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Abstract: The Curie point depth (CPD) has been established to enhance the determination of magnetic
sources average bottom depth. In this study, the CPD and heat flow regime of the Eratosthenes
Seamount in the Eastern Mediterranean were investigated in order to understand the relationship
between them. When CPD and heat flow values are determined together, we can understand the types
and processes of geothermal resources formation. CPD and heat flow were obtained by applying the
spectral analysis method to magnetic data, which was obtained from the Earth Magnetic Anomaly
Grid (EMAG2). The result shows that CPD is approximately 22 km across the Seamount and is
approximately 9 km in the northern part of the Eratosthenes Seamount near Cyprus. The heat flow
regime manifested from CPD is about 95 mW/m2 in the investigated region, where the average
thermal conductivity value (k) is considered to be 2.5 W/m ◦C. The heat flow regime is characterized
by an increase in the northward part of the Eratosthenes Seamount and decreases towards the south.

Keywords: curie point depth; eratosthenes seamount; heat flow; eastern mediterranean; power spectrum

1. Introduction

The Eratosthenes Seamount is considered one of the most prominent subsurface struc-
tures on the Mediterranean seafloor [1]. For several decades, the Seamount has been a
subject of interest for many researchers due to its significance in providing information
about the oceanography, tectonics as well as geothermal resources of the eastern Mediter-
ranean. It has been established for years that information about Curie point depth (CPD)
guides the interpretation and determination of the average bottom depth of magnetic
bodies, their sources, and thermal structures [2–14]. Generally, methods utilized for the
detection of CPD can be summarized into two main types: geothermal techniques and
magnetic techniques. Geothermal techniques rely on the use of geothermal information,
such as vertical geothermal ascent and heat flow, based on the conduction and production
of the heat of the rocks in the crust [15]. However, there is a constant need to check for
errors associated with direct measurement of geothermal factors because of the difficulty
of conducting at large depths. Alternatively, magnetic techniques, as exposed by Bhat-
tacharyya [16–18], assume that magnetic minerals lose their magnetic properties above
Curie temperature values of about 580 ◦C. Hence, based on this hypothesis, any method
that can be used for the estimation of the magnetic bodies’ bottom depths in the crust can
be extended to detecting CPD. In this investigation, depending on the spectral assessment
of magnetic data, the Eratosthenes Seamount was examined in order to assess and ap-
proximate the CPD values and heat flow regime. The aim behind this was to understand
the relationship between the two data pieces in the eastern Mediterranean region. When
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heat flow values and CPD values are assessed with each other, the processes that form
geothermal resources can be inferred based on the presence of an unusually hot and thin
lithosphere as well as a constant melting degree of the crust, which all play vital roles in
forming earth resources [19].

2. Geological and Tectonic Setting

The Eratosthenes Seamount is situated north of the Nile Cone and south of Cyprus
and is characterized by a single huge crest nearly 790 m beneath the sea level [20]. As one
of the most noticeable bathymetric characteristics in the Mediterranean, the Eratosthenes
Seamount is an excellent instance of the start of a collision of a subduction zone with the
continental crust, which is joined to the Cyprus continental crust shown in Figure 1. The
tectonic evolution of the Eratosthenes Seamount is related to the North African continental
margin from the early Mesozoic, according to geophysical and geological studies [21].
The seamount was in a shallow-marine sedimentary setting in the Early Cretaceous, then
deactivated to bathyal depths in the Late Cretaceous. Then, in the mid Pliocene–Pleistocene
time, the Eratosthenes Seamount was pushed underneath Cyprus due to the collision of
the Eurasian Plate and the African Plate [21]. At the time of the Cenozoic, Eratosthenes was
moved closer to the Cyprus section of the dynamic edge, and subduction of the oceanic
crust (between the African and Eurasian plates) changed to impact [22]. Major structural
elements of the Eastern Mediterranean are shown by seismic refraction information [23].
The upper part of the seamount contains deep and shallow water carbonates that belong to
the early time of the Cretaceous with tectonic uplift (roughly 1 km). It appears to be the
same as the carbonate depositions on the Levant land margin in the east. The neotectonic
evolution of the structural features is related to the uplift and emplacement of Troodos
Ophiolite in Cyprus [24].
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3. Materials and Methods
Methodology

Many techniques have been introduced and enhanced for determining the bottom
depth of the magnetic sources, such as in Spector and Grant [26], who were the first to apply
spectrum power method. Then, Okubo [27] and Tanaka [28] proposed the centroid method,
which was later modified by Bansal [29] and Nwankwo [30]. However, the spectral method
has been established to be one of the most suitable for determining the CPD by checking
the spectrum properties of the magnetic anomalies [31–33]. It is the method of choice for
this study. It is recommended to be used on a large region because of the difficulty in
determining the minor variations of CPD in a small area [33]. This method has been applied
in many different regions over the world; Maden [3] used it on the Erciyes Stratovolcano
(Central Turkey), Fshar et al. 2016 [34] employed it on the Sabalan Area in NW Iran, and
Njeudjang et al. 2020 [12] used it over Adamawa volcanic region (Northern Cameroon).
The radial average power spectrum has given good results in detecting the geothermal
resources, especially hot springs [35].

The spectral method takes into consideration the estimated values of the bottom depth
(Zb), centroid depth (Z0), and top depth (Zt) of magnetic sources by using the Fourier
power spectrum logarithm [36].

Blakely [36] described the power spectral density total field anomaly (Φ∆T), and it was
expanded by Saibi et al. [7] as:

Φ∆T
(
kx, ky

)
= ΦM

(
kx, ky

)
× F

(
kx, ky

)
, (1)

F
(
kx, ky

)
= 4π2C2

m|Θm|2
∣∣∣Θ f

∣∣∣2e−2|k|Zt
(

1− e−|k|(Zb−Zt)
)2

, (2)

where M (x,y) is magnetization, the term ΦM represents the magnetization power–density
spectrum; the term Cm represents a proportionality constant; the term Θm and the term
Θf represent factors for geomagnetic field and magnetization directions; the term Zt and
the term Zb represent magnetic sources top depth and bottom depth, respectively. From
Equation (2), we can postulate that all expressions are radially symmetric, excluding Θm
and Θf, which are not radially symmetric; however, their radial average is constant, as is
the magnetization M for arbitrary sources. We therefore assume that ΦM (kx,ky) is taken as
constant. The radial average of Φ∆T is:

Φ∆T(|k|) = Ae−2|k|Zt
(

1− e−|k|(Zb−Zt)
)2

, (3)

where A is a constant and k is the wavenumber. When we have wavelengths less than twice the
thickness of the layer, Equation (3) changes to the following formula by applying logarithm:

ln[Φ∆T(|k|)] = ln[A]− 2Zt|k|+ 2 ln[1− e−|k|(Zb−Zt)], (4)

The exponential term approaches zero for medium and high values of (k), and the logarithm
also similarly does. Consequently, Equation (4) changes to be represented by a line and its
slope equal to 2Zt:

ln[Φ∆T(|k|)] = ln[A]− 2Zt[k], (5)

Then Equation (5) will be changed to a new formula with division by 2 as:

ln
[
Φ∆T(|k|)1/2

]
= B− Zt

∣∣∣k∣∣∣ (6)

where the term B is a constant.
Here, by using Equation (6) we calculate the spectral power of the magnetic data in the

study area, the radial average, and d, the slope of long wavelengths, in order to obtain Zt.
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We can rewrite Equation (3) as:

[Φ∆T(|k|)]1/2 = Ae−|k|Z0
(

e−|k|(Zt−Z0) − e−|k|(Zb−Z0)
)

, (7)

where Z0 = (Zb − Zt) is the centroid depth.
We simplified Equation (7) by replacing the final exponential terms with the initial

terms in the Taylor series for n~0 as:

[Φ∆T(|k|)]1/2 ∼ Ae−|k|Z0 |k|(Zb − Zt), (8)

(Zb − Zt) is defined as the magnetic source thickness. Equation (8) could be rewritten
by applying logarithm as:

ln
{[

Φ∆T(|k|)1/2
]
/|k|

}
≈ lnD− |k|Z0, (9)

where the term D is a constant and [Φ∆T (|k|1/2)/|k|] is the spectrum of scaled amplitude.
Thus, the estimated values of the top depth (Zt) and centroid depth (Z0) of magnetic
sources would need two spectral plottings utilizing Equations (6) and (9), respectively.
Cross plotting wavenumber k with power spectrum ln [Φ∆T (|k|)1/2] and plotting a
straight line will give us magnetic source depth. The values corresponding to the high
wavenumber will give us the top of the source and vice-versa and directly compute the
magnetic source bottom depth [27,28]. Thus, a Curie point depth estimation of Zb is
computed from Equation (10):

Zb = 2Z0 − Zt, (10)

The heat flow is calculated by using Fourier’s law [37] as expressed in Equation (9).
We create a new map to demonstrate heat flow, where estimated values of dz were used,
and Curie temperature (dT) is 580 ◦C in the igneous rocks. According to many authors,
most crystalline rocks consist of magnetite minerals having a Curie temperature of around
580 ◦C [10,27,28,38,39]. The dT

dz value represents the geothermal ascent from the earth’s surface
to the top depth of magnetic sources and relates to the heat flow in the following equation [27].
The average thermal conductivity value (k) is assumed as 2.5 W/m ◦C [14,38–40].

q = −k
(

dT
dz

)
, (11)

where the heat-flux is represented by the term q and the coefficient of thermal conductivity
is represented by the term k; the negative sign means that the heat flow follows the lower
temperature direction.

The mean value of the crust earth is 2–2.5 W/m ◦C [41–43], and we assume this value
in our study here as it has been used before [14]. The thermal conductivity is affected
by pressure and temperature where the heat conductivity decreases with temperature
increment [43–45], but the relationship between them is not fixed.

According to Eucken’s experimental law [46], the thermal conductivity of a crystalline
insulator is directly proportional to its absolute temperature [47]:

1
k
= const.T, (12)

Litovsky and Shapiro [48] simplified the mentioned formula above as follows:

k0 = (C + DT)−1, (13)

where C and D are constants that vary with materials. For the determination of the thermal
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conductivity in the upper-crust, Čermak and Rybach [49] follow this formula:

k0 =
k

1 + cT
, (14)

where k is the thermal conductivity at 0 ◦C under the shallow surface pressure and C is the
material constant, the values of which are in the range of 0–0.003 ◦C−1.

The inversion here is to convert the magnetic anomaly to obtain Curie point depths,
including the magnetic sources bottom depth, centroid depth, and top depth.

Following the data preparations, the RTP data was exposed to a low-pass filter while
using cut-off wave numbers at 0.11 rad/km. That depends on the basis of the wavelength
of the spectral data [36].

4. Results

Magnetic data covering the investigated area was taken from the global Earth Magnetic
Anomaly Grid (EMAG2) with 2 arc min resolution, a height of 4 km over the geoid [50].
The data was converted from geographic coordinates to Universal Transverse Mercator
(UTM) projection coordinates with a spacing of 5 km. Figure 2 shows the magnetic anomaly
map of the Eratosthenes Seamount, while Figure 3 represents the reduction of the magnetic
data to the pole (RTP) in order to eliminate the deflection resulting from the magnetic field
of the Earth [36].
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Figure 2. Magnetic anomaly (total field) map of the Eastern Mediterranean (compiled from
Maus et al. [50]). The contour intervals are 40 nT.

The Magnetic map of the study area displayed in Figure 2 was processed to obtain the
RTP map in Figure 3, which shows that magnetic anomalies are centered on the causative
bodies. RTP anomalies range between −200 nT and 200 nT, where the highest magnetic
values were noticed in the Eratosthenes Seamount and some parts of Cyprus, while the
lowest ones were observed in the Nile delta cone and northern part of the Red Sea.
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By using the power spectrum method of the magnetic anomalies of the study area
to determine Zt and Z0, first we obtained the centroid depth (Z0) of the magnetic source,
then calculated the top depth of the magnetic source (Zt) from the slope of the longest
wavelength (Figure 4a,b). Z0 and Zt were determined as 9.12 and 2 km, respectively.
Applying formula (10) yielded a CPD value of 16.24 km.
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Figure 4. Average power spectrum scheme for CPD estimated in the study area beneath the central part
of the Eratosthenes Seamount: (a) top depth in the study area; (b) centroid depth in the study area.

Figure 5 illustrates the CPD map in the Eratosthenes Seamount, where it increases to
the south, having a value of around 23 km. CPD has comparatively decreased to 18 km in
the north of the Eratosthenes Seamount under Cyprus, and it is also reduced to the east
beneath the Levantine basin. From Equation (11), we have computed the heat flow using
magnetite’s Curie temperature value T = 580 ◦C and the average thermal conductivity
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value (k) 2.5 W/m ◦C. We obtained a heat flow value between 75 and 100 mW/m2. The
minimum geothermal anomaly has been described as less than 75 mW/m2, located at
the borders of the Eratosthenes Seamount, and the highest heat flow values are about
100 mW/m2, beneath the center of the Eratosthenes Seamount. Heat flow values are more
than 100 mW/m2 at Cyprus and more than 200 mW/m2 beneath the Levant basin in the
east of our study area presented in Figure 6.
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From the map in Figure 5, two cross-sections were taken along the NE-SW axis, shown
in Figure 7a,b, along NW-SE directions. The Curie depth value was estimated to be about
23 km along the A profile under the Eratosthenes Seamount in the south. It begins at
23 km from the North; then it decreases as it approaches the collisional zone between
two Eurasian-African plates. There is a slight variation in CPD between the two profiles
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where the B Profile Curie depth value begins at approximately 9 km in NW direction, then
increases towards SE, where it approaches 14 km in the collisional zone and then increases
gradually to reach a peak of 23 km in the Eratosthenes Seamount at the cross point of
two profiles A & B. Referring to Figure 7, the Moho depth value decreases from northeast
to southwest, approaching a value of 22 km under the Eratosthenes Seamount; the sea
bottom beneath the Eratosthenes Seamount is about 1000 m, as shown in (Figure 7a,b).
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Figure 7. Cross-sections of the CPD map plot along (A) NE-SW and (B) NW-SE directions (profile
locations are shown in Figure 5) demonstrating the variation of the Curie point depth, Moho depth
and sea bottom depth. (a) the sea bottom depth along profile A, (b) the sea bottom depth along profile
B, (c) Moho depth (blue color), CPD (red color) along profile A and (d) Moho depth (blue color), CPD
(red color) along profile B.

Such a division of the Eratosthenes Seamount is mainly controlled by its geother-
mal regime, which plays a significant role in the evolution of the Eastern Mediterranean
tectonics including the Troodos ophiolite uplift of Cyprus. This critical role implies an
important early collisional phase in the process of plate suturing and mountain building.
The high heat flow in this area is ascribed to the higher geothermal potential, so this region
is considered a good source for producing geothermal energy, as the shallow Curie depths
are frequently associated with active geothermal regions. The tectonic uplift of the Eratos-
thenes Seamount and the isotherm depression caused by upper-mantle upwelling could
be the main geological factors related to such high heat flow factors to generate the heat
flow [20,51]. These relatively high values of heat flow are clearly evidenced in Figure 6.

In this study, combining the Curie point depth, obtained by applying the spectrum
method of magnetic data, with the calculated heat flow values reveals an inverse relation-
ship between the two, as illustrated in Figures 5 and 6.
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5. Discussion

In this study, we computed the CPD depths and heat flow values by applying the
power spectrum of EMAG2 data. Our results have shown the negative correlated relation
between CPD and heat values, which highlights the presence of major relatively shallow
heat sources in the area. This phenomenon in the Eratosthenes Seamount, along with
intense faulting and subsidence as a consequence of an early collision of the Eurasian and
African plates between the Pliocene and Pleistocene, resulted in the uplifting of southern
Cyprus. On the other hand, friction from the collision zone, as well as plutonic intrusions,
may be the main controlling factors of such relatively elevated values of heat flow. The
upper-mantle upwelling heats the lithosphere underneath the Eratosthenes Seamount and
causes the melting that replaces the cold materials in the lithosphere of the Mediterranean
Sea. In other words, the mantle convection plays a big role in forming all geological features
in the region [52,53]. However, that was caused by an elevated mantle lithosphere beneath
the Eratosthenes Seamount as dense block in the lithosphere, which leads to a compressional
push-up mechanism for this seamount. The Eratosthenes Seamount is considered a bulky
sub-rectangular northward continental part separated from the African plate [54,55], which
was raised as a feature in the Eastern Mediterranean Sea beside the Levant basin and
Cyprus. It was uplifted as a result of the collision of the Eratosthenes Seamount with
Cyprus in the northern direction during the early Miocene [53]. Robertson [53] suggested
that the main reason for the Eratosthenes Seamount uplift is associated with the effects of
regional tectonic upwarping, which is related to the northern subduction origination of the
remnant of Neotethys oceanic crust in the Mediterranean Sea. In the late Pliocene to early
Pleistocene the crust thickened over the subduction of the African Plate below the Eurasia.

It, therefore, becomes more evident how the high heat flow values and shallow CPD
values have a strong correlation with geothermal and volcanic area crustal thinning. The
higher values could be caused by crustal thinning as established by Tanaka [30] and
Pamukçu et al. 2014 [19]. The crustal thinning is less than 23 km beneath the Eratosthenes
Seamount, as it has a complex structure that varies between the thick upper crust and thin
lower crust [56]. During the subduction mechanism between the African–Eurasian Plates,
the African plate experiences frictional melting. Then the upper mantle rises toward the
lower crust, forming diapirs. As a result, there is a noticeable increase in the heat flow
values and a decrease in CPD values in the areas near the mantle diapirs.

The presence of this subduction zone is well established from evidence interpreted
from seismic refraction data [52]. As indicated by this confirmation, there is a similarity
in the composition of the crust underneath both Cyprus and the Eratosthenes Seamount.
Moreover, it can be concluded that structural emplacement of the Troodos ophiolite onto
the Eratosthenes Seamount indicates an uncommon case of present-day obduction, in
which oceanic crust is thrust above a continental crust [53]. The heat flow map displayed in
Figure 6 clarifies the geothermic nature of the study area and gives us a hint that the shallow
CPD temperature relies on the morphology and tectonic regime in the Mediterranean Sea.

The magnetized body causing the Eratosthenes magnetic anomaly beneath the seamount
is related to magnetite-rich basic volcanics, like those of the Troodos ophiolite, which might
be mafic or ultramafic, at a depth of 2–4 km underneath the seafloor [20,22,57,58]. Ben-
Avraham et al. 1976 [20] mentioned that the polarized block which causes the Eratosthenes
magnetic anomaly may have been pivoted counterclockwise since its formation. Using
seismic refraction constraints, it is proposed that the Eratosthenes magnetic anomaly is
produced by a typical magnetized high-susceptibility block (2 × 10–3 kg/m3 SI units)
with a density of 2750 kg/m3 [22,54]. The magnetic properties of the body caused the
Eratosthenes magnetic anomaly, demonstrating that the source material has a high mag-
netization and presumably basic or ultrabasic material [20]. The magnetic source of the
Eratosthenes Seamount is mostly curved in shape, and the magnetic anomaly is mainly
seen over seamount related to collision tectonic activity.

Curie depth differs between the two cross-sections; the first one is in the south around
450–650 km Easting and 3650–3750 km Northing. The Eratosthenes Seamount has a CPD
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that reaches 22 km in the center, which has been previously determined by Özsöz [13].
Toward the northern parts between 450–650 km, the CPD value is around 18 km beneath
southern Cyprus, as shown in Figure 2. Comparing the Curie values in our study area with
its borders, the Curie depth varies in the south and southeast beneath Cyprus where Curie
depth is different between the south and north of Cyprus from 12 km to 28 km [59]. The CPD
value increases following the Moho depth direction. It is considered that the crust could
be passive if there is a match between the Moho depth and Curie point depth, while any
mismatch that occurs could be an indication of active tectonic regime [59]. Consequently,
several properties play an essential role in the change of CPD in both instances. Cross-
correlation of Moho depth and CPD depths are shown in Figure 7c,d. We noticed here that
the Curie depth is higher than the Moho depth in some parts of the region, which gives an
interpretation that the Curie temperature is higher than the temperature in the magnetized
lithospheric mantle because of a serpentinization process [60,61].

Thus, the heat flow values are generally higher in the northern parts of the Eratosthenes
Seamount and decrease in the southern parts, as shown in Figure 6. Furthermore, the heat
flow has the high value of nearly 80 mW/m2 in the north of the Eratosthenes Seamount
under Cyprus and the surrounding areas, whereas it approaches around 100 mW/m2 under
the Eratosthenes Seamount. In addition, this approach has been previously achieved by
Özsöz [13]. In correlation with other areas beneath southern Cyprus, the heat flow values
are in the range of 50–70 mW/m2, using thermal conductivity equal to 2.5 W/m ◦C [59]. It
is conceivable to argue that lower magnetic values on the RTP map might be related to the
thinner magnetic crust where lower CPD or high heat flow values are found.

6. Conclusions

The Eratosthenes Seamount is one of the most geologically interesting and important
sites in the eastern Mediterranean with the potential for substantial geothermal resources.
This examination uses the power spectrum method on Reduction to the Pole (RTP) magnetic
data to evaluate the values of the heat flow regime and Curie depth. Also, we inverted the
magnetic anomaly after reducing it to the pole in order to obtain the magnetic resources bot-
tom depth. The centroid depth and top depth of geothermal resources were computed too.
The heat flow map was also demonstrated here by applying the Turcotte and Schubert [50]
equation to show the relationship between the heat flow and the Curie depth.

Our results show high values of heat flow and shallow values of Curie point depth which
seem to be correlated with thinning of the crust in volcanic regions and geothermal activity.

CPD values were found to be approximately 23 km under the Eratosthenes Seamount,
while in Cyprus they have been established to be around 18 km. This indicates that the
heat flow has higher values of about 100 mW/m2, in the northern part of the Eratosthenes
Seamount, where the thinnest crust is located. However, lower values reach 80 mW/m2 in
the southern parts. The CPD and Moho depths are connected with an inverse relationship;
as the CPD increases, the Moho depth decreases from NE-SW. If the depth to the bottom of
the magnetic layer is higher than the Moho depth, it means that the Curie temperature is
higher than the temperature in the magnetized mantle. This is congruent with Wasilewski
and Thomas [62], who theorized that the minimum magnetic boundary is associated with
the rock composition vertical change, indicating that the Moho depth is considered as the
lower magnetic boundary.
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