hydronic system;
and (5) identifying MPC and fuzzy controllers as comprehensive control methodologies
based on their effectiveness in improving environmental footprints and energy efficiency in
comparison with traditional controllers including, Proportional-Integral-Derivative (PID)
and On/Off controllers.

To our knowledge, no study has explored the effects of combining controllers in two
different heating systems of a building model calibrated to a real-life building’s utility
consumption to enhance simulation accuracy.

2. Literature Review

The application of artificial intelligence and technologies in HVAC control is an ongo-
ing research area because of the fact that this type of algorithm typically needs a massive
quantity of high-quality, real-world data [16,17]. Providing occupancies with comfort-
able conditions as well as reducing consumed energy are the main objectives of the con-
troller design process [18]. Accordingly, predictive controller, optimization algorithm, and
fuzzy logic are the main implemented methodology to achieve optimum energy-efficient
method [16]. The simultaneous combination of these algorithms and a Neuro-fuzzy temper-
ature predictor is provided in this paper, resulting in a comprehensive optimal methodology
and reducing the data required by various systems.

In recent years, FLC has been used for various building HVAC systems to assess their
control potential because it does not require a precise model [19]. The fuzzy logic system
was implemented by Pazouki et al. [20] to seek the best results in optimizing building energy
management during retrofitting process with the minimum sensitivity upon uncertain
parameters. While selecting the best Building Energy Management System (BEMS) under
non-deterministic environments is an extremely challenging task, implementing fuzzy
systems can reduce information loss to some degree [21]. Therefore, implementing a fuzzy
logic system improves the robustness of the controller in uncertain conditions. Multi-
objective optimization, flexibility, and responding to unexpected output are the other
abilities of FLC [22]. Incorporating a Fuzzy Inference System (FIS) and Artificial Neural
Network (ANN) resulted in the development of six control methods. Ahn and colleagues [4]
evaluated the effectiveness of these control methods in five different climate zones. The
controllers adjust the temperature and airflow to regulate space temperature. By using this
method, temperatures are more comfortable, and consumed energy is reduced [4]. The
other research investigated a fuzzy logic system to synchronize the supplied heat with
variable heat loads in the thermal barrier system. They found that the implementation
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of this controller resulted in providing comfortable temperatures as well as reducing
energy costs and consumption [23]. The fuzzy logic system was implemented to overcome
the on/off fixed operating range in providing thermal comfort in residential buildings.
In this research, the fuzzy logic system resulted in better performance compared to the
conventional on/off control methods [24]. A combination of a fuzzy logic system, ANN,
and GA was utilized by Papantoniou et al. to optimize the annual consumed energy in
a hospital. By applying this method, energy consumption is reduced by 36%, according
to the TRNSYS model [25]. Simplifying the simulation, improving model management,
predicting the system’s future, and multi-criterion improvement could be mentioned as
the results of fuzzy logic system application. While the performance of FLC is evaluated
on a single heating system for a single thermal zone model, the impact of fuzzy logic
systems in providing comfort conditions and energy consumption in multi-zone buildings
is less investigated.

As one of the main optimization methodologies, the genetic algorithm is implemented
to improve the environmental footprints of the building, including energy and CO2 emis-
sions [26]. In addition, predicting the thermal behavior of buildings is an important aspect
of the implementation of techniques to reduce primary energy consumption. Combining
optimization algorithms and control methodologies can overcome building energy prob-
lems, as concluded in optimized controllers, such as the model predictive controller [27–40].
Tabares-Velasco and colleagues [33] found that applying an MPC reduces cooling electricity
costs by up to 30% in a simulated single-zone building by considering the Time-of-Use
billing structure [33]. The predictive controller is utilized to improve HVAC performance
based on humidity and temperature level. The effectiveness of the predictive controller
was also compared with a fuzzy-model-based controller in setting indoor temperatures
and humidity levels [34]. Improving the energy efficiency of radiant floor heating as well
as reducing heating system response time are derived from implementing MPC on the
state-space model of a radiant floor heating system concluded by Chen et al. [13]. Compar-
ing the efficacy of MPC and a rule-based control strategy in a large-sized building heating
system resulted in overcoming MPC with a 30% energy saving [35]. The application of the
MPC strategy based on weather and electricity cost predictions presented the effectiveness
of this method in improving energy saving [36]. Afram and Janabi-Sharifi [3] investigated
the effect of the MPC parameters on its performance in building HVAC systems. Based on
this study, the prediction horizon, control horizon, and sampling time affect MPC accuracy,
computational cost, and response [3]. While MPC improves the energy efficiency of the
building, its performance strongly depends on the quality of the forecast of the distur-
bances [37]. Therefore, various building models, nonlinear models, and scenario-based
MPC have been developed to overcome this obstacle. The MPC is known as a capable
controller in building energy optimization, especially when the building is modeled accu-
rately. The prediction horizon, control horizon, and time step are the key parameters that
affect the MPC performance. The MPC efficiency is evaluated by applying it to single-zone
buildings, hybrid systems, and experimental studies, while the performance of MPC in
multi-zone buildings and the combination of MPC with GA are less investigated.

In the next section, the building condition, zones clustering, floors conditions, thermal
equipment, and weather conditions are described. Then, the simple thermal equation of
the heating system is presented to understand the minimum required energy. The fourth
section explains the controllers’ design methods. After that, the results of the application of
the designed controllers are presented. Finally, the effectiveness of various control methods
is compared in the discussion part. Then, the performance of optimal methodology for the
building based on the objectives is concluded.

3. Energy Modeling
3.1. Building Description

The building used in this study is a four-story, 21-unit residential building in Central
Illinois. The building has a total of 23,000 ft2 (2140 m2) and 45 total residents. It consists of
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three levels of condos, with seven units on each level and an unconditioned basement/entry
level. Figure 1 shows the site plan overlaid with a typical floor plan. Each condo unit is
approximately 1000 ft2 (93 m2) and has two bedrooms and two bathrooms.
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Figure 1. (a) Real building East View, (b) Building Floors plot including thermal zones positions.

There is no central ventilation or cooling systems. Infiltration and operable windows
provide ventilation in each condo unit. A single natural-gas-fired steam boiler placed in
the basement produces heating. The steam radiators via a one-pipe system are utilized
to distribute steam in each condo unit. The steam boiler is designed to have an input of
2,713,000 Btu/h (795 kW) and an output of 2,176,000 Btu/h (637 kW) for a total thermal
efficiency of 80%. Each condo unit has between seven and nine steam radiators located on
the exterior walls. There is typically one radiator per room throughout the building. There
are 53 total radiators on each floor, for a total of 159 radiators in the building.

Two natural gas-fired water heaters provide domestic hot water. The units are designed
based on a 100-gallon tank, with an input of 199,000 Btu/h (58 kW) and thermal efficiency
of 80%.

3.2. Building Thermal Modelling

We used EnergyPlus v 9.2.0 to model the building. To join EnergyPlus and MAT-
LAB/SIMULINK, the MLEP library of SIMULINK is employed, which requires that there
are no numerical errors in the EnergyPlus simulation to apply the controllers to the building
facility. Each Condo is defined as a separate thermal zone; there are seven zones on three
floors, for a total of 21 zones. The heating system, including the boiler and radiators, is
simulated to supply the required heating. One radiator is implemented in every zone to
simplify modeling. The basement of the building is empty and separates the building
zones from the ground. Domestic Hot Water (DHW) is modeled through the application of
a typical usage schedule for the building to more accurately represent the total-building
energy consumption.

The building’s brick-faced walls are original to the structure and have no insulation.
The roof construction is wood decking covered with 1/2 inch (2.5 cm) of insulation and a
reflective membrane with a thermal resistance of R-1. The windows are single-pane wood
sash windows. Exterior storm windows were added to each window. The building has a
whole-building window-to-wall ratio of approximately 25%. This building was originally
constructed in 1905 and underwent major renovations in 1998. The initial model of the
building implemented in EnergyPlus is represented in Figure 2.
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Figure 2. Building Model in EnergyPlus.

Table 1 provides a summary of the key parameters used to model the building, which
represents the base case for energy analysis.

Table 1. Base Case Energy Modeling Assumptions (1 Btu/ft2-oF h = 5.68 W/m2·K), (1 W/ft2 =
10.76 W/m2), (◦F = 1.8 ◦C + 32), (COP = EER/3.412), and (1 Gallon = 0.00378541 m3).

Parameter Value Unit

Envelope

Roof R-value 3.6 ft2-◦F-h/Btu

Exterior wall R-value 2.0 ft2-◦F-h/Btu

Interior wall R-value 1.9 ft2-◦F-h/Btu

Interior floor R-value 1.7 ft2-◦F-h/Btu

Window U-value 1.1 Btu/ ft2-◦F-h

Window SHGC 0.86 -

Airflow

Infiltration Rates 1.0 Air change Per Hour (ACH)

Internal Loads

Lighting Power Density 0.74 W/ft2

Equipment Power Density 1.02 W/ft2

People 2 people/condo

HVAC

Boiler Thermal Eff. 0.80 -

Window AC Unit Eff. 9.8 EER

Heating Setpoint 71.5 ◦F

Cooling Setpoint 74.0 ◦F

DHW

Water Heater Thermal Eff. 0.80 -

Peak Flow Rate/Condo 2.42 × 10−3 gallons/s

These values were estimated based on site visit observations and professional hand-
books, including [38,39].
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Based on the building information, the occupants set the air temperature in the range
of 20–25 ◦C for all zones all day long. Additionally, the DHW system regulates hot water
temperature at 43.3 ◦C for each fixture. We apply an on/off controller combined with a
regulator to maintain indoor temperatures as the primary controller. The on/off controller
turns the boiler on when the indoor air temperatures of four zones decrease below 22 ◦C.
Additionally, the boiler is turned off when the indoor temperatures of four zones increase
above 25 ◦C.

The occupants, their activities, DHW system, equipment, and lighting-system utiliza-
tion schedules are presented in Figure 3. These schedules are our assumptions based on
typical residential use patterns [40].
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Figure 3. Schedules of occupancies and lighting system, DHW system, and equipment usage in
the building.

The schedules follow a typical usage pattern, with usage dropping off during the day
as occupants leave for work, picking up again in the evening, and dropping off at night as
the occupants’ sleep.

3.3. Thermal Modelling Equation

In this section, we present the thermal equation of the building to explain the modeling
calculation. The energy exchanges to the building by radiation, conduction, and ventilation
were calculated according to BS EN 12831 [41]. The energy is generated in the building
by a boiler and water-heater mixer. Occupancy, equipment, and lighting loads contribute
a small portion of the required energy of the building. By considering the building as a
system and based on the energy conservation law, the equation of the transferred energy is
obtained as follows: .

ETrans f erred +
.
Egen =

.
Est (1)

In this relation,
.
ETrans f erred is the amount of transferred energy rate.

.
Egen represents

the amount of generated energy rate by various facilities in the building. The energy
level of the system is presented by

.
Est. The transferred energy is calculated based on

BS EN 12831. Accordingly, the transferred energy breaks down into two main branches,
including exchange energy through walls, windows, roofs, floors, and thermal bridges and
transferred energy by the ventilation system [41].
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The transmission energy rate for a heated space is calculated as follows:

T, i =
(
QT,ie + QT,iue + QT,ig + QT,ij

)
(Tin − TOut) (2)

In this equation, Tin shows the indoor temperature and Tout indicates the ambient
temperature, QT,ie represents the building envelope transmission heat-loss coefficient,
QT,iue is the unheated space transmission heat-loss coefficient, the ground-energy trans-
mission coefficient is shown by QT,ig, and QT,ij indicates the coefficient of transmission
energy to another zone with different temperature. This coefficients are calculated based
on reference [41].

The other part of lost energy is related to the ventilation system (Vi). The ventilation
heat loss is calculated as follows:

Vi = Hv,i(Tin − TOut) (3)

Hv,i indicates the ventilation heat-loss coefficient in Watt per Kelvin (W/K). The
following equation determines this coefficient:

Hv,i =
.

Vi·ρ·Cp (4)

.
Vi represents the airflow rate of the heated space. The density of the air is shown by ρ, and
Cp indicates the specific heat capacity of the air at Tin.
.

Vi is determined based on the ventilation system in the considered building. Based on
the utilized system in the building, the feed air is supplied through the adjacent basement
space. The airflow rate of the heated space is calculated as follows:

.
Vi =

.
Vin f ,i +

.
Vsu,i· fv,i +

.
Vmech,in f ,i (5)

The infiltration airflow rate of the heated space is applied by
.

Vin f ,i in this equation.
.

Vsu,i represents the heated space’s supply airflow rate, and
.

Vmech,in f ,i indicates the surplus
exhaust airflow rate of the heated space. Additionally, fv,i shows the temperature reduction
factor, which is defined as follows:

fv,i =
Tin − Tsu,i

Tin − Tout
(6)

Tsu,i represents the supply air temperature into the heated space.
.

Vi must be calculated by considering the minimum air exchange rate (
.

Vmin,i), which is
presented as follows:

.
Vmin,i = nmin·Vi (7)

nmin presents the minimum external air exchange rate per hour, and Vi indicates the
volume of the heated space. The external air exchange rate is considered, based on [42], to
be equal to 0.8.

The infiltration airflow rate of every zone (
.

Vin f ,i) is considered equal to every thermal
zone space per hour.

The supply airflow rate (
.

Vsu,i) is determined based on the considered HVAC system
for the building. The surplus exhaust airflow rate (

.
Vmech,in f ) is calculated for the whole

building as follows:
.

Vmech,in f = max
( .

Vex −
.

Vsu, 0
)

(8)

.
Vex and

.
Vsu present the exhaust airflow rate and the supply airflow rate for the whole

building, respectively. To determine the exhaust airflow rate of every zone, the ventilation
calculated in Equation (8) has equal exhaust rates.
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3.4. Model Validation

The building’s thermal systems are simulated in EnergyPlus by considering the build-
ing’s thermal characteristics, including the occupancies, domestic hot water systems, electric
facilities, and lighting systems. We applied the weather conditions by utilizing the O’Hare
airport weather information, which is presented in EnergyPlus [43]. Figure 4 represents
Heating Degree Days (HDD) and Cooling Degree Days (CDD) based on the applied weather.
The reference temperature for calculating HDD and CDD is equal to 65 ◦F, based on [44].

Energies 2022, 15, x FOR PEER REVIEW 8 of 28 
 

 

resents Heating Degree Days (HDD) and Cooling Degree Days (CDD) based on the ap-

plied weather. The reference temperature for calculating HDD and CDD is equal to 65 °F, 

based on [44]. 

 

Figure 4. HDD and CDD based on the implemented weather information (°F = 1.8 × °C +32). 

According to the HDD presented in Figure 4, the building’s heating system is imple-

mented from October to April annually, and the simulation results have to be considered 

during this period. 

The comparison of the monthly consumed gas of the building in the sample year 

simulation and the real data presented in Figure 5 confirms the reliability of the building 

model. 

 

Figure 5. Annual Consumed Gas of Real Building and Simulation. 

Figure 6 represents the monthly average temperature during a 1-year simulation and 

actual information. By considering the effect of infiltration in the real building and ignor-

ing the effect of doors in the simulation and based on the outdoor temperature difference 

in simulation and actual condition, the simulated consumed gas accurately follows the 

Figure 4. HDD and CDD based on the implemented weather information (◦F = 1.8 × ◦C +32).

According to the HDD presented in Figure 4, the building’s heating system is imple-
mented from October to April annually, and the simulation results have to be considered
during this period.

The comparison of the monthly consumed gas of the building in the sample year simu-
lation and the real data presented in Figure 5 confirms the reliability of the building model.
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Figure 5. Annual Consumed Gas of Real Building and Simulation.

Figure 6 represents the monthly average temperature during a 1-year simulation and
actual information. By considering the effect of infiltration in the real building and ignoring
the effect of doors in the simulation and based on the outdoor temperature difference in
simulation and actual condition, the simulated consumed gas accurately follows the real
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gas consumption. The maximum error of the simulation is less than 14%, and the outdoor
temperature difference of that month for simulation and real weather is also 12%. Therefore,
the results of the simulation are reliable based on the consumed gas trend.
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3.5. Upgrading of Heating System
3.5.1. Steam Heating System

According to the initial system, the application of controllers seems impractical be-
cause of the boiler’s constant firing rate and the radiators’ manual valves. Therefore, we
upgrade the boiler burner with a variable-firing-rate unit, resulting in a potential controller
application. The initial investment for this upgrade is estimated to be about USD 5000.
Additionally, control valves were added to the radiators to regulate the steam based on
zone temperatures. The capital cost of the control valves is estimated to be approximately
USD 200 per radiator. Assuming that these are installed on all of the radiators in the units
currently without thermostats (127 radiators), the total capital cost would be USD 25,400.
Accordingly, the total cost of the upgrade is estimated to be about USD 30,400.

3.5.2. Hydronic Heating System

Based on the limitations of the steam heating system, including the minimum required
flow of the boiler and the minimum steam temperature of the system, and in order to
evaluate the effectiveness of the controllers in different heating systems, the hydronic
system was implemented instead of a steam one as a retrofitting strategy in another
simulation. The radiators were placed the same as the steam radiators, one per room.
Renewing the initial steam heating system to a hydronic one requires an investment of
about USD 30,000 for a hydronic system, USD 8000 for the installation and engineering, and
USD 10,541 for the thermostatic radiator valves. Therefore, the investment in a hydronic
system is predicted to be about USD 48,541.

4. Designing Controller

Based on the literature review, we found that the MPC and fuzzy logic system are key
methods to improve HVAC efficiency. On the other hand, GA is one of the most effective
optimization methods implemented to reduce consumed energy. The traditional controllers
of the system are designed based on the hysteresis loop for the on/off controller and
Proportional-Integral-Derivative (PID) controller. Therefore, we developed three Branches



Energies 2022, 15, 8675 10 of 27

of control methods combined with GA to apply to the building simulation, including MPC,
FLCs, and traditional controllers.

In other words, in order to reduce the consumed energy in the HVAC system, the
flow rates of different heating systems, including steam traps, condensate pumps, and the
radiator flows of a steam system and the circulating pump and radiator flows of a hydronic
system, are controlled. The controllers are designed based on minimizing consumed energy
as well as providing comfortable temperatures in the building’s thermal zones. Based on
the initial building information, the model assumes that the spaces are constantly occupied,
so there are no setbacks.

We set the indoor temperatures of different thermal zones in the range of 20–25 ◦C
based on the initial condition of the building (the setpoint temperature of the first floor,
second floor, and third floor is considered equal to 20 ◦C, 22.5 ◦C, and 25 ◦C, respectively).

4.1. MPC-GA

In the last few years, MPC has received significant attention from the research com-
munity to manage energy in buildings [31]. To simplify the complexity of a nonlinear
multi-zone building model and accelerate the application of MPC, we designed the Neuro-
fuzzy temperature predictor to implement as the model in the MPC design process. The
pump flow rate and ambient temperature are considered as the input of the neuro-fuzzy
system. The zones’ mean temperature is the output of the predictor. The information
from January and February 2011 was implemented to train and test the neuro-fuzzy model.
Additionally, we applied the back-propagation method to optimize the grid partitions.

The control horizon, prediction horizon, and sample time are known parameters in
the performance of MPC [3]. Based on the building simulation constraints, changing the
MPC sample time is not possible, while the others could be tuned by a numeric method.
Accordingly, Pareto-GA was utilized to optimize the MPC control horizon and prediction
horizon in order to reduce the consumed energy as well as improve the regulation of the
indoor temperature. The GA parameters are presented in Table 2.

Table 2. GA Design Parameters.

Population 100

Iteration 20

Genetic mutation percentage 0.1

Minimum error 0.00001

Table 3 presents the control horizon and prediction horizon that resulted from applying
Pareto-GA to the MPC design simulation.

Table 3. MPC parameters.

Prediction Horizon 83

Control Horizon 21

4.2. Fuzzy Logic System

The fuzzy logic system provides effective optimization for the nonlinear multi-objective
problem [45]. Providing comfortable temperatures and reducing consumed energy are
considered to be the objectives of designing fuzzy logic systems. Accordingly, we designed
two types of fuzzy logic systems to apply to the building simulation.

4.2.1. Fuzzy Logic Controller (FLC)

The outdoor temperature and its variation affect the amount of energy required to
supply comfortable conditions. The difference in zone temperatures and setpoints (defined
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as the system error) is the other valuable parameter for regulating pump flow or steam valve
position to supply the required energy. Additionally, the rate of consumed gas presents the
trend of building energy consumption. Accordingly, the rate of consumed gas, outdoor
temperature and its derivative, and the system error are considered as the input for the
fuzzy logic system to optimize energy consumption and provide comfortable temperatures.
The fuzzy logic system calculates the flow rate of the pump. The membership functions
of system error, outdoor temperature and its derivative, and the consumed gas rate were
designed by Gaussian function, including 3, 5, 3, and 3 functions, respectively. The rules
of the fuzzy logic system were designed based on reducing the rate of consumed gas as
well as providing comfortable temperatures. The rules are aligned based on the flowchart
presented in Figure 7.
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4.2.2. Optimized Fuzzy Sliding Mode Controller (OFSMC)

Sliding Mode Control (SMC) is a variable structure method that is designed to drive
and constrain the system state to settle within a neighborhood of the switching function [46].
By considering the complexity of the system, developing SMC creates some difficulty and
instability through the chattering that occurs as a result of inaccurate system equations.
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Accordingly, the fuzzy logic system was designed to enhance the effects of a simplified
model and provide the benefits of SMC.

In order to design a fuzzy logic system, we define the switching function (S) of SMC as:

S = Ce +
.
e (9)

where e = Td − T and C is satisfied with the Hurwitzian stability condition.
On the other hand, we considered reducing the consumed energy rate that resulted

from combining the rates of consumed electricity and gas to optimize the fuzzy logic
system. The output of OFSMC determines the flow rate of the pump. The membership
functions of the inputs and output that resulted from trial and error and [46] logic system
are presented in Figure 8.
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The rules of OFSMC are defined to reduce the amount of “S” as well as consider the
consumed energy rate. K presents the fraction of the maximum flow of the pump.

4.3. Traditional Controller

The On/Off and PID controllers are identified as the two subgroups of traditional
control methods. Implementing conventional controllers is justified based on their low
initial cost and their simple structure [47,48].

4.3.1. On/Off Controller

The On/Off control modes switch between the maximum and zero [49]. The total
differences in zone temperatures and the setpoints are considered as the input of on/off
controllers. We implemented GA to optimize maximum pump flow in order to reduce
consumed energy as well as decrease the difference between indoor temperatures and
setpoints. Accordingly, the maximum pump flow rate of the heating system is considered
0.7 fractions of the initial operation.

4.3.2. PID Controller

The PID controllers are feedback ones, which implement system errors as the in-
put [47]. This controller can be easily tuned for Single-Input and Single-Output (SISO)
systems, while regulating this for Multi-Input Multi-Output (MIMO) systems is sometimes
impossible. This type of controller does not work appropriately for non-linear and complex
systems [3,50]. We utilized GA to tune the PID coefficient in order to improve its efficiency
in providing comfortable temperatures and reducing building energy consumption. Addi-
tionally, we implemented a fuzzy logic system to tune the PID coefficient as the secondary
design method based on the non-linearity of the system. Therefore, two types of PID were
implemented to tune the pump flow rate, including PID, tuned by GA (PID-GA), and PID
regulated by a fuzzy logic system (Fuzzy-PID).
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PID-GA

The MIMO Pareto genetic algorithm was implemented to tune the coefficients of
PID. The total consumed energy (including gas and electricity) and the summation of the
differences between the zone temperatures and setpoints are considered to be the inputs of
GA. The outputs of the GA consist of the Proportional, Integral, and Derivative coefficients
of the PID controller. The GA parameters were designed based on Table 4.

Table 4. GA Designing Parameters.

Population 50

Iteration 10

Genetic mutation percentage 0.1

Minimum error 0.00001

Fuzzy-PID

We designed a fuzzy logic system according to the described methodology in [11] to
tune the PID coefficients. Based on this method, the summation of the errors and their
derivative is defined as the input of a fuzzy logic system. The fuzzy logic system regulates
the PID coefficients continuously during the simulation.

5. Results

The main objectives of developing optimized controllers are building energy-efficiency
improvements and providing comfortable conditions. Accordingly, the indoor tempera-
tures (which is considered the comfort parameter) and the consumed energy, including
gas and electricity, are compared as the main objectives of controller development. Based
on the HDD presented in Figure 4, the heating system supplies thermal heating energy
from October to April. So, the controllers are applied to the building heating system from
October to April to investigate their performance.

5.1. The Effect of Controllers on Occupancies Comfort Temperatures

The evaluation of controller effectiveness in providing comfortable temperatures
for the occupants is determined based on the differences between zone temperatures
and setpoint ones. Figures 9 and 10 present the temperatures of 21 thermal zones by
applying different control methods to a hydronic heating system and a steam heating
system, respectively.
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Figure 9. The building zone temperatures by applying controllers on the hydronic heating system 

(T1 to T21 represent building zone temperatures). (a) MPC-GA, (b) FLC, (c) OFSMC, (d) On/Off, (e) 

PID-GA, and (f) Fuzzy-PID. 

Figure 9. The building zone temperatures by applying controllers on the hydronic heating system
(T1 to T21 represent building zone temperatures). (a) MPC-GA, (b) FLC, (c) OFSMC, (d) On/Off,
(e) PID-GA, and (f) Fuzzy-PID.

Accordingly, the hydronic heating system provides a more sustainable comfort temper-
ature in comparison with the steam beating system. Predicting future temperature in MPC,
fuzzy logic system, and OFSMC, resulting from the neuro-fuzzy temperature predictor
and fuzzy logic system inputs, aims these controllers to identify cold weather accurately
and provide the required heating in both hydronic and steam heating systems to set zone
temperatures in a comfortable range.

While the constraints of the steam heating system lead controllers to provide a similar
temperature during simulation, the most interesting aspect of controller applications is
energy efficiency.

As a quantitative analysis, the FLC and OFSMC system set the zone temperatures on
setpoint one during 84% of the simulation period and controlled the zone temperature
in a comfortable range with 93% accuracy. The implementation of MPC-GA provides
comfort temperatures in the zones during 75% and 85% of the simulation period in the
hydronic system and steam system, respectively. The Fuzzy-PID controller regulates the
pump flow rates so that the zones temperatures are controlled in a comfortable range by
80%. The application of an on/off controller results in providing comfortable temperatures
in different zones by 50% and 85% of the simulation period of hydronic and steam systems,
respectively. It seems predictable that the PID controllers could not control the zone
temperatures because of the nonlinearity of the building heating systems. The results of
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applying PID controllers, including PID-GA and fuzzy-PID, confirm the failure of PID
controllers in the nonlinear system.
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Figure 10. The building zones temperatures by applying controllers to the steam heating system.
(T1 to T21 represent building zones temperatures) (a) MPC-GA, (b) FLC, (c) OFSMC, (d) On/Off,
(e) PID-GA, and (f) Fuzzy-PID.

Overall, regulating indoor temperatures by various controllers indicates that artificial
intelligent controllers, including MPC-GA, FLC, and OFSMC, provide occupancy comfort
temperatures better than traditional controllers.
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The indoor temperatures of various floors are set at 20 ◦C, 22.5 ◦C, and 25 ◦C based on
building real information. The minimum data scattering of the indoor temperatures in the
steam heating system simulation and hydronic one is related to OFSMC and represents the
potential of OFSMC in providing sustainable comfortable temperatures during simulation.

For an accurate investigation of controllers’ effectiveness in providing thermal comfort
temperatures, we analyzed 21 zone temperatures by implementing the Analysis of Variance
(ANOVA) method. This is a statistical methodology to analyze variation in a response
variable [51]. The efficacies of controllers are compared in two heating systems, including
hydronic and steam systems, as presented in Table 5.

Table 5. ANOVA results for control methods in the different heating systems.

Hydronic Heating System

Method
Parameter

Sum of Square (SS) Number of Data Degree of Freedom Mean of Squares (MS) Mean

MPC-GA 771,369.7 635,040 21 1.2 22.51

FLC 355,591.1 635,040 21 0.6 22.64

OFSMC 363,041.7 635,040 21 0.6 22.65

On/Off 1,446,161.4 635,040 21 2.3 21.79

GA-PID 814,958.9 635,040 21 1.3 22.51

PID-Fuzzy 2,951,180 635,040 21 4.6 22.51

Steam Heating System

Method
Parameter

Sum of Square (SS) Number of data Degree of freedom Mean of Squares (MS) Mean

MPC-GA 355,597.7 635,040 21 0.6 22.71

FLC 336,841.1 635,040 21 0.5 22.68

OFSMC 354,630.3 635,040 21 0.6 22.71

On/Off 355,444.3 635,040 21 0.6 22.71

GA-PID 951,193.4 635,040 21 1.5 22.51

PID-Fuzzy 658,137.5 635,040 21 1 22.53

Based on the ANOVA results, the fuzzy logic systems, including FLC and OFSMC, reg-
ulate the thermal zone temperatures with more than 93% accuracy in both heating systems
during 85% of the simulation period. However, the FLC Sum of the square represents more
accurate control of the indoor temperature; the requirement in tuning based on the building
and condition leads us to choose other methodologies as a comprehensive controller.

5.2. The Effect of Controllers on Optimizing Energy Consumption

To evaluate control method performance on building energy optimization, we com-
pared the consumed gas and electricity during building simulations. Figures 11 and 12
present the consumed gas and electricity during the application of different control methods
on the building heating systems.

The fuzzy logic systems, including FLC and OFSMC, reduce the consumed energy of
the hydronic heating system by 24% and 27%, respectively, in comparison with the opti-
mized on/off baseline. The PID controllers fail in optimization, especially after 1.5 months
of simulating the system, based on the enormous ambient temperature reduction and non-
linearity of the system. The MPC designed based on the neuro-fuzzy temperature predictor
reduces the consumed energy by 17% in comparison with the optimized on/off baseline.
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Figure 11. Consumed Energy of hydronic system by application of different control methods. (a) Elec-
tricity (kWh = 3600 kJ), (b) Gas (Therms = 105,480 kJ).

Controller performances are affected by their predicting potential of the future con-
dition in steam heating systems. The MPC-GA and FLC improve the energy efficiency of
HVAC by 37% and 43% in comparison with the optimized on/off baseline. OFSMC and
PID-GA resulted in reducing energy consumption by 22% and 18%, respectively. While
the fuzzy-PID controller works accurately during the first 2 months of the simulation,
it increases the flow rate of the steam system after the initial reduction in the ambient
temperature and could not optimize energy consumption.
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5.3. The Effect of Controllers on Operational Cost and Environmental Footprint

Applying the electricity and gas prices and their emission factor could extend the
comprehensiveness of comparing control method efficacy. Table 6 represents the electricity
and gas prices based on the building utility bill. Additionally, the estimated emission factor
of the electricity (coal power plant) and the gas used in [52,53] are presented in Table 7.

Table 6. Utility unit cost of the building.

Utility Unit Price (USD)

Electricity kWh 0.13

Gas Therms 1.03
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Table 7. Emission Factor of natural gas and electricity.

Utility Unit Emission MTCO2e

Electricity kWh 0.000949

Gas Therms 0.005713

Figures 13 and 14 present the consumed energy, including gas and electricity, the CO2
emission, and operational cost of the building HVAC system for seven months of simulation
to compare the performance of controllers in steam heating systems and hydronic systems.
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Figure 13 represents the controllers’ efficacy on the building HVAC operational cost
for two different heating systems. The proportionality between electricity and gas CO2
emissions and unit prices results in an equivalent level of operational cost and CO2 emission
for various control methods. According to the initial investment, applying FSMC to a
hydronic heating system returns initial investment in 7 years, while the application of MPC-
GA/FLC on an upgraded steam heating system has a less than 6 years payback period.

On the other hand, Figure 14 shows the building’s HVAC environmental footprint,
including CO2 emission and consumed energy. Accordingly, fuzzy logic systems could
be considered retrofitting solutions to improve building energy efficiency, reducing CO2
emission and operational cost. The performances of the controllers based on their efficacy
in heating system performance, providing comfortable conditions, and environmental
footprints represent the role of future indoor temperature estimation in supplying ther-
mal energy.

By considering the on/off steam system as the baseline, the PID controllers, including
PID-GA and fuzzy-PID, could not meet the objectives of designing controllers, especially in
the hydronic heating system. In the steam system, the system constraints force controllers
to work between the fixed range. The genetic algorithm improves the PID in energy saving
by comparing with the on/off baseline, while it is failed in providing comfort temperature.

The consumed energy, CO2 emission, operational cost reduction, and providing com-
fortable temperature for FLC, OFSMC, and MPC-GA in comparison with an on/off steam
heating system are presented in Table 8.

Table 8. Comparison of controllers’ performance.

Methodology

Hydronic System Steam System

MTCO2e
(Reduction)

Operation
Cost

(Reduction)

Consumed
Energy

(Reduction)

Comfort
Condition

(% of Time)

MTCO2e
(Reduction)

Operation
Cost

(Reduction)

Consumed
Energy

(Reduction)

Comfort
Condition

(% of Time)

FLC 46% 48% 51% 93% 44% 44% 53% 90%

OFSMC 48% 50% 52% 93% 18% 18% 18% 85%

MPC-GA 41% 43% 46% 75% 37% 37% 37% 85%

The single most striking observation to emerge from the data comparison was the
role of future prediction in improving controller performances. By considering the design
process of FLC (which the ambient temperature is implemented to predict future conditions)
and MPC-GA (which utilizes a neuro-fuzzy temperature predictor to estimate the indoor
temperature under different conditions), it can be seen from the data in Table 8 that the
predicting condition leads to almost 40% energy reduction and provides comfort conditions
by more than 90%, mainly by applying the FLC and MPC-GA. The OFSMC regulates
the temperature and reduces consumed energy, operational cost, and CO2 emission in
unlimited conditions, while the OFSMC performance is influenced by restriction (resulting
from comparing its effectiveness in steam and hydronic systems).

In summary, these results suggest that there is an association between controllers’
future condition prediction and their performances. On the other hand, heating system
constraints affect control method efficiency. Accordingly, the controllers could be classi-
fied based on the application condition and design objectives. The OFSMC improves the
building’s environmental footprint as well as providing comfortable conditions while its
performance is influenced by heating system limitations. The MPC-GA reduces building
environmental footprints; however, its effectiveness in supplying comfortable conditions
is less than OFSMC and FLC. The application of FLC in building heating systems results
in a significant increase in energy efficiency and providing comfortable conditions, while
the logic system requires retuning based on the building conditions and the heating sys-
tem. Therefore, a comprehensive controller could be provided based on the buildings
and objectives.
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6. Conclusions

This paper aims to develop a comprehensive control algorithm to improve the retrofitting
process of the building heating system. Two different upgraded heating systems of a multi-
zone residential building are simulated to evaluate the retrofitting process of a four-story
residential building. The results of this investigation show that predicting future conditions
based on weather information is vital to the performance of controllers. Therefore, it seems
that utilizing a neuro-fuzzy model to predict buildings’ indoor future temperature is an
integral part of designing controllers. Taken together, the results suggest that MPC-GA and
fuzzy controllers improve energy efficiency and reduce environmental footprints in both
upgraded and hydronic heating systems.

To evaluate the effectiveness of controllers under different restrictions, their perfor-
mances in the steam heating system simulation with more constraints are estimated and
compared to controllers’ efficacy in hydronic heating system simulation. The controllers
regulate pump flow in the steam heating system and hydronic one so that providing the
comfortable temperatures during the simulation period and reduce the operational cost of
the building. In contrast, the performance of OFSMC in steam heating system simulations
was reduced by increasing the system constraints. The analysis of indoor temperature and
environmental footprints represents the performance of fuzzy controllers, encompassing
FLC and OFSMC, which supply the comfort temperature during 95% of the simulation
period and reduce environmental footprints by about 50% in comparison with on/off initial
system. These findings suggest that, in general, the fuzzy logic systems, including FLC
and OFSMC, provide comprehensive control methodology for different building HVAC
systems, while FLC requires an auto-tuning method for every new building and new
condition. These results suggest that HVAC systems could be equipped by OFSMC where
they have the minimum constraints, while we could implement a fuzzy logic controller for
limited HVAC systems in multi-zone buildings when it is retuned based on the conditions
of the building.

Continued efforts are needed to make sure that fuzzy controllers can be considered
as the comprehensive methodology for improving building HVAC energy efficiency and
providing comfortable conditions in different systems and various conditions. A greater
focus on the experimental evaluation of fuzzy logic controllers in various buildings’ HVAC
systems could produce interesting findings that account more for providing the role of
fuzzy systems in the next-generation of traditional controllers.
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Nomenclature and Acronym

T Temperature (◦C)
.
ETrans f erred Transferred energy to the system (W)
.
Egen Generated energy inside the system (W)
.
Est Energy changes inside the system (W)
T,i Transmission energy rate (W)
Q Transmission coefficient (W/◦C)
ρ Density (kg/m3)
C (J/kg. oC) Thermal Capacity
V Ventilation heat loss (W)
.

V airflow rate (m3/s)
MPC Model Predictive Controller
OFSMC Optimized Fuzzy Sliding Mode Controller
ANN Artificial Neural Network
HDD Heating Degree Days
PID Proportional-Integral-Derivative
SISO Single-Input and Single-Output
ANOVA Analysis of Variance
Ui Total heat transfer coefficient of material (W/m2. ◦C)
A Area (m2)
e Correction Factor
i linear thermal transmittance (W/m. ◦C)
L Length (m)
b, fij, fvi Temperature reduction factor
H ventilation heat loss coefficient (W/◦C)
nmin Minimum external air exchange rate per hour
t Time (s)
Vi Volume of the heated space (m3)
FLC Fuzzy Logic Controller
GA Genetic Algorithm
HVAC Heating, Ventilation, Air-conditioning, and Cooling
FIS Fuzzy Inference System
CDD Cooling Degree Days
SMC Sliding Mode Control
MIMO Multi-Input Multi-Output
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