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Abstract: The characterization of wind speed distribution and the optimal assessment of wind energy
potential are critical factors in selecting a suitable site for wind power plants (WPP). The Weibull
distribution law has been used extensively to analyze the wind characteristics of candidate WPP sites,
and to estimate the available and deliverable energy. This paper presents a comparative study of
five wind energy resource assessment methods as they applied to the context of wind sites in West
Sub-Saharan Africa. We investigated three numerical approaches, namely, the adaptive neuro-fuzzy
inference system (ANFIS), the multilayer perceptron method (MLP), and support vector regression
(SVR), to derive the distribution law of wind speeds and to optimally quantify the corresponding
wind energy potential. Next, we compared these three approaches to two well-known Weibull
distribution law-based methods: the empirical method of Justus (EMJ) and the maximum likelihood
method (MLM). Case study results indicated that the neural network-based methods, ANFIS and MLP,
yielded the most accurate distribution fits and wind energy potential estimates, and consequently, are
the most recommended methods for the wind sites in Togo and Benin. The orders of magnitude of the
root mean squared error (RMSE) in estimating the recoverable energy using ANFIS were, respectively,
10-4 and 10-5 for Lomé and Cotonou, while MLP achieved an RMSE order of magnitude of 10-3 for
both sites.

Keywords: wind energy potential; ANFIS; multilayer perceptron; support vector regression;
probability density function; wind energy in Sub-Saharan Africa

1. Introduction

Energy is the essence of any country’s development. For a long time, fossil energy
sources have been driving the development of civilizations. In 2001, industrialized countries
consumed more than half of the world’s energy consumption [1]. Developing countries, in
their industrial growth, would need to significantly increase their energy consumption. The
increasing energy demand has been, for the most part, supplied by fossil fuels. Worldwide,
fuel diversification and the increased adoption of renewable energy resources have garnered
notable attention. Several renewable energy resources have been introduced in the energy
portfolio of many countries around the world, with the most common ones being wind,
geothermal, wave, tidal, and solar energy.

Even developing countries such as Benin and Togo, where industrialization is at
an early age, have set their renewable energy targets. For reference, the average annual
electrical energy consumption per capita in Benin and Togo is, respectively, 100 kWh [2]
and 160 kWh [3], against 11,927 kWh [4] in the United States of America. However, on
their paths to sustainable development, these countries have set national grid-connected
renewable energy generation targets. The republic of Benin is targeting 44% by 2030, while
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Togo is aiming for 30% by 2030 [5]. In addition, wind energy projects are expected to
offset the energy deficit of these countries where access to electricity is still among the
lowest in the world, with 29% [6] for Benin and 35% [7] for Togo. The technical potential
for wind power is estimated at 322 MW for Benin and 73 MW for Togo [6,7]. We are
interested in these countries, and more specifically in the sites of Lomé and Cotonou for
their geographical positions and also for their ongoing wind power plant projects. This is
the case of the Eco Delta project that will allow the construction of the first 25.2 MW wind
power plant in Togo. With wind power capacity factors of 12.6 and 15.0%, Benin and Togo
are decent candidates for wind power project development [5–7]. Benin and Togo are not
the only countries interested in wind energy.

Recently, wind power generation has gained renewed interest worldwide, and is
expected to actively contribute to reducing the emission of greenhouse gases [8–14]. How-
ever, despite the ecological advantage of wind power, the siting of wind power plants
(WPP) is subject to detailed study in order to offer consumers competitive energy prices
while ensuring a decent return on investment. It requires statistical analysis of the wind
energy resource on the candidate sites in order to evaluate the feasibility and viability of
the project [15]. Wind statistics are critical in determining the types of wind turbines to
install. For an accurate estimate of return on investment, it is important to predict how
much energy the WPP can generate over its lifetime. This paper reviews statistical analysis
methods commonly used in wind energy resource assessment. The aim is to characterize
the distribution law of wind speed measurements taken at the candidate WPP site with the
objective of evaluating the wind energy potential. This study is important because wind
speed is considered a random and intermittent variable; thus, a simple measurement is
not enough to characterize the potential of a candidate WPP site [16]. Several distribution
functions have been used in the literature to characterize distribution laws, such as the
Gamma function [17–23], the inverse function of Gamma [22], the Rayleigh distribution,
lognormal, normal, Pearson type V, kappa, Gumbel, binomial and the Weibull distribution
function [24–33].

However, among the aforementioned functions, the Weibull distribution function is
widely used to characterize wind speed distribution because it gives better results [34–36].
For instance, in [37], Elamouri and Amar Ben evaluated the wind potential at 17 sites
in Tunisia using the meteorological method and the Weibull method; the Weibull distri-
bution yielded more accurate results. Kiss and Jánosi [38] evaluated the surface wind
speed covering a period of 44 years with a resolution of 6 h. They tested the well-known
distribution functions, namely: Rayleigh, binormal, Weibull and lognormal. They observed
that the Weibull function gave a better performance. They compared the Rayleigh, Weibull,
lognormal, and binomial distribution functions and observed that the Weibull distribution
function outperformed the three others. The Weibull distribution also proved effective in
characterizing wind resources on the sea and parts of the land. A similar comparison was
conducted in Turkey, and the distribution of Weibull prevailed over that of Rayleigh [39].
In Rwanda, Safari et al. showed, through a statistical investigation of wind characteristics
and the evaluation of the wind potential, that the Weibull distribution outperformed that
of Rayleigh [40]. The most commonly used Weibull distribution function is characterized
by two parameters k and c and several numerical methods are available to determine these
parameters [41–47]. Among them, the most well-known include the moment method (MM),
the empirical method of Justus (EMJ), the maximum likelihood method (MLM) [48], the
modified maximum likelihood method (MMLM), the energy pattern factor method (EPFM),
the empirical method of Lysen (EML) and the graphic method (GM) [24,34,49,50].

In the search for a better approximation of the wind speed distribution law, other
approaches were considered. Thiaw et al. used the multilayer perceptron (MLP) to evaluate
the wind potential in Senegal and found that MLP gave a better result than the Weibull
distribution, with 0.997 accuracy [16]. Carolin Mabel and E. Fernandez developed a neural
network with three input parameters—wind speed, relative humidity, and generation
times—and one output variable, the wind power plants’ estimated energy output. This
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model estimated the energy generated by seven wind power plants in India with a mean
squared error of 0.0076 [51]. Celik and Kolhe set up a generalized feed-forward neural
network (GFNN) to estimate the annual distribution of wind speed. The authors found
that the GFNN produced a better wind speed distribution for calculating wind power
generation for some wind turbines [52]. Mohandes et al. [53] used the adaptive neuro-fuzzy
inference system (ANFIS) to estimate the wind speed profile and proved that ANFIS is
a viable method for estimating wind speeds at high heights using low altitude velocity
measurements. Asghar and Liu [49], in their recent work, used ANFIS to approximate the
Weibull wind speed probability distribution function. The results obtained showed that
this hybrid approach is more effective compared to numerical methods such as GM, EMJ,
EML and EPFM.

In this paper, we aimed to estimate as accurately as possible the amount of wind energy
that can be harnessed on the sites of Cotonou (Benin) and Lomé (Togo). In order to best fit
the wind speed power density function of these sites, we surveyed five methods, namely
the ANFIS, the MLP, the SVM, the EMJ and the MLM [23,54–56]. The main contributions of
this paper are threefold:

• We first reviewed the most used methods for estimating wind energy potential and
identified five that were promising based on their performance in existing literature;

• Next, we implemented and compared these five methods based on their performance
when applied to the wind energy potential estimation problem in the context of two
west African countries, Togo and Benin;

• Finally, we recommend the most accurate methods for future wind energy resource
assessment projects in the region.

The remainder of the paper is organized as follows: Sections 2 and 3 focus on the
five methods for wind energy potential evaluation investigated in this work. While
Section 2 presents two Weibull-based methods, Section 3 describes three numerical meth-
ods. Section 4 discusses the details of the case study dedicated to the wind sites of Lomé
(Togo) and Cotonou (Benin). The input data, method calibration and case study setup
are presented in this section. Results from the case study are presented and discussed in
Section 5. Section 6 concludes the paper.

2. Weibull Distribution-Based Methods for Wind Speed Characterization and Energy
Potential Evaluation

Given that wind speed is a random variable, a simple measurement on a candidate
site is insufficient for a sound estimation of its wind energy potential. Accurate prediction
of continuous wind speed probability density is critical. The two-parameter Weibull
distribution function is accepted and widely used in modeling wind speed distribution and
in estimating the wind power density, which is important in assessing the energy potential
of candidate wind sites and in evaluating the economic viability of WPP projects [49,57–60].

2.1. Wind Speed Characterization

The purpose of the Weibull-based wind speed characterization is to determine the
Weibull parameters that best fit the Weibull distribution function to the histogram of site
speed measurements.

The Weibull distribution function is characterized by three or two parameters [61,62];
the most used is the two-parameter one, given by (1)

f (v) =
k
c

(v
c

)k−1
exp

[
−
(v

c

)k
]

(1)

where f (.) is the distribution law or the probability density, v the wind speed expressed in
m/s, c the scale factor (same dimension as the speed), and k the form factor (dimensionless)
characterizing the dissymmetry of the distribution.
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When k = 2, the special Weibull distribution is known as Rayleigh distribution [63].
The cumulative function of the probability density function is given by (2) [64].

F(v) = 1− exp
[
−
(v

c

)k
]

(2)

Various methods have been devised and used, in the literature, to estimate the pa-
rameters c and k of the Weibull function that would best fit a given empirical wind speed
dataset. Among these methods we have the empirical method of Justus (EMJ) and the
maximum likelihood method (MLM).

2.1.1. EMJ

Under the EMJ, the form factor k and the scale factor c are determined, respectively,
by (3) and (4):

k =
(σ

v

)−1086
(3)

c =
v

Γ
(

1 + 1
k

) (4)

where v and σ are the average and the standard deviation of the wind speed, and Γ(.) the
gamma function, generally known as the extension of the factorial function to complex
numbers, given by (5) [65,66].

Γ(α) =
∫ ∞

0
xα−1e−xdx, ∀α > 0 (5)

2.1.2. MLM

Under the maximum likelihood method, the Weibull parameters k and c are obtained
through numerical iterations [45,67]. The parameters k and c are estimated using (6) and
(7) [68]. The form factor k is iteratively computed using (6) and replaced in (7) to determine
the scale factor c.

k =

[[
∑n

i=1 vk
i ln(vi)

∑n
i=1 vk

i

]
−
[

∑n
i=1 ln(vi)

n

]]−1

(6)

c =

[
∑n

i=1 vk
i

n

]1/k

(7)

In (6) and (7), vi is the wind speed at time interval i, and n the number of non-zero
wind speed data points.

2.2. Evaluation of the Wind Energy Potential

The notion of wind energy potential refers to the theoretical amount of wind energy
available on a given site. The first step in estimating the energy potential of a wind site
is the wind data collection. The intermittency and variability of wind makes it difficult
to accurately predict its energy potential [16,69]. However, modeling the wind speed
distribution helps to account for wind speed fluctuations and estimate the density of wind
speed values not encountered during measurement. The wind speed distribution modelling
consists of adjusting a known continuous distribution function (such as Weibull) to fit the
histogram of the wind speed data collected on a candidate site. In case no distribution
function is pre-assumed, numerical methods (such as ANFIS) are applied in order to learn
and discover the distribution law hidden in discrete measurement data collected on the
site. The wind energy potential is derived from the probability distribution of wind speed
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according to Equations (8) through (10) [70]. The average wind power available Pm is given
by (8):

Pm =
1
2

ρ

∞∫
0

f (v)v3dv (8)

where ρ is the air density, v the instantaneous wind speed, and f (v) its probability
density function.

The wind energy available Ea (in kWh/m2) during a period of length T hours, is given
by (9).

Ea =
Pm

1000
T (9)

The amount of energy that can be effectively recovered Er on the site according to the
characteristic power curve (see Figure 1) of the aerogenerator is given by (10):

Er =
T

1000
1
2

ρS
[∫ Vr

Vs
f (v)v3dv + V3

r

∫ Vc

Vr
f (v)dv

]
(10)

where:

• f (.): the probability distribution function;
• S: the area swept by the blades of the wind turbine;
• ρ: the air density;
• v: the instantaneous wind speed;
• Vs: the starting or cut-in speed of the wind turbine;
• Vr: the rated speed of the wind turbine;
• Vc: the maximum or cut-out speed of the wind turbine.
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Figure 1 shows the different operating regimes of a wind turbine.
The turbine output power varies as a function of the wind speed according to Equation (11).

P(v) =


0 ; v < Vs
P1(v) ; Vs < v < Vr
Pr ; Vr < v < Vc
0 ; v > Vc

(11)

The wind turbine power curve, showing the relationship between wind speed and
output power, can be used to monitor and predict wind energy production [71].

In the interval [Vk
S , Vk

r ], the output power can be approximated as in (12)

P1(v) = a1 + b1vk (12)
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with the coefficients a1 and b1 defined by (13) and (14) obtained by solving (12) for the
bounding speeds Vs and Vr:

a1 =
PrVk

s
Vk

s −Vk
r

(13)

b1 =
Pr

Vk
s −Vk

r
(14)

where k is the shape or form factor, the Weibull parameter defined above and Pr, the
nominal or rated power.

The energy generated by the wind turbine Eg is then given by (15).

Eg =
T

1000

∫ Vc

Vs
P(v) f (v)dv (15)

3. Numerical Methods for Wind Speed Characterization

As well as the Weibull distribution-based methods presented in Section 3, we consider
three numerical methods: the multilayer perceptron (MLP), the adaptive neuro-fuzzy
inference system (ANFIS) and the support vector machine (SVM). The MLP method is
based on neural networks, the ANFIS method combines the MLP and fuzzy logic, while
the SVM method is based on the concept of maximum margin and kernel. These methods
are widely used in figure recognition, prediction, classification, and regression analysis [72].
They offer an alternative way of dealing with complex and ill-defined problems [73]. In
the context of energy potential estimation, these numerical methods take as input discrete
measured wind speed values (Vi) and adjust their intrinsic parameters in a way that
minimizes the discrepancy between the model output (fi) and the actual speed frequencies
(Fi). Once model parameters are set through this learning process, continuous distribution
laws f (.) are derived as the model output of a continuous range of wind speed values v.

3.1. The Multilayer Perceptron Approach

An artificial neural network (ANN) can be defined as a complex network consisting of
interconnected networks formed by elementary computing units or nodes called neurons.
Neurons are organized in layers and can be connected in different ways. The topology of
the connection between neurons, which depends on the problem to be solved, defines the
architecture of the network. ANNs are “trained” to perform tasks by considering examples
made of a set of input values and a set of corresponding output values [16]. The network
must “learn” in order to be able to provide correct answers for other unknown entries.
The training stage helps evaluate and meet performance criteria which is to minimize
the error between the network output and the actual training output values. In the case
of wind speed distribution law prediction, examples are made of discrete wind speed
measurements (Vi) and their corresponding inferred frequencies (Fi).

Different types of ANNs exist. The MLP-type ANNs are the most widely used,
especially in nonlinear regression problems [74,75]. An MLP ANN includes one or more
hidden layers activated by sigmoid functions and one output layer. Figure 2 illustrates a
two-input MLP network comprising a hidden layer with three neurons and a one-neuron
output layer. The neurons of the hidden layer L receive information from the neurons of
layer L − 1 and are connected to the neurons of layer L + 1. Neurons of the same layer do
not share any connection. Each neuron in the output layer performs a non-linear function
of the input layer. More information on the MLP can be found in [75–77]. The potential si
of a neuron i and its activation Oi are given, respectively, by the Equations (16) and (17).

si =
p

∑
j=1

wijxj + bi (16)
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where p denotes the number of neurons of the upstream layer connected to neuron i;
xj represents the j-th input of neuron i; wij (or interchangeably wji) is the weight of the
connection between neuron i and neuron j (of the upstream layer); bi is the bias; hi(.) the
activation function of the neuron i.
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For the purposes of wind speed characterization and energy potential estimation,
the designed MLP ANN will receive wind speed data as input and produce wind speed
frequencies as output, which will be used to fit the actual wind speed histogram.

3.2. ANFIS

The adaptive neuro-fuzzy inference system (ANFIS) can be described as a fuzzy model
of Sugeno in the framework of an adaptive system to facilitate learning and adaptation.
What makes ANFIS a powerful approach is that it takes advantage of the learning ability of
neural networks and human reasoning. Figure 3 shows the basic architecture of ANFIS.
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Architecturally, the ANFIS is structured in five layers. In the fuzzification layer (layer
1), membership functions are assigned to each input variable. There are as many neurons as
membership functions assigned to the input variables. The weight assigned to each neuron
is updated during the learning process. Trapezoidal, sigmoid, triangular, and Gaussian
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functions are the most commonly used membership functions. The Gaussian membership
function which can be tuned by the mean c and the standard deviation σ is given by (18):

µ(x)i = e
− 1

2 [
(x−ci)

2

σ2
i

]
(17)

where i is index of membership function; ci and σi characterize the center and breadth of
the i-th Gaussian membership function.

Layer 2 computes the product of all incoming signals from the fuzzification layer as
presented in (19). The resulting output of this layer represents the firing strength of each
fuzzy rule. There are as many fuzzy rules as nodes in layer 2.

wi = µ(x)i ∗ µ(x)i+1 (18)

Layer 3 is the normalization layer in which each node normalizes the membership
degree of a given fuzzy rule. The output represents the participation of each fuzzy rule in
the result [78] and presented by (20).

wi =
wi

∑ wi
(19)

Layer 4 is an adaptive layer resulting in the product of each Takagi–Sugeno linear
function representing the conclusion of an inference rule with its normalized participation
factor obtained by layer 3. The output is given by (21) where pi and ri are known as
consequence parameters.

wi.yi = wi(pix + ri) (20)

Layer 5 sums all outputs from the defuzzification nodes as shown by (22).

y = ∑ wi.yi =
∑ wi.yi

∑ wi
(21)

The input and output in the ANFIS approach are the same as in MLP presented in
session 3.1.

3.3. SVR

Support vector machines (SVMs) have gained immense popularity in fields such as
computer science, hydrology and environmental research [34]. However, their application is
mainly in the recognition of figures, prediction, classification and in regression analysis [72].
Generally, SVMs perform better than other traditional techniques such as neural networks
and other conventional statistical models [79,80].

The variant of the SVM considered in this study is the support vector regression (SVR).
Depending on the type of problem at hand, one might choose between linear SVR and
nonlinear SVR. The purpose of SVR is to approximate a set of data (xi, yi) by a function
fw,b defined by (23) in the linear case such that (24) is satisfied.

fw,b(x) = 〈w, x〉+ b (22)∣∣ fw,b(xi)− yi
∣∣ ≤ ε, ∀i ∈ [1, n] (23)

The idea is to minimize the term w while making sure not to exceed a predefined error
rate ε. From a graphical point of view, this amounts to finding a zone of the plane, of width
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2ε called the tube, that contains all examples xi. Considering the minimization of ‖w2‖, we
obtain the quadratic problem given by (25):

min
{

1
2‖w‖

2
}

subject to :
{

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

(24)

This formulation of the problem considers that there exists a linear function
fw,b(x) = 〈w, x〉+ b that approximates all the examples with a precision ε. This assumption
is not always true in practice. In the presence of outliers, it is important to allow for flexible
error margins. In this case, the concept of a flexible margin is used. It consists of introducing
slack variables ζi, ζ∗i to ensure the existence of feasible solutions. The optimization problem
in (25) becomes the one given by (26):

min
{

1
2‖w‖

2
}

subject to :
{

yi − 〈w, xi〉 − b ≤ ε

〈w, xi〉+ b− yi ≤ ε

(25)

min
{

1
2‖w‖

2 + C
n
∑

i=1
(ζi + ζ∗i )

}
subject to :

{
yi − 〈w, xi〉 − b ≤ ε + ζi
〈w, xi〉+ b− yi ≤ ε + ζ∗i

(26)

The constant C (C > 0), a penalty factor, is a hyper parameter allowing the tradeoff
between flexibility and cost to be adjusted. This formulation is equivalent to using an
ε-insensitive error function |ζ|ε defined by (27).

|ζ|ε =
{

0, i f
∣∣y− fw,b(x)

∣∣ ≤ ε∣∣y− fw,b(x)
∣∣− ε, i f

∣∣y− fw,b(x)
∣∣ � ε

(27)

This function can be interpreted as creating an insensitivity tube of radius ε around the
function fw,b(x). |ζ|ε represents the distance along the y-axis between the point (xi, yi) and
the edge of the tube. From the dual formulation and the Lagrange equation, the objective
function obtained can be written in the form of (28):

f (x) =
n

∑
i=1

(αi + α∗i )〈xi, x〉+ b (28)

where αi and α∗i are the Lagrange multipliers derived from the dual formulation.
As data becomes more complex, non-linear regression problems are solved using

kernel functions. The data is projected from the input space into a larger dimension space.
The generalized form of the cost function given by (29):

f (x) =
n

∑
i=1

(αi + α∗i )K(xi, x) + b (29)

where K(.) is a kernel function.
Table 1 shows the most common kernels used in solving non-linear problems.

Table 1. Types of kernels.

Kernel Mathematical Expression

Linear K(x, y) = 〈x, y〉 (30)
Polynomial K(x, y) = (a〈x, y〉+ b)d (31)

Gaussian K(x, y) = exp
(
− ‖x−y‖2

2σ2

)
(32)
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As mentioned in Section 2, the output of the three numerical methods (MLP, ANFIS
and SVR) presented in Section 3 is a prediction of the distribution function of the wind
speed on candidate wind power plant sites. Next, the energy potential is obtained using
Equation (15).

4. Case Study

The aim of this work being a comparative evaluation of the wind energy poten-
tial in Benin and Togo, we applied the distribution estimation techniques presented in
Sections 2 and 3 to these two West African countries. Benin and Togo enjoy a tropical
climate. With an average annual rainfall of 1244 mm in Cotonou and 859 mm in Lomé,
both sites experience an average annual temperature of 26.8 ◦C (80.24 ◦F) and share two
seasons: one dry—the harmattan, and one rainy—the monsoon.

4.1. Data

The wind data used in this study for the site of Cotonou was collected at the Interna-
tional Airport of Cotonou (COO) at 6.35◦ N and 2.38◦ E, and at an altitude of 9 m. As for
the site of Lomé, the wind data was collected at Gnassingbé Eyadema International Airport
(LFW) at a latitude of 6.17◦ N, a longitude of 1.25◦ E and an altitude of 25 m. The windiest
month on both sites is September with an average wind speed of 5.0599 m/s (11,185 mi/h)
in Cotonou and 4.6832 m/s (8.948 mi/h) in Lomé. The wind speed data spanned the period
from January 2003 through December 2015 for a total of 13 years.

Given that the wind speed measurements were not taken at the altitude where wind
turbines will be deployed, there was a need to extrapolate the wind speed values to the
turbine hub height by means of the power law model of the vertical wind profile proposed
by Hellman [81] and expressed in Equation (33) [82–84].

v
v0

=

(
h
h0

)α

(33)

where v is the extrapolated wind speed at altitude h, given the measured speed v0 at
altitude h0. The wind shear coefficient also known as Hellman (or friction) coefficient α
typically ranges from 0.40 in areas with tall buildings to 0.10 over smooth, hard ground,
lakes or ocean [85–92]. For Lomé and Cotonou, because the measurements were taken in
airport areas, we chose α = 0.1 in this study.

Figure 4 shows the wind speed histograms of the sites of Lomé and Cotonou, for wind
speed values adjusted to 10 m altitude.
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4.2. Wind Turbine

Three candidate wind turbines (E-44, E-48, E-53) were considered based on existing
work by Mudasser et al., and Salami et al. as well as on ENERCON reviews [93–98]. The
characteristics of these wind turbines are given in Table 2.

Table 2. Characteristics of wind turbines.

Title 1 E-44 E-48 E-53

Cut-in speed (m/s) 3 3 3
Rated speed (m/s) 16 12 12

Cut-out speed (m/s) 25 25 25
Rated output power (kW) 900 800 800

Blade diameter (m) 44 48 52.9
Hub 60 76 73

Normally the cut-off speed will vary between 28 and 34 m/s. However, in our study,
a speed of 25 m/s was assumed due to the absence of the power curve beyond this speed.
Figures 5–7 show the modelling of the power curve of these wind turbines by the numerical
methods used in the document.
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To make the optimal choice of the wind turbine to be used, the average energy pro-
duced on the sites was calculated. The results are shown in Table 3.

Table 3. Average annual energy output at different hub heights.

Hub Height (m) Wind Turbine Lomé Cotonou

60 E-4 49,688.15 56,828.55
76 E-48 65,667.14 74,709.54
73 E-53 77,535.48 88,284.59
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Figure 6. Characteristic power curve modeling for E-48.
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It was found that the E-53 wind turbine produces an average energy of 77.54 MW at
an altitude of 73 m which is relatively high, then follows the E-48 with an average energy
of 65.67 MW at a height of 76 m and the E-44 finishes the list at 49.69 MW, with a height of
60 m. With a rated power of 800 kW and a rated speed of 13 m/s and a mast height of 73 m,
the E-53 wind turbine was chosen as the most cost-effective wind turbine on both sites.

4.3. Metrics for Performance Evaluation

We evaluated the performance of the aforementioned methods using two indices that
account for the magnitude of error margins. The lower the error margin, the more accurate
the method. In this work, we used the root mean square error (RMSE) and the coefficient
of determination (R2) or R-squared.
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4.3.1. RMSE

The root mean squared-error (RMSE) compares estimated data against measured data
according to the formula of relation (34) [45,99]:

RMSE =

√
1
n

n

∑
i=1

(Xi,est − Xi,act)
2 (34)

where Xi,est is the estimated value and Xi,act, the actual value. It is always positive and
does not capture the dominant direction of deviation.

4.3.2. R2

R2 provides the linear relationship between the estimated data and the actual or
measured data, as given by (35).

R2 =
∑n

i=1
(
Xi,act − Xact,moy

)2 −∑n
i=1(Xi,est − Xi,act)

2

∑n
i=1
(
Xi,act − Xact,moy

)2 (35)

where Xact,moy is the average value of the measured or observed data, and Xi,est, the
estimated value.

4.4. Method Calibration

In this section, we discuss how the Weibull, MLP, SVR, and ANFIS methods were
calibrated in our case study. Specifically, we present the parameter selection process for the
sites of Cotonou and Lomé.

4.4.1. Weibull Parameters from Distribution-Based Methods

The Weibull distribution-based methods considered in this study are the empirical
method of Justus (EMJ) and the maximum likelihood method (MLM). The Weibull pa-
rameters k and c used for each of these methods were computed based on the formulas
presented in Section 2.1. Table 4 shows these parameters for the sites of Cotonou and Lomé.

Table 4. Weibull parameters obtained with EMJ and MLM for the sites of Cotonou and Lomé.

Methods Lomé Cotonou

k c k c

EMJ 1.8233 3.9704 2.3671 4.5264
MLM 2.0310 4.1788 2.5722 4.6173

4.4.2. MLP Design

The multilayer perceptron neural network considered in this study is a single-input
single-output network (see Figure 2). The input receives wind speed series and the output
produces the probability densities. The output layer has a single neuron. We explored 7
designs of the hidden layer with the number of neurons ranging from 4 to 10 as shown in
Table 5. Based on the error values (RMSE), the number of neurons in the hidden layer was
fixed at 9 where the lowest RMSE values were reached for both Cotonou and Lomé.
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Table 5. Choice of the number of neurons.

Number of Neurons in the
Hidden Layer RMSE

Lomé Cotonou

4 1.84 × 10−3 5.34 × 10−3

5 1.68 × 10−3 4.88 × 10−3

6 3.88 × 10−4 4.87 × 10−3

7 4.15 × 10−4 1.27 × 10−3

8 4.16 × 10−4 1.45 × 10−5

9 8.02 × 10−5 1.78 × 10−5

10 9.56 × 10−4 1.98 × 10−5

4.4.3. ANFIS Design

The type and number of membership functions are two critical parameters in the de-
sign of any adaptive neuro-fuzzy inference system. Tables 6 and 7 present the performance
of a set of combinations of both parameters. On the nature of the membership functions,
we evaluated four membership functions, namely, the Gaussian function, the sigmoidal
function, the triangular function and the trapezoidal function. Because we opted for a
Takagi–Sugeno fuzzy system, the activation function of our ANFIS’ output neuron was
linear. In the performance sensitivity study with respect to the nature of the membership
functions, we assumed that seven membership functions shared the range of wind speed
values from 0 m/s to 25 m/s. ANFIS automatically generates seven fuzzy rules for deci-
sion making. Results recorded in Table 6 indicated that Gaussian membership functions
yielded the lowest probability density training RMSEs for both Lomé and Cotonou, after
250 iterations.

Table 6. Comparison of membership functions (MF) by their RMSE for Lomé and Cotonou.

Type of Number Number of Type of RMSE

MFs of MFs Iterations Output Lomé Cotonou

Gaussian 7 250 Linear 4.13 × 10−6 1.87 × 10−7

Triangular 7 250 Linear 8.96 × 10−3 2.60 × 10−2

Trapezoidal 7 250 Linear 1.73 × 10−2 3.06 × 10−2

Sigmoidal 7 250 Linear 1.60 × 10−2 5.34 × 10−4

Table 7. Selection of the number of membership functions.

Number of MFs RMSE

Lomé Cotonou

4 1.3 × 10−3 1.12 × 10−2

5 4.70 × 10−3 1.90 × 10−3

6 2.02 × 10−2 8.57 × 10−4

7 4.13 × 10−6 1.87 × 10−7

8 1.71 × 10−5 6.50 × 10−6

The performance sensitivity with regard to the number of membership functions
is presented in Table 7. For numbers in the range of 4 to 8, the best probability density
approximation was found when seven fuzzy rules (membership functions) were used for
both sites. In summary, Figure 8 illustrates the type of membership functions and the
number of fuzzy rules considered in the design of the ANFIS. Seven Gaussian membership
functions characterized our ANFIS design for the sites of Lomé and Cotonou.
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4.4.4. SVR Design

Given the non-linear nature of the wind speed distribution fitting problem, we tested
three kernel functions: linear, polynomial, and Gaussian. The outcomes of these kernels
were compared based on the root mean square error (RMSE) of the output. Results in
Table 8 show that the Gaussian kernel outperformed the linear and polynomial kernels.
Therefore, the retained support vector regression design used the Gaussian kernel function.

Table 8. Kernel comparison.

Kernels
RMSE

Lomé Cotonou

Linear 5.64 × 10−2 1.34 × 10−1

Polynomial 4.20 × 10−2 8.48 × 10−2

Gaussian 7.04 × 10−4 3.90 × 10−3

4.5. Case Study Setup

The purpose of this paper was to compare several methods (EMJ, MLM, MLP, ANFIS
and SVR) for evaluating wind energy potential in Togo and Benin. To this end, the case
study was structured in the following four steps, for each method j:

• Step 1: use measured data to determine the wind speed probability density function
fj(v);

• Step 2: derive distribution approximation errors ej from fitting fj(v) to the empirical
histograms for all sites;

• Step 3: compute energy potentials Ej and determine corresponding energy errors ξj;
• Step 4: after steps 1–3 are completed for all energy potential assessment methods,

compare their statistical performance based on metrics presented in Section 4.3.

5. Results and Discussions

In this section, we first highlight the design parameters obtained for each of the
five methods compared in this work. To this end, we present in the next subsection the
wind speed characterization results for each method across a range of method-specific
parameters. The set of parameters that minimized the histogram adjustment errors was
retained for the final design.
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5.1. Wind Speed Characterization Performance

It is critical that all probability density functions satisfy the unity area criterion ex-
pressed by Equation (36) to be considered as distribution laws. By design, EMJ and MLM
naturally satisfy (36). To ensure that the wind speed density functions obtained from the
three numerical approaches were distribution laws, we computed the cumulative sums of
the probability distribution functions as shown in Table 9 for MLP, ANFIS and SVR.∫ vmax

0
f (v)dv = 1 (36)

Table 9. Distribution area.

MLP ANFIS SVR

Lomé 0.996 0.999 0.995
Cotonou 0.997 0.999 0.996

Because the distribution area was approximately one for all approaches, we could
conclude that they were all distribution laws.

Figures 9 and 10 show the wind speed distribution function of each method fitted to
the histogram of measured wind speeds on the sites of Lomé and Cotonou.

Performance evaluation metrics described in Section 4 are presented in Table 10 to
compare the performance of the five methods. The results showed a better performance of
the ANFIS and MLP approaches compared to the other approaches used, regardless of the
wind site. From Table 10:

• ANFIS, MLP, and SVR outperformed the two other methods in characterizing the
wind speed on both sites;

• EMJ outperformed MLM on the site of Lomé while MLM outperformed EMJ in
Cotonou.
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Table 10. Method comparison.

EMJ MLP MLM ANFIS SVR

R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE

Lomé 0.9687 0.0187 1.000 0.000 0.9649 0.020 1.000 0.000 0.9841 0.009
Cotonou 0.9570 0.0220 1.000 0.000 0.9670 0.021 1.000 0.000 0.9989 0.005

Figures 11 and 12 show that the major challenge EMJ and MLM faced was the pre-
diction of lower wind speed densities. SVR achieved an acceptable performance with
significantly low RMSEs.

5.2. Wind Energy Potential Estimation

In this section, we compared the five energy potential assessment methods based
on their ability to accurately estimate the available wind energy (Ea in kWh/m2, see
Equation (9)), the recoverable wind energy (Er in kWh, see Equation (10)) and the wind
turbine energy output (Eg in kWh, see Equation (15)). The baseline for this comparison
is the raw speed measurement data from which the corresponding energy quantities
were computed.
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5.2.1. Available Energy Density

For each site, Table 11 shows the observed monthly energy densities as well as the en-
ergy densities estimated by MPL, ANFIS, SVR, EMJ, and MLM, respectively.
Figures 13 and 14 plot the estimated available energy densities on the y-axis against
observed energy densities on the x-axis. A regression line was used to graphically evaluate
the performance of each assessment method, while numerically, RMSE was used. ANFIS
boasted the least error among all five methods, with an RMSE at least three-orders of
magnitude lower. MLM proved to be the second-best method for energy density estimation
while SVR was the worst on both sites. In general, SVR overestimated the energy density
on the site of Lomé.
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Table 11. Available energy density estimation (kWh/m2).

Month
Lomé Cotonou

Obs. MLP ANFIS SVR EMJ MLM Obs. MLP ANFIS SVR EMJ MLM

Jan. 43.62 43.59 43.62 52.60 44.50 46.59 46.10 46.14 46.10 59.59 45.42 46.16
Feb. 77.54 77.90 77.54 92.71 80.45 82.72 87.52 87.68 87.52 79.94 91.47 90.32
Mar. 87.74 87.87 87.74 121.17 90.42 92.63 96.84 96.23 96.84 89.27 101.89 100.09
Apr. 69.97 69.97 70.04 171.06 72.89 75.42 82.69 82.59 82.69 78.76 85.44 85.56
May 46.96 47.15 46.96 43.74 48.30 50.29 57.68 57.85 57.68 70.34 58.15 59.47
June 57.86 57.35 57.86 66.50 59.75 61.82 71.41 71.33 71.41 89.29 74.04 75.48
July 89.85 89.35 89.85 114.59 91.98 92.42 116.59 116.61 116.59 133.49 120.70 119.51
Aug. 110.61 108.67 110.61 158.28 112.40 112.03 118.36 117.43 118.36 143.79 122.18 121.85
Sep. 92.35 92.28 92.35 110.75 94.20 94.97 100.96 100.35 100.96 116.15 106.59 105.99
Oct. 57.34 57.37 57.34 64.77 58.94 60.81 58.21 57.99 58.20 66.62 59.62 60.64
Nov. 44.90 44.90 44.90 56.86 45.91 47.50 52.70 52.84 52.70 66.44 52.41 52.70
Dec. 39.55 39.63 39.55 52.62 40.12 41.83 47.09 47.04 47.09 61.45 46.21 46.62
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5.2.2. Recoverable Energy

Table 12 records the monthly recoverable energy Er in kWh (see Equation (10)) at the
sites of Lomé and Cotonou. Observed or actual recoverable energy values were computed
from measured wind speed data while estimated recoverable energies were obtained from
wind speed probability density estimates given by the five methods presented in Sections 2
and 3. Figures 15 and 16 show the correlation between observed and estimated recoverable
energies for the sites of Lomé and Cotonou, respectively.

The results indicated that ANFIS was the best method for estimating the recoverable
energy on the sites of Lomé and Cotonou with RMSE values in the order of 10−2. Correlation
plots in Figures 15 and 16 show that MLM and EMJ led to the most inaccurate recoverable
energy estimates. In fact, for both sites, these methods underestimated the recoverable
energy values. This behavior resulted from the overestimation of low-speed densities by
the Weibull distribution-based methods, as seen in Figures 5–7. Although SVR yielded
acceptable estimates for the site of Lomé, its RMSE on the site of Cotonou was of the same
order of magnitude as those of MLM and EMJ. As in the case of energy density estimates,
MLP yielded the second most accurate estimates.
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Table 12. Recoverable energy estimation (kWh).

Month
Lomé Cotonou

Obs. MLP ANFIS SVR EMJ MLM Obs. MLP ANFIS SVR EMJ MLM

Jan. 1338.96 1487.41 1532.44 1543.50 576.84 911.75 1575.35 1632.74 1733.21 1741.70 675.97 821.84
Feb 2256.12 2400.51 2589.59 2397.26 982.80 1263.56 3028.02 3135.22 3409.51 2259.32 1322.18 1484.56
Mar. 2728.72 2689.27 2817.66 2761.58 1084.95 1373.65 3628.73 3466.82 3754.52 2322.58 1484.77 1679.00
Apr. 2555.64 2271.76 2434.36 2391.24 892.63 1186.90 3149.38 2886.74 3112.28 2281.55 1199.76 1415.63
May 1962.82 1673.98 1774.93 1642.78 607.58 905.78 2288.98 1972.34 2128.36 1861.55 809.24 1007.27
June 2026.72 2045.79 2127.11 2033.82 749.78 1006.57 2508.27 2490.53 2668.06 2392.91 987.93 1272.66
July 2933.38 3059.06 3173.51 3135.84 1225.42 1365.74 3736.94 3904.56 4125.51 3350.62 1701.40 1823.20
Aug. 3496.85 3610.83 3676.50 3655.80 1532.22 1606.99 4325.46 4133.44 4307.88 3930.85 1836.23 1926.84
Sep. 3257.28 3101.21 3118.22 3118.39 1206.89 1345.47 3849.82 3590.79 3762.08 3449.54 1457.29 1782.36
Oct. 2403.33 2087.76 2137.33 2022.03 745.97 967.02 2531.42 2052.42 2220.53 1894.93 838.57 1028.53
Nov. 2001.16 1812.64 1914.96 1920.72 615.12 831.77 2119.30 1919.72 2039.29 1764.69 795.16 919.93
Dec. 1718.32 1614.71 1692.48 1728.40 537.15 806.48 1857.41 1732.89 1842.48 1833.68 701.57 813.13
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5.2.3. Wind Turbine Energy Output

Table 13 presents the energy produced or wind turbine energy output Eg in kWh given
by Equation (15) on the sites of Lomé and Cotonou. The observed or actual energy output
computed from measured wind speed data were compared to the wind turbine energy
output estimated using the five methods presented in Sections 2 and 3. Figures 17 and 18
show the correlation between observed and estimated energy output for the sites of Lomé
and Cotonou, respectively.
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Table 13. Wind turbine output energy estimation (kWh).

Month
Lomé Cotonou

Obs MLP ANFIS SVR EMJ MLM Obs MLP ANFIS SVR EMJ MLM

Jan. 44,819.60 44,805.30 44,819.57 54,004.19 40,591.66 45,473.75 47,268.98 47,317.13 47,268.95 61,302.58 45,494.08 46,781.36
Feb. 80,666.95 80,371.97 80,666.90 89,951.98 79,225.91 83,570.95 92,295.19 92,479.42 92,295.22 80,897.66 95,352.61 94,657.03
Mar. 91,143.12 91,333.28 91,143.00 115,021.50 88,836.31 93,463.65 102,517.44 101,898.57 102,517.48 90,686.23 106,856.16 105,490.33
Apr. 72,372.36 72,281.81 72,339.55 112,155.15 71,901.73 76,209.15 86,458.74 86,376.54 86,458.75 78,097.55 88,347.20 89,214.99
May 48,072.94 47,625.44 48,073.04 42,527.44 47,417.46 50,712.13 58,957.99 58,815.27 58,958.16 60,432.51 59,142.45 61,048.44
June 59,907.14 59,463.21 59,907.13 63,890.18 58,877.55 62,420.96 74,447.50 74,353.51 74,447.54 85,634.60 74,949.03 77,799.98
July 94,292.97 93,343.02 94,293.18 114,702.58 94,203.07 95,524.21 122,945.80 123,028.00 122,946.01 135,774.10 126,909.05 126,143.37
Aug. 115,991.63 114,254.39 115,991.31 152,781.04 116,972.61 116,997.09 125,951.93 124,789.52 125,951.77 152,155.07 130,072.52 129,943.30
Sep. 98,024.08 98,078.04 98,023.85 116,612.05 93,053.45 95,641.97 108,463.80 107,869.25 108,463.75 124,577.80 105,378.70 109,467.25
Oct. 60,993.18 61,047.57 60,993.09 67,561.40 57,185.18 61,151.65 60,397.15 60,154.68 60,404.49 60,736.78 60,828.04 62,378.37
Nov. 50,490.76 50,490.78 50,490.74 62,900.26 47,248.99 50,637.15 54,363.16 54,502.78 54,363.20 58,051.67 53,762.00 54,173.96
Dec. 44,669.80 44,758.06 44,669.77 58,326.92 41,867.41 45,427.11 48,226.40 48,168.58 48,226.40 57,147.80 47,100.35 47,592.87

Correlation study results showed that the Weibull distribution-based methods MLM
and EMJ consistently underestimated the wind turbine energy output. Although SVR
achieved acceptable estimates on the site of Lomé, it mostly underestimated the wind
energy output values on the site of Cotonou. ANFIS and MLP proved to be the most
accurate on both sites as shown by Figures 17 and 18.
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6. Conclusions

To investigate which wind energy resource estimation model is best for the sites of
Benin and Togo, this paper reviewed and compared five wind energy potential evaluation
methods, namely: the ANFIS, the MLP, the SVR, the EMJ, and the MLM. The case study
results validated that an accurate estimation of the speed distribution law has a significant
impact on the accuracy of wind energy potential estimation. A performance comparison
of the aforementioned methods with regard to available energy, recoverable energy and
turbine output energy, established that the ANFIS approach offered the most accurate
estimation on both sites. Following the ANFIS was the MLP method. These two neural
network-based methods clearly outperformed the three other methods investigated in this
work In fact, the orders of magnitude of the root mean squared error in estimating the
recoverable energy using ANFIS were, respectively, 10−4 and 10−5 for Lomé and Cotonou,
while MLP achieved an RMSE order of magnitude of 10−3 for both sites. Despite being
commonly used in wind energy potential estimation projects, the Weibull distribution-based
methods EMJ and MLM proved the least accurate, especially in estimating recoverable
energy and wind turbine energy output on both sites. Even though SVR ranks as the third
best method, it was unstable across estimation types and wind sites. Its performance was
not consistent for both sites and was less recommendable for the site of Cotonou. Therefore,
the top two wind energy potential estimation methods recommendable for the sites of
Lomé (Togo) and Cotonou (Benin) were the Takagi–Sugeno fuzzy system-based ANFIS
with Gaussian membership function controlled by seven fuzzy rules, and the MLP with
nine neurons in the hidden layer.
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Abbreviations

ρ air density
S area swept by the blades of the wind turbine
Ea available energy
Pm available wind power
F cumulative density function
Eg generated energy
v instantaneous wind speed
Vc maximum or cut-out speed of the wind turbine.
Φ nonlinear transformation function
c scale factor
k shape or form factor
σ standard deviation
Vr rated speed of the wind turbine
Er recovery energy
Vs starting or cut-in speed of the wind turbine;
v wind speed
f wind speed distribution function
ANFIS adaptative neuro-fuzzy inference system
ANN artificial neuron network
CPU central processing unit
R2 coefficient of determination
EMJ empirical method of Justus
EML empirical method of Lysen
EPFM energy pattern factor method
GFNN generalized feed-forward neural network
GM graphical method
MLM maximum likelihood method
MMLM modified maximum likelihood method
MLP multilayer perceptron
RBF radial basic function
RMSE root mean squared error
SVM support vector machine
SVR support vector regression
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