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Abstract: Photovoltaic (PV) energy source generation is becoming more and more common with a
higher penetration level in the smart grid because of PV energy’s falling production costs. PV energy
is intermittent and uncertain due to its dependence on irradiance. To overcome these drawbacks, and
to guarantee better smart grid energy management, we need to deal with PV power prediction. The
work presented in this paper concerns the study of the performance of the fuzzy MPPT approach
to extract a maximum of power from solar panels, associated with PV power estimation based on
short time scale irradiance forecasting. It is particularly applied to a case study of a tropical insular
region, considering extreme climatic variability. To validate our study with real solar data, measured
and predicted irradiance profiles are used to feed the PV system, based on solar forecasting in a
tropical insular context. For that, a spatio-temporal autoregressive model (STVAR) is applied. The
measurements are collected at three sites located on Guadeloupe island. The high variability of the
tropical irradiance profile allows us to test the robustness and stability of the used MPPT algorithms.
Solar forecasting associated with the fuzzy MPPT technique allows us to estimate in advance the
produced PV power, which is essential for optimal energy management in the case of smart energy
production systems. Simulation of the proposed solution is validated under Matlab/Simulink
software. The results clearly demonstrate that the proposed solution provides good PV power
prediction and better optimization performance: a fast, dynamic response and stable static power
output, even when irradiation is rapidly changing.

Keywords: boost converter; MPPT fuzzy; output PV power estimation; PV system; solar forecasting;
STVAR model; tropical insular region

1. Introduction

Solar energy prevision helps to reduce grid imbalance charges and avoid penalties.
Thus, the forecast for the operation of solar power plants gives visibility as to the resources
that will be available in the coming minutes, hours, and days. Integrating forecasting into
the production process helps operators to limit the uncertainty associated with photovoltaic
energy production. As a result, this allows a massive and secure injection of solar energy
into the grid.

In a tropical insular context, for which the costs of supplying electricity are higher
than those of the rest of the world, the challenges induced by a massive development of
electrical renewable energies for supply–demand balance and network stability are indeed
particularly important [1]. Wind and solar energy are the most promising renewable energy
resources because of their potential and availability. In the last decades, PV systems have
become more and more common in electricity generation due to their: price reduction,
efficiency, and increased life. In addition, they provide clean and sustainable energy.
The overall output power of different PV systems can vary under dynamic irradiance
fluctuations [2].
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Nowadays, the rapid growth of the penetration of renewable energy sources into
distribution grids brings new challenges to overcome: stability, cost system operation,
and congestion management. An effective weather forecasting based on a great spatial
resolution, and the integration of artificial intelligence, contribute to obtaining an improved
state estimation of the power system and avoid it reaching a dangerous state [3,4].

The privileged location of the tropical insular regions, which have particularly favor-
able climatic conditions with more than 1400 h of insolation per year, is a major advantage
for photovoltaic solar production. On the other hand, these regions are characterized by
high variability of observed irradiance [5]. This high variability is the consequence of a solar
microclimate’s diversity due to its complex topography in a small space (mountainous/low
orography, land/sea contrasts) and frequent cloud formation in the tropical zone [6–9].
In [5,9–11], the types of days and the fluctuating nature of solar radiation from Guadeloupe
island (the island of our measurements sites) are highlighted, exhibiting regimes of variabil-
ity. Moreover, these islands are not electrically interconnected, which makes their network
fragile, and it requires a threshold for the power instantly consumed from intermittent
renewable energies (solar and wind) to be set.

In the literature, several metrics have been defined for the variability quantification of
irradiance. A few metrics can be quoted such as the variability index (VI) [12], which is a
ratio including measured irradiance, clear sky irradiance signal, the number of consecutive
observations, and the averaging interval of the time series. In [12], the author showed
a classification of sites and periods of time when variability is significant. In [13], the
intra-hour variability score (IHVS) [13] captures several key variability characteristics into
a single metric for irradiance, or PV output power, data. It is shown that this metric
facilitates the comparison of the variability of PV systems of different sizes, with different
configurations, across different climates. In [14], the daily aggregate ramp rate (DARR)
represents the sum of all absolute increment values during a given hour or day. This metric
made it possible to characterize variability due to geographical dispersion by simulating a
step-by-step increase in the plant size at the same location. In [15], the variability score (VS)
is based on increments in temporally averaged data, with averaging time scale, expressed in
a percentage. In [16], the nominal variability is defined as the ramp rate’s variance of clear
sky index. This metric can clearly distinguish two extremum cases of insolation conditions,
namely, perfectly clear conditions (i.e., no variability) and heavily overcast conditions.
In [17], the variability score VS, defined as the maximum value of ramp rate magnitude
(RR0) times ramp rate probability, has been performed on the same measurements site
under our study to categorize typical days as a function of their variability [11]. The study
showed that 58% of ramp rates are higher than 50 W·m−2 concerning the intermittent
cloudy sky days at 5 min time scales, and the type of days presenting the higher magnitude
of ramp rate and higher VS values. Thirty percent of such days occurred in the year 2012.
Moreover, the results revealed that VS increased over ∆t.

In this challenging context, the forecasting technique needs to have robustness and
predictive efficiency allowing high variability to be forecast at short time scales. The
high variability of irradiance leads to increased grid variability and uncertainty for grid-
connected solar photovoltaics (PV) as penetration increases. The development of an efficient
forecasting model contributes to better management by power system operators and/or
PV plant owners.

In the recent literature, the spatial and temporal characteristics of irradiance are con-
sidered by introducing the information observed at several neighboring locations. The
spatio-temporal techniques have already shown an improvement in the forecast’s qual-
ity [18–20] for several environmental processes: in wind velocity fields such as in [21] where
neural and geostatistical techniques were developed to obtain the wind speed maps, or
in [22] using a VAR (vector autoregressive) model to forecast wind speed and atmospheric
concentration of carbon monoxide by integrating spatio-temporal parameters from spatially
sparse sites. In [23], the authors developed Taylor kriging technics also applied to wind
speed forecasting and improving the predictive performance compared to the ARIMA (au-
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toregressive integrated moving average) model, and other techniques for modeling wind
speed such as space–time covariance models were described and applied in [24]. In the
solar forecasting area, several spatio-temporal tools have been developed such as kriging
approaches: cross-validation with spatial kriging integrating parameters of cloud motion
in [25] resulting in a detailed map of solar radiation, or space–time kriging to forecast
irradiance at arbitrary spatial locations, such as in [26] with a variance–covariance structure
explored and defined, in [27] integrating shrinkage parameters, or in [28] to forecast very
short-term irradiance at unobserved locations. Moreover, other approaches have been de-
veloped in the literature such as lasso-based variable selection [29], spatio-temporal ARMA
(autoregressive moving average) such as (STARMA) models ([30,31], or spatio-temporal
vector autoregressive (STVAR) models [6,27] providing future irradiance based on a linear
combination of past observations at the most relevant neighboring locations.

PV power production is considered a nonlinear probabilistic process because it is
affected by the variation in:

• many weather parameters such as solar irradiance, temperature, wind, etc.;
• the PV cells nonlinear model;
• the DC-DC converter model;
• outages of the grid and possible islanding conditions of the PV parks;
• other operation conditions.

The output power of the PV system changes with time and depends on the variability
of meteorological factors. Accurate PV power forecasting contributes to improving the
stability, security, and reliability of grid operation, as well as scheduling and grid energy
management [32]. It also affects power quality, voltage surges, reverse power flows, etc.
PV power forecasting can be performed for different forecast time horizons, from very
short time scales (minutes) to long time scales (days). The choice of forecast time horizon
depends mainly on applications [33]. PV power forecasting for the short-term horizon is
used, for example, in PV power ramp rate estimation [34]. Fast irradiance fluctuations
affect the quality and reliability of PV power. PV power forecasting for the long-term
horizon is used, for example, in energy management optimization in microgrids [35].

PV power forecasting methods can be classified into two categories: direct and indirect
methods [36]. Direct methods consist of applying physical, statistical, artificial intelligence,
or hybrid models to PV measurements. They propose several techniques and models.
Among them are: Physical models, obtained from the modeling of solar radiation dynamics
in the atmosphere using physics laws, which is more efficient in long-term prediction [37].
Statistical approaches that use historical data samples and give better performance in short-
term prediction [38]. Artificial intelligence approaches, also known as machine learning
approaches. They use different architectures of artificial neural network (ANN) and fuzzy
techniques. They are based on basic operations of training and testing. Their advantage
is that they deal with complex nonlinear features effectively, and their main drawback is
the requirement for a large quantity of data during the training stage [39]. Deep learning
structures are more popular nowadays [40]. Hybrid approaches, which are a combination
of two or more approaches that give more accuracy in PV power forecasting in different
cases [41].

Indirect methods consist of fragmenting the power prediction problem into two
stages: forecasting weather parameters and introducing them in commercial PV simulation
software to forecast the PV power generation. Solar forecasting was conducted for different
time scale horizons and using different forecasting methods cited above.

Concerning PV power short-term horizon forecasting applications, other approaches
are proposed in the literature to estimate the expected power of a PV system from a ramp
rate characterization. An analysis of variability is therefore investigated, such as in [42],
exhibiting the frequency of a given fluctuation from output PV power for a certain day by
an analytic model, and [43] who demonstrated the smoothing of rapid ramps observed
in a location point by large PV plants, which was strengthened in [16] by the result of the
aggregation of multiple PV plants. In [14], a quantitative metric called the daily aggregate
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ramp rate (DARR) was proposed to quantify, categorize, and compare daily variability
from power output, across multiple sites. In [16], models were developed exhibiting a
capacity to extrapolate the resulting variability on an ensemble of power plants, and, in [34],
a method was proposed to estimate the largest expected PV power ramp rates (RR).

The works in the literature clearly show the purposes of power forecasting, namely,
the development of strategies to mitigate the impact of solar variability on electric power
grids, the optimization of the design and size of PV power plants, and, consequently, a
maximization of their effectiveness and minimization of costs by using the curve fitted to
the largest RR ratios, irradiance, and cloud shadow velocities dataset. In [44], the authors
propose the implementation of an optimized solar PV utilization using a low-cost hardware
platform to improve efficiency, and for better saving of the grid energy. The proposed
solution is based on an online intelligent algorithm.

As a reminder, in a photovoltaic system, the maximum power point (MPP) corresponds
to the point of tangency between the characteristic points of the photovoltaic generator for
a certain value of solar radiation [45]. The role of the MPPT is to precisely detect at every
moment this point of maximum energy efficiency. The performance of an MPPT controller
depends on how quickly it reaches the point of maximum power, how it oscillates around
that point, and how robust it is in the face of abrupt atmospheric changes. Several power
point maximum (PPM) tracking algorithms have been cited in the literature over the last
few years [46–48]. These algorithms can be mainly classified as conventional, metaheuristic,
artificial intelligence, nonlinear, and hybrid algorithms.

Conventional MPPT techniques such as Perturb and Observe (P&O) [49], Incremental
Conductance (IC) [50], and Hill Climbing (HC) [51] give good results under uniform
irradiance conditions. However, this performance is not guaranteed during transitional
regimes. Other works are based on metaheuristic approaches such as particle swarm
optimization (PSO) [52] and genetic algorithms (GA) [53]. Their performance depends on
selected design parameters and initial conditions. MPPT techniques based on artificial
intelligence such as fuzzy logic (FL) [54] and neural networks (NN) [55] have become
more and more popular. They have the advantage of working even with imprecise input
values and they do not need a high precision mathematical model. In addition, they can
deal with nonlinearities. In recent years, many MPPT techniques based on nonlinear
control have been proposed. Among them are sliding mode [56] and backstepping [57].
These approaches are known for their robustness and stability using Lyapunov functions.
Hybrid MPPT techniques are a combination of two or more of the MPPT techniques cited
before [58].

Fuzzy logic was developed by Zadeh in 1965 from his theory of fuzzy subsets [59].
It allows us to imitate human reasoning by using the different collected data in linguistic
forms. One of the main interests of the use of fuzzy logic consists of being able to pass,
simply through the intermediary of linguistic rules, the expertise that one may have of the
process towards the controller. It is thus possible to transform the expert’s knowledge into
simple rules that the controller can implement. The ease of implementing solutions for
complex problems is then associated with robustness for uncertainties and the possibility
of integrating the expert’s knowledge.

In MPP optimization problems of PV systems, it is recognized that classical meth-
ods [49–51] are widely used due to their simple structure and the fact that they require
fewer measured parameters, but their speed of convergence is variable. In addition, the
system will constantly oscillate around the MPP. These oscillations can be minimized by
reducing the value of the increment step. However, a small increment value can slow down
the search for the MPP. This drawback allowed us to find in permanence a compromise
between precision and speed. In addition, it is an unsuitable method for rapidly changing
weather conditions. Conversely, fuzzy MPPT controllers are well adapted to this type
of problem and behave well in various atmospheric conditions. They converge quickly,
although they can work with imprecise inputs, and do not require a well-known mathemat-
ical model [54,60,61]. Moreover, fuzzy control is known for its robustness and its adaptive
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nature, giving it high performance with respect to parameter variation and disturbances of
the system.

In these works, a structure with several steps is defined to feed our PV production
system, firstly performing irradiance forecasting from a STVAR model. The model was
developed in [4] and showed good predictive performance for time scales from 5 min to
1 h. This spatio-temporal autoregressive model (STVAR) was applied for a very short time
scale, 1 min ahead for the first time. From these forecasting model results, a predicted
irradiance profile was built. This profile is composed of selected values, spread over one-
year prediction data. It shows an important magnitude of irradiance fluctuations. A robust
fuzzy MPPT optimization algorithm was applied for a PV system with a capacity of 3 kW
peak to overcome this constraint and to estimate the output produced PV power. The
fuzzy logic approach has the advantage of improving the transitional regime and reducing
fluctuations in the static state whatever changes in the climate there are.

The main novelty of this article is the description and validation of an efficient indirect
PV power forecasting method based on short time scale irradiance spatio-temporal fore-
casting and the MPPT approach. Thus, this work consisted of connecting the contributions
of these two fields of research (statistical forecasting irradiance and the MPPT approach).
This investigation highlights the results of their combination. The proposed method was
applied in a challenging environment, a tropical insular context known by its high solar
variability, using in situ real measured solar data. The proposed PV power forecasting
method was validated and its performance was very close to that of irradiance forecasting.
Efficiency, accuracy, and robustness were studied by simulations for the four seasonal days
representing the fast variability of the tropical climate over one year. These results are
advantageous to the design and component sizing of PV power plants.

This work is organized as follows. Section 2 (Proposed System Configuration) de-
scribes the global structure of the proposed PV system, and its different components: solar
PV generator, DC-DC boost converter, and load. In the Section 3 (Solar Forecasting and
Control of the Proposed System), the first part describes the used solar forecasting model.
After sampling processing, measured and predicted irradiance profiles are given. The
second part presents the MPPT fuzzy optimization algorithm. Section 4 (Results and Dis-
cussion) shows simulation results obtained for the proposed solution. Finally, the different
contributions given in this paper are summarized in the Section 5 (Conclusions).

2. Proposed System Configuration
2.1. Global Structure Design

A block diagram of the proposed control system is shown in Figure 1. The global
structure of the studied PV plant is mainly composed of a PV generator (GPV), DC-DC
boost converter, and load.
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From solar measurements collected at three sites on Guadeloupe island for a year, and
using the STVAR prediction model, we obtained prediction results for a short time scale.

Solar measurements and forecasting data are used to feed our PV production system.
For the configuration of our PV system, we propose the use of a DC-DC boost converter,
controlled by an MPPT fuzzy LOGIC algorithm to extract the maximum power from the
photovoltaic panels.

The objective of this combination is to have an indirect estimate of the power produced
by our PV system.

The following sections describe each part of the proposed structure illustrated in
Figure 1.

2.2. Solar PV Generator

For more simplicity, photovoltaic cells can be represented using the single-diode model
as shown in Figure 2.
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Figure 2. Single-diode model of the PV cell without a shunt resistor.

The series resistance is the internal resistance of the cell, whereby the shunt resistance
represents the leakage current of the junction, being generally very large (equivalent to an
open circuit), it can be neglected on the equivalent diagram.

The PV cell electrical characteristics are given by the following equations

I = Iph − ID (1)

Iph = Iph(T1)× [1 + K0 × (T − T1)] (2)

Iph(T1) = Icc(T1)×
(

G
G0

)
(3)

K0 =
Icc(T2)− Icc(T1)

T2 − T1
(4)

ID = Is(e
(

VD
VT

) − 1) (5)

VT =
nKT

q
(6)

VD = V + Rs I (7)

Rs = − dV
dIVco

− 1
XV

(8)

XV =
Is(T1)

VT(T1)
.e

Vco(T1)
VT (T1) (9)

Is = Is(T1) ∗
(

T
T1

)3/n

e(
−q.Vg

n.K )( 1
T −

1
T1

) (10)

Is(T1) =
Icc(T1)

e
(

Vco(T1)
VT (T1)

) − 1
(11)
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where I, Iph, ID, Icc, and IS are, respectively, PV cell output current, photocurrent, diode
current, short-circuit current, and saturation current in A. Reference temperature (T1 =
25 ◦C = 298 ◦K), T: absolute surface temperature, G0: reference irradiance (G0 = 1000 W/m2),
K0: current variation coefficient, q: elementary electron charge, K: Boltzmann’s constant,
n: diode ideality factor. VT: thermodynamic potential, VD: voltage across the diode, V:
voltage at the cell terminals, Rs: resistance series, Vco: the open circuit voltage.

For solar cell, the equation between current and voltage then becomes

I = Iph − Is

(
e(

q(V+Rs I)
nKT ) − 1

)
(12)

The PV generator represents a 3 kW PV module composed of 10 PV modules of 300 Wp
(type SunPower SPR-300E-WHT-D) connected in series, and provide 547 V as the output
voltage at the maximum power point. The PV panel parameters are given in Appendix A.

2.3. DC-DC Boost Converter

To reduce the number of PV panels used, we chose a boost converter to increase the
output voltage of a DC voltage. It ensures the impedance matching between the PV panels
and the load. It is composed of the inductor (Lo), input capacitor (Ci), output capacitor (Co),
MOSFET transistor switch, and power diode (D). 1 and 2 are terminals for load connection.
Figure 3 shows the circuit diagram of the boost converter.
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Figure 3. Boost converter circuit.

Equations of the DC-DC converter are given by

Ci =
∂Vg

∂t
= Ig − IL0 (13)

L0
∂IL0

∂t
= Vg − (1 − D)Vm (14)

L0
∂IL0

∂t
= Vg − (1 − D)Vm (15)

where Im is the output current of the boost converter (A), Ig is the output current of the PV
panels (A), Vm is the output voltage of the boost converter (V), Vg is the output voltage of
the PV panels, ILO is the inductor current (A).

The switching state is also governed by a signal of period T and duty cycle D.

3. Solar Forecasting and Control of the Proposed System
3.1. Forecasting Model and Preprocessing of Datasets
3.1.1. Study Context and Experimental Datasets

Experimental measurements were collected on Guadeloupe island; therefore, an
insular context located in a tropical climate.
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This context favors very frequent cloud formations driven by the diversity of local
topography on a small space (orographic clouds) and by synoptic systems due to land/sea
contrast [7,8]. This meteorological context leads to the diversity and complexity of solar
microclimates. Consequently, the irradiance observed is characterized by high spatial and
temporal variability, particularly at short time scales [7,8,62–64]. In this complex context,
solar radiation forecasting is challenging, particularly at very short time scales.

The global horizontal irradiance (GHI) was measured at 1 Hz with a pyranometer
CM22 from Kipp and Zonen pyranometer (type SP Lite) whose response time is less than a
second. The sensor accuracy given by the manufacturer is 3%. For this study we used an
averaged database at 1 min of the global horizontal irradiance (GHI) measured for a period
starting in January 2012 and ending in December 2012. The measurements were collected
at site Petit-canal Gros-cap, along the cliffs (16◦38 N, 61◦49 W). The forecasting time
series at Petit-canal was obtained by the STVAR model using past irradiance observations
at the three measurement sites (see Figure 4). Figure 5 displays a five-day irradiance
sequence showing high temporal variability. To perform the statistical forecasting model,
the temporal trend of the irradiance time series must be removed. Classically, in solar
areas, clear sky irradiance is used. This parameter removes the temporal trend of irradiance
mainly due to the solar geometry effects by a ratio between the measured irradiance and
theoretical clear sky irradiance for the considered 1 min/location.
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(location of predicted GHI time series selected for our study (black circle)), Fouillole, La Désirade.

3.1.2. Definition of the Forecasting Model: Spatio-Temporal Autoregressive
Model—STVAR

The proposed model STVAR (spatio-temporal vector autoregressive) consists of fore-
casting GHI at a considered location (reference site) by a weighted linear combination of
past observations at this location and neighboring locations (spatial predictors) at p lags,
plus an error or innovations term, whereas the temporal VAR models uses a linear combi-
nation of past observations of n variables representing different parameters but located at
one site. A spatio-temporal VAR (p) process is defined as follows:
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Consider spatio-temporal variable Z(si, t) representing the observations of a stochastic
process indexed in R2 × R. Each observation is made at location si and at time t. The
considered predictive VAR (vector autoregressive) model (see [22]) is given by

Zt =
p

∑
i=1

Ri(Zt−i) + εt (16)

where p is the order corresponding to the time lag; Zt = (Z(s1, t), Z(s2, t), . . . , Z(sN, t))’
are the spatio-temporal data, εt is white noise, and Ri is an N × N unknown parameter
matrix. The N rows of these matrices correspond to the N locations at which time series
are observed.

Estimation of the parameters in Equation (16) is obtained with least squares. For more
details on the methodology (see Chap. 14 [64]).

If all lagged time series values associated with all measurement sites had to be inte-
grated into the modeling process as input data, the computational process would not be
optimized. For more efficiency, a process of the selection of optimal temporal input data (p
lags optimal of past observations) and spatial input data (more relevant neighboring sites
variable) was developed. This procedure is based on the calculation of the information crite-
rion BIC (Bayesian information criterion) for sequential integration of each spatio-temporal
explanatory variable. The relevant spatio-temporal input data are selected by minimization
of BIC [6,22]. This procedure is built according to the method proposed in [6,22]. For more
details on the modeling process see [6,9].

This process of spatio-temporal input selection was performed on a training dataset.
The first month of the dataset was used as a model training dataset and the rest of the year
as a test dataset.

STVAR model showed a good predictive performance for a time scale from 5 min
to 1 h [6,9]. In this work, this model was performed at 1 min time scale regarding our
study context.

3.2. Fuzzy MPPT Algorithm

The studied system is made up of nonlinear elements that need complex and heavy
models (photovoltaic panels, electronic power system, etc.). However, most nonlinear
control approaches require the availability of a mathematical model of the system. The
assured performance is directly related to the accuracy of the model used. That is why we
chose to use a fuzzy controller.

To obtain MPP from PV panels, the MPPT algorithm was developed using the fuzzy
logic technique [54]. The principle of the MPPT algorithm is to find the maximum point of
the curve P(V). For that, we have to bring the error E between dP/dV and its optimal value
to zero. When E is positive, the value of P increases, and, conversely, when E is negative,
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the value of P decreases. For that, a fuzzy logic (FL) controller is used. The classical fuzzy
controller diagram is shown in the Figure 6:
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Figure 6. Fuzzy controller general structure.

E: error between dP/dV and its optimal value, CE: error variation of E, dD: duty cycle
increment. SE, SCE: input gains, SdD: output gain.

1. Fuzzification and defuzzification transforms real input variables into fuzzy ones and
the reverse. E and CE are inputs of the FL controller, and dD is the output. It represents
the variable step of the duty cycle to control the DC-DC converter. The Figure 7 shows
the membership functions for E, CE, and dD.
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Among the different forms of membership functions (trapezoid, Gaussian, and tri-
angular, etc.), the symmetrical triangular form is considered the most appropriate for its
simplicity. The use of the nonuniform distributions of fuzzy sets is more suitable for con-
trolling the nonlinear behavior of the PV system. In this study, the symmetrical triangular
shape was selected and the boundaries were considered as: [−10, 10] for (E and CE), and
[−0.012, 0.012] for dD, respectively.

2. Inference is performed using the Mamdani method. Seven linguistic variables are
expressed as (NB: negative big), (NM: negative medium), (NS: negative small), (Z:
zero), (PS: positive small), (PM: positive medium), (PB: positive big). Table 1 shows
the applied rules that ensure the relationship between the inputs and the output of the
FL controller. The symmetric rule base is usually used for constant growth systems.
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Table 1. Fuzzy rules.

E
∆E

NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z

NM NB NB NB NM NS Z PS

NS NB NB NM NS Z PS PM

Z NB NM NS Z PS PM PB

PS NM NS Z PS PM PB PB

PM NS Z PS PM PB PB PB

PB Z PS PM PB PB PB PB

The flowchart of the fuzzy controller is shown in the Figure 8.
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4. Results and Discussion
4.1. Solar Forecasting Results: Datasets Used for the Simulation

Irradiance in a tropical insular context presents particularly high intraday variability
with days that can be clustered as a function of irradiance conditions [10,63,65].

The proposed structure in Figure 1 contains two dynamic systems, operating with
two different time scales. The MPPT PV system is very fast (sampling time equal 10−4 s)
compared with the solar forecasting system (sampling time equal 1 min). For that, the data
selection operation is necessary.

A sequence of 11 values was selected with a high magnitude of fluctuations to assess
the robustness of the system process. Hence, values of the sequence were chosen according
to the high amplitude of fluctuations between two points; that is to say between time t
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and t + 1 (1 min). To represent a sequence representative of the high variabilities occurring
over the year, a sequence was chosen on a day belonging to a month of a season. One
season includes 3 months. Four seasons are considered in an intertropical climate: one dry
and sunny season, one rainy and cyclonic season, and two intermediate seasons [8,62,65].
Therefore, four different observations and forecasting days were selected to extract the
fluctuation with high amplitude (Figures 9–12). The built sequence is represented in
Figure 13. One value was artificially (not consecutive value) chosen to simulate a plateau
(see Figure 13, index point of time t7 and t8 are not consecutive).
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Figure 9. (a) Observed signal and predicted signal by STVAR model for a day (5 March). The black
dotted-line is the selected part for the zoom. (b) Zoom of the part in a black dotted-line ellipse in (a).
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Figure 10. (a) Observed signal and predicted signal by STVAR model for a day (11 May). The black
dotted-line is the selected part for the zoom. (b) Zoom of the part in a black dotted-line ellipse in (a).
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Figure 11. (a) Observed signal and predicted signal by STVAR model for a day (29 August). The
black dotted-line is the selected part for the zoom. (b) Zoom of the part in a black dotted-line ellipse
in (a).
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Figure 12. (a) Observed signal and predicted signal by STVAR model for a day (16 December). The
black dotted-line is the selected part for the zoom. (b) Zoom of the part in a black dotted-line ellipse
in (a).
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There is a time lag between the observations sequence and forecast sequence, which
is a particularity of the autoregressive models. This particularity can be observed in
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Figures 9b, 10b, 11b and 12b. To build the sequence represented by Figure 13 we removed
this time lag.

The values corresponding to time ti with i from 1 to 3 in the sequence in Figure 9 are
indicated.

The values corresponding to time ti with i from 4 to 5 in the sequence in Figure 10
are indicated.

The values corresponding to time ti with i varying from 6 to 7 in the sequence in
Figure 11 are indicated.

Table 2 gives the solar forecasting performance obtained for 1 min ahead with the
STVAR model concerning the four selected days. Model performance is usually assessed
by the following statistical metrics: relative Root Mean Squared Error (rRMSE), relative
Mean Absolute Error (rMAE), and relative Mean Bias Error (rMBE). Relative error metrics
were normalized to the mean observed irradiance data for the considered period.

rRMSE =

√
1
N

N
∑

i=1
(
_
G − G)2

mean(G)
× 100% (17)

where Ĝ is the forecasted values and G the observed values.

rMAE =

1
N

N
∑

i=1

∣∣Ĝ − G
∣∣

mean(G)
× 100% (18)

rMBE =

1
N

N
∑

i=1

_
G − G

mean(G)
× 100% (19)

Table 2. Solar forecasting performance for seasonal days.

Day1 (5 March) Day2 (11 May) Day3 (29 August) Day4 (16 December)

rMAE (%) 11.32 10.82 6.86 13.13

rMBE (%) −1.65 0.19 −0.03 −2.99

rRMSE (%) 19.99 19.01 14.36 21.80

The values corresponding to time ti with i from 9 to 12 in the sequence in Figure 12
are indicated.

4.2. MPPT Fuzzy Logic Controller Performance

Diagram blocks of the fuzzy logic controller are presented in Figure 14:
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Simulation results are given to check the PV MPPT fuzzy logic performance. The
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troller with the conventional P&O one was tested for a real measured data irradiance
profile presented in Figure 15, including sudden changes, which is presented in the solar
forecasting section. The temperature was taken as constant and equal at 25 ◦C.
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Figure 16 shows the dynamic performance of PV voltage, PV current, and output PV
power for the two controllers (fuzzy and P&O) under a variable irradiance profile.
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It can be seen that, despite the multiple changes in solar data, the two controllers can
follow the change in irradiance to reach the MPP.

The comparison between the two MPPT techniques can be made for performance
during the transient and steady state. For that, responses are presented for two time scales.

Regarding responses with a short simulation time of 0.15 s, we notice:

• The dynamic response of the P&O controller exhibits unwanted ripples, which are a
dangerous drawback for PV systems. In addition, this dynamic response is a pseudo-
oscillatory time response with an overshoot equal to 11.87%.

• Compared to P&O, the fuzzy controller converges and reaches the steady state faster
with a response time ten times shorter (0.008 s against 0.08 s). We can clearly observe
the superiority of the fuzzy controller response in terms of stability and accuracy with
respect to the P&O one, which is less stable with ripples and oscillation, and less
accurate with a slight permanent steady-state error.

Simulation results demonstrate very clearly that the proposed scheme (fuzzy MPPT
controller) exhibits a fast and accurate dynamic response and stable steady-state output
power against a rapid change in the irradiance profile.

4.3. Output PV Power Prediction

The PV power generation plant of 3 kW controlled by the MPPT fuzzy logic technique
was fed with the measured and predicted solar data results given in Section 4.1. The solar
measurements were collected from the Petit-canal site in Guadeloupe. Predicted solar data
were obtained using the STVAR model for a very short time scale of 1 min ahead. Four
seasonal days, representing the fast variability of a tropical climate over 10 h of sunshine
every day, were selected. The produced output power of the PV system was calculated
using measured and predicted data in the cases of the four seasonal days.

In order to evaluate the accuracy and efficiency of the PV power prediction, rRMSE,
rMAE, and rMBE were calculated for the four seasonal days. The results are given in
Table 3.

Table 3. PV power prediction performance for seasonal days.

Day 1 Day 2 Day 3 Day 4

rMAE (%) 11.58 11.09 6.99 13.70

rMBE (%) −1.60 0.19 −0.03 −3.14

rRMSE (%) 20.43 19.46 14.65 22.60

From the simulation results given in Figure 17 and Table 3 for the same four days in
Section 4.1 belonging to different seasons, we notice that:

• Output PV power variability calculated from predicted data in the cases of the four
days is close to that calculated from the measured one, which demonstrates the
efficiency of the proposed method.

• The influence of intraday variability on the predictive performance of the model is
also observed. The highest errors are obtained for day 4 corresponding to the day
presenting the highest intraday variability (rRMSE = 22.60%, rMAE = 13.70%), whereas
the lowest errors are obtained for day 3 presenting the lowest intraday variability and
with less pronounced variation (rRMSE = 14.65%, rMAE = 6.99%). Consequently, the
results are an illustration of the predictive performance model as a function of the
irradiance conditions as seen in the results in the literature [7,9,66].

• According to the rMBE results, the model tends to underestimate the observed values
(negative values of rMBE).
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Figure 17. Output PV power prediction over 4 season days (1 min ahead). (a) Day1 (5 March);
(b) Day2 (11 May); (c) Day3 (29 August); (d) Day4 (16 December).

Consequently, by comparison of the solar irradiance prediction previously mentioned
in Figures 9–12 and Table 2 with the indirect output power prediction given in Figure 17
and Table 3, the output PV power model has the same predictive performance trend as the
irradiance forecasting model (STVAR).

skill − score = (1 − RMSEmodel
RMSEpersistence

)× 100 (20)

Skill-score is an error metric that compares the model performance with a reference
model described by Equation (20). According to [67], the skill parameter (skill-score)
proposed is a comparison with the proposed model and the persistence model. Persistence
forecasts, as the name implies, are defined as having the output PV power that persists
for the next time step. It is a naive model often used as a reference forecasting model.
Table 4 presents the results of the skill-score for the same 4 days as in Table 3. A positive
skill-score significates that the proposed model has a better predictive performance than
the persistence model. A negative skill-score shows that the proposed model has a lower
predictive performance than the persistence model.

Table 4. PV power prediction skill-score performance for seasonal days.

Day1 (5 March) Day2 (11 May) Day3 (29 August) Day4 (16 December)

rRMSE (%)
Persistence model 21.33 20.24 15.50 22.87

Skill-score (%) 4.22 3.85 6.71 1.18
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Consequently, Table 4 exhibits a better predictive performance of our forecasting
technic than the persistence model whatever the seasonal day. This metric error is also able
to compare if our approach could be useful to other researchers.

5. Conclusions

The existence of a sudden and rapid change in the meteorological conditions, especially
in a tropical context, led us to propose through the present work a robust and reliable
solution based on real measured and predicted irradiance data. The proposed work deals
with an indirect PV power production prediction of a PV power generation plant for a
short time scale. The PV power generation plant is composed of 10 solar panels (3 kW) and
a DC-DC boost converter. The PV power prediction approach is based on a combination
of solar forecasting results and a fuzzy MPPT technique. Solar measurements data were
collected on Guadeloupe Island.

Solar forecasting using the STVAR model, applied for the first time at 1 min time
scales, allowed us to obtain a representative irradiance profile to test the efficiency of the
proposed MPPT PV solution. The latter is designed to face two challenges: maximum
power extraction from the PV generator, and output PV power prediction. The fuzzy
MPPT technique ensures a better optimization performance presenting good robustness
with respect to extreme climatic conditions. The output PV power prediction performance
depends on the used solar prediction method, the MPPT PV technique, and irradiance
profile variability. The same predictive performance trend of the output PV power model as
the irradiance forecasting model (STVAR) is an expected result due to the structure of the PV
system. Indeed, the structure combines the irradiance forecasting model and the forecasting
PV output model. The strength and limits of the irradiance forecasting model (STVAR
model) are consequently imposed on the final results (output PV forecasting); hence, the
importance of an appropriate choice of forecasting irradiance model. The investigation
of a new global structure diagram for a PV system integrating two approaches (statistical
forecasting irradiance and an MPPT approach) showed the strengths and limitations of
this system. In a subsequent investigation, we will test another forecasting model that has
already shown good predictive performance in the literature, at this very short time scale
(1 min). Operationally, such an approach would mesh with operational industry-targeted
forecast services.
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Appendix A

We chose model SunPower SPR-300E-WHT-D. This panel is composed of 96 cells
series-connected (ns = 96).

• These data represent the typical performance of the panel SPR-300E, which is measured
with output, and no additional equipment effect is included such as the diodes and
the cables. The data are based on the measures under the standard conditions SRC
(Standard Reporting Conditions, knowledge also: STC or Standard Test Conditions),
which set:

• an Irradiance of 1 kW/m2 (1 sun) to a spectrum AM 1.5;
• a temperature of the cell of 25 ◦C.
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Table A1. Photovoltaic panel parameters.

Maximal power Pm 300 W

Voltage for maximal power Vpm 54.7 V

Current for maximal power Ipm 5.49 A

Current of short circuit Isc 5.87 A

Voltage of open circuit Voc 64 V

Temperature coefficient of Isc Tsc (0.061738) %/◦C

Temperature coefficient of Voc Toc (−0.2727) %/◦C
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