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Abstract: This paper proposes a fully analytical loss model to reduce circling currents and improve
the power efficiency of a class Φ2 inverter. Firstly, analytical expression of the switching node voltage
is derived by analyzing its harmonic components. Based on the result, the power switch is modeled
as a voltage source, where the circuit is simplified to a linear network and analytical expressions
of branch currents are solved. Secondly, root mean square (RMS) values of branch currents and
component losses are calculated to form the analytical loss model for a Φ2 inverter. The influence
of circuit parameters on the circling current and power efficiency are thoroughly analyzed, which
derives optimal design constraints to reduce circling currents of a class Φ2 inverter. Furthermore,
detailed design guidance and equations are provided to calculate circuit parameters of a class Φ2

inverter, which reduces its circling currents and improves overall power efficiency. Finally, a class
Φ2 inverter prototype is built, and experimental results demonstrate a 7% efficiency improvement
compared to conventional empirical design methods.

Keywords: very high frequency (VHF); class Φ2 inverter; circling current; design method; efficiency

1. Introduction

Increasing the operation frequency can reduce the values of inductors and capacitors
while maintaining the same voltage and current waveforms. Thus, the energy storage and
volume of passive components (inductors and capacitors) are reduced, which provides
great potential for a high power density and a fast dynamic response [1–4]. However, the
switching losses increase greatly with the increase of switching frequency, which degrades
the overall power efficiency. To maintain a high efficiency while increasing the operating
frequency, it is essential to realize zero-voltage-switching (ZVS) and zero-current-switching
(ZCS) for VHF power systems [5–7]. Owing to the easy realization of ZVS, low switch
voltage stress and ground-referenced switch, class Φ2 topology is widely used not only in
DC–DC converters [8–11] and wireless power transfer systems [12–15], but also as power
amplifiers in plasma generation [16,17] and medical imaging [18].

The topology of a class Φ2 inverter is shown in Figure 1, which consists of a resonant
tank, a power switch and an output network. Compared to class E topology, the class Φ2
inverter adds a second harmonic resonant branch across the power switch, i.e., LM-CM in
Figure 1. By absorbing the second harmonic voltage, the class Φ2 inverter significantly
reduces the switch voltage stress from 3.6–4 vin to 2–2.4 vin. Parameters of the resonant
tank directly affect the inverter performance, such as power efficiency and switch voltage
stress. To improve its performance, extensive research has been carried out on the mod-
eling and design of VHF class Φ2 inverters [19–22]. The conventional empirical design
method usually chooses the value of the resonant capacitor CF based on the designers’
experience [23], and values of other parameters are roughly calculated according to pole
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and zero positions of the resonant tank. Then, further iterative simulations are required to
improve the circuit performance. The conventional empirical design method highly relies
on experience, and improper selections for CF would result in high voltage stress or low
power efficiency. The parameter scanning method can reduce power switch voltage with
massive computer aided simulations [24]. However, circling losses are not considered, and
it is hard to reduce switch voltage stress and improve power efficiency simultaneously.
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Figure 1. Topology of a VHF class Ф2 inverter. 
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To provide detailed guidance for the resonant parameters design of class Φ2 inverters,
extensive research has been carried to explore modeling methods for class Φ2 inverter. To
minimize resonant current magnitude and conduction losses for resonant power convert-
ers, an analytical switching cell model is proposed based on the fundamental harmonic
approximation (FHA) [25]. However, the third harmonic is neglected in [25], which induces
a large error for class Φ2 inverters. A study [26] established a mathematical model by
solving differential equations of the class Φ2 inverter, where the high-order resonant tank
is approximated by a capacitor with an equivalent series resistor (ESR). The approximation
simplifies the calculations but induces a larger error for the Φ2 inverter. To improve the
model accuracy and achieve maximum output capacity, a normalized full-order model
is proposed which considers high-order voltage and current harmonics [27]. However,
the above methods have not explored the relationship between resonant parameters and
the power efficiency. To realize optimal parameter design and reduce circling losses of
class Φ2 inverters, an accurate model considering inductor ESR is required to perform fully
quantitative calculations.

To achieve efficiency optimization for class Φ2 inverters, this paper proposes an
analytical loss model for class Φ2 inverters based on harmonic analysis. Firstly, harmonic
magnitudes of the switching node voltage are thoroughly analyzed based on operating
principles of class Φ2 inverters. With the results, the power switch is modeled as a voltage
source, which simplifies the inverter as a linear network and derives analytical expressions
of branch currents. Secondly, root mean square (RMS) values of branch currents and
component losses are calculated to establish the analytical loss model. Furthermore, the
relationship between the circuit parameters and the overall power efficiency are thoroughly
explored. Detailed parameter design guidance and equations are provided to reduce
circling losses and improve power efficiency of class Φ2 inverters. Finally, a class Φ2
inverter prototype is built to verify the effectiveness of the proposed design strategy.

The rest of this paper is organized as follows. Section 2 describes operating principles
of class Φ2 inverters. In Section 3, the analytical loss model for a class Φ2 inverter is pre-
sented. Based on the model, detailed design guidance for resonant parameters is provided
to reduce the circling loss of class Φ2 inverters. Sections 4 and 7 presents simulation and
experimental results, respectively. Section 8 concludes this paper.

2. Topology and Operating Principles of a Class Φ2 Inverter

The topology of a class Φ2 inverter consists of a resonant tank, a power switch and a
load network, as shown in Figure 1. Compared to a class E inverter, a class Φ2 inverter adds
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a second harmonic resonant branch, i.e., LM and CM, to reduce the switch voltage stress. LF,
CF, LM and CM form a high-order resonant tank, which shapes the switching node voltage.
Voltage waveforms with different harmonics are shown in Figure 2. Figure 2a shows the
switching node voltage consisting of fundamental and third harmonics, while Figure 2b
shows the switching node voltage consisting of fundamental and second harmonics. It
shows that the third harmonic can effectively reduce the peak value of the switching
node voltage.
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By properly designing pole and zero positions of the resonant tank, the switching
node voltage is formed by the fundamental and third harmonics, which reduces it peak
value. Specifically, the switching node impedance consists of two pairs of conjugation poles
and a pair of conjugation zeros. Two conjugation poles of the resonant tank are placed
at ωs and 3ωs, while the conjugation zeros are placed at 2ωs, where ωs = 2πf s and f s is
the operating frequency of the class Φ2 inverter. With the above settings, the switching
node impedance is high at ωs and 3ωs, whereas the switching node impedance is low at
2ωs. Therefore, the switching node voltage is formed by fundamental and third harmonics,
where the second harmonic is absorbed owing to the zeros at 2ωs.

Based on the above analysis, conventional design methods set the poles at ωs and 3ωs,
and the zeros at 2ωs. Thus, the resonant parameters should satisfy Equation (1) [23].

LF =
1

9π2 f 2
s CF

, LM =
1

15π2 f 2
s CF

, CM =
15
16

CF (1)

There are four parameters LF, CF, LM, CM, but only three equations are provided.
Thus, with conventional design methods, designers are required to choose the value of
CF according to the rated output power and the designers’ experience. Then, values of
other parameters are calculated by Equation (1). Furthermore, a time-consuming iterative
parameter tuning procedure based on circuit simulations is required to adjust values of LF
and CF, to achieve the desired switch voltage shape. Typically, CF is increased to reduce
switch voltage stress and LF is reduced to ensure ZVS. The step-by-step design procedure
can be found in [23].

Since conventional design methods do not perform fully quantitative calculations, it is
hard to achieve an optimal design for a class Φ2 inverter. Specifically, the selection of CF
highly relies on experience. A small value for CF can reduce circling loss, but it will lead to
an insufficient power transfer capacity and a large switch voltage stress. A large value for
CF can reduce the switch stress, but it increases circling losses which degrades the overall
power efficiency. Without fully quantitative calculations, the power efficiency of the Φ2
inverter is hard to optimize.

3. Analytical Loss Model for a Class Φ2 Inverter

To provide a fully quantitative theoretical analysis and improve the power efficiency
of class Φ2 inverters, this paper proposes an analytical loss model based on voltage and
current harmonic analysis. Firstly, based on basic principles of class Φ2 inverters, harmonic
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components and an analytical expression of switching node voltage are derived. With
the results, the power switch is modeled as a voltage source to simplify the calculations.
Then, analytical expressions and RMS values of branch currents are calculated based on
the switching node voltage, which forms the analytical loss model of class Φ2 inverters.
Furthermore, the influence of resonant parameters on the total loss and power efficiency
are thoroughly analyzed, and detailed design guidance and equations for class Φ2 inverters
are provided.

3.1. Switching Node Voltage and Branch Currents Analysis

Based on the principles of class Φ2 inverters, the switching node voltage mainly
consists of the fundamental and the third harmonic. To reduce the switch voltage stress, the
fundamental and third harmonics should remain in phase. Additionally, the DC component
of the switching node voltage (vds) equals the input voltage vin, which is derived according
to the voltage-second balance of LF. Therefore, the analytical expression of vds is given by

vds(t) = vin + v1 sin(ωst) + v3 sin(3ωst) (2)

where v1 and v3 are the magnitudes of the fundamental and the third harmonic, respectively.
To minimize the switch voltage stress, v1 and v3 are 4 vin/π and 2 vin/3π, respectively. With
the analytical expressions of vds(t), the power switch is modeled as a voltage source to
simplify the calculations. The equivalent circuit is shown in Figure 3.
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Based on Figure 3, branch currents in a class Φ2 inverter are calculated as follows. The
current of LF is calculated by integrating the voltage across it, i.e.,

iLF(t)=
1

LF

∫ t

0
vin − vds(t)dt =

v1 cos(ωst)
ωsLF

+
v3 cos(3ωst)

3ωsLF
+ ids

=
4vin cos(ωst)

πωsLF
+

2vin cos(3ωst)
9πωsLF

+ ids

(3)

where ids the is average value of the power switch current, calculated using the load power
and input voltage. The current of CF is calculated by differentiating the voltage across
it, i.e.,

iCF(t)= CF
dvCF(t)

dt
= v1ωsCF cos(ωst) + 3v3ωsCF cos(3ωst)

=
4vinωsCF cos(ωst)

π
+

2vinωsCF cos(3ωst)
π

(4)

Furthermore, by dividing the switching node voltage with the impedance of the load
network, the current of LS is calculated as

iLS(t)=
v1

|ZL(jωs)|
sin(ωst−∠ZL(jωs)) +

v3

|ZL(j3ωs)|
sin(3ωst−∠ZL(j3ωs))

=
4vin

π|ZL(jωs)|
sin(ωst−∠ZL(jωs)) +

2vin
3π|ZL(j3ωs)|

sin(3ωst−∠ZL(j3ωs))
(5)
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ZL(jωs) is impedance of the load network, which is given by

ZL(jωs) = RL + jωsLS +
1

jωsCS
≈ RL + jωsLS (6)

where CS is a DC-blocking capacitor and is near-shorted at the switching frequency. The
value of LS is calculated according to required output power.

Furthermore, the current of LM is calculated as follows. When the power switch is
on, the LM-CM branch satisfies the zero-input response equation, since it is a source-free
resonant circuit during this period.{

LM
diLM(t)

dt + vCM(t) = 0
iLM(t) = CM

dvCM(t)
dt

(7)

The analytical expression of iLM(t) is derived by solving (7), which is given by

iLM(t) = I2 sin(

√
1

LMCM
t) (8)

where I2 is the magnitude of the current in LM-CM and it is determined by the energy stored
in LM and CM at the switching-off moment. When the power switch is off, the power switch
current is zero. Thus, when the power switch is off, the current of LM is calculated as

iLM(t) = iLF(t)− iCF(t)− iLS(t) (9)

In this paper, I2 is approximated as the maximum value of (9) which has been verified
by the LTspice simulation. The SPICE netlist for the LTspice simulation is provided in
Appendix A. In fact, with proper design to reduce losses of the class Φ2 inverter, the
resonant switching frequency of LM-CM is 2ωs and current of LM-CM only contain the
second harmonic. Therefore, (8) can represent the current of LM-CM in a whole switching
period, i.e.,

iLM(t) = I2 sin(2ωst) (10)

Furthermore, the current of the power switch is calculated as

ids(t)= iLF(t)− iLM(t)− iCF(t)− iLS(t)

=
4vin

πωsLF
cos(ωst) +

2vin

9πωsLF
cos(3ωst) + ids − I2 sin(2ωst)

−4vinCFωs

π
cos(ωst)− 2vinCFωs

π
cos(3ωst)

−4vin sin(ωst−∠ZL(jωs))

π|ZL(jωs)|
− 2vin sin(3ωst−∠ZL(j3ωs))

3π|ZL(jωs)|
≈ ids + I1 sin(ωst + θ1)− I2 sin(2ωst)− I3 sin(3ωst + θ3)

(11)

where I1, I3 θ1 and θ3 are given by

I1 = 4vin
π

√√√√√ ( 1
ωs LF
− CFωs +

1
|ZL(jωs)| sin(∠ZL(jωs)))

2

+( cos(∠ZL(jωs))
|ZL(jωs)| )

2

I3 = 2vin
3π

√√√√√ ( 1
3ωs LF

− 3CFωs +
1

|ZL(j3ωs)| sin(∠ZL(j3ωs)))
2

+( cos(∠ZL(j3ωs))
|ZL(j3ωs)| )

2

θ1 = asin[cos(∠ZL(jωs))] =
π
2 −∠ZL(jωs)

θ3 = asin[cos(∠ZL(j3ωs))] =
π
2 −∠ZL(j3ωs)

(12)
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With the above calculations, analytical expressions of branch currents are derived.
Based on the results, component losses are calculated to establish the analytical loss model
for a class Φ2 inverter.

3.2. Analytical Loss Model for a Class Φ2 Inverter

Losses of power converter mainly include conduction losses and switching losses. In
class Φ2 inverters, the turning-on loss of the power switch is eliminated owing to zero-
voltage switching (ZVS). Additionally, the use of a gallium nitride high electronic mobility
transistor (GaN HEMT) greatly reduces the turning-off loss of power switch. Therefore,
in a class Φ2 inverter, the losses are mainly caused by a parasitic resistance of inductors
and the on-resistance of the GaN HEMT. A circuit model considering inductor parasitic
resistance and power switch on-resistance is shown in Figure 4.
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Based on the derived branch currents in Section 3.2, losses of the inductors and the
power switch are calculated to established the loss model for a class Φ2 inverter.

Conduction loss of LF is given by

PLoss_LF =
rLF
T

∫ T

0
iLF

2(t)dt (13)

Substituting (3) to (13) yields

PLoss_LF = rLF

(
i2ds +

1
2
(

4vin
πωsLF

)
2
+

1
2
(

2vin
9πωsLF

)
2
)

(14)

Similarly, the conduction loss of LM is calculated as

PLoss_LM =
rLM

T

∫ T

0
iLM

2(t)dt =
rLM I2

2
2

(15)

The conduction loss of LS is calculated as

PLoss_LS =
rLS
T

∫ T

0
iLS

2(t)dt = rLS

(
1
2
(

4vin
πZL(jωs)

)
2
+

1
2
(

2vin
3πZL(jωs)

)
2
)

(16)

The conduction loss of the power switch is calculated as

PLoss_SW =
rds,on

T

∫ T

0
ids

2(t)dt = rds,on

(
ids

2 +
I1

2

2
+

I2
2

2
+

I3
2

2

)
(17)

Therefore, the total loss of a class Φ2 inverter is calculated as

PLoss = PLoss_LF + PLoss_LM + PLoss_LS + PLoss_SW (18)
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Furthermore, the output power of a class Φ2 inverter is calculated as

Po = RL

(
1
2
(

4vin
πZL(jωs)

)
2
+

1
2
(

2vin
3πZL(jωs)

)
2
)

(19)

The overall power efficiency of a class Φ2 inverter is calculated as

η =
PO

PO + PLoss
(20)

3.3. Design Guidance to Reduce Total Loss

In Section 3.2, an analytical loss model for a class Φ2 inverter is established. To achieve
efficiency optimization, this section thoroughly explores the influence of circuit parameters
on the total loss of a class Φ2 inverter. Detailed design guidance is provided to reduce
circling losses and improve overall power efficiency.

Conventional design methods derive constraints on-resonance parameters from an
empirical perspective. The impedance of the resonant tank is given by

ZMR(jω) =
jωLF(1−ω2LMCM)

1−ω2(LMCM + LFCF + LFCM) +ω4LMCMLFCF
(21)

Observing (21), it is found that ZMR(jω) consists of two pairs of conjugation poles
(P1,2, P3,4) and a pair of conjugation zeros (Z1,2). Then, based on principles and physical
intuition for class Φ2 inverters, conventional design methods set P1,2 = ωs, P3,4 = 3ωs and
Z1,2 = 2ωs. However, there are four parameters, but only three equations are provided.
Designers must select a value for the resonant element, which highly relies on experience.
Moreover, the constraints P1,2 = ωs and P3,4 = 3ωs are derived by qualitatively analyzing
operation principles of class Φ2 inverters. Therefore, it is hard to realize optimal design,
such as minimized voltage stress, minimized circling losses and maximum power efficiency.
In this section, design constraints are reconsidered to realize efficiency optimization while
minimizing switch voltage stress.

In fact, Z1,2 = 2ωs is the optimal setting to absorb the second harmonic of the switching
node voltage, to reduce the peak value of the switching node voltage. Furthermore, to
minimize the switch voltage stress, the switching node impedance should satisfy

Zds(jωs)

Zds(j3ωs)
=

6I3

I1
(22)

where Zds(jωs) = ZMR(jωs) || ZL(jωs), and I1 and I3 are magnitudes of the switch current
at ωs and 3ωs, respectively.

The above constraints can realize the optimal design of the power switch voltage stress.
To reduce the circling losses, further analyses are carried out as follows. Firstly, the LM-CM
branch is designed to absorb the second harmonic voltage. At ωs and 3ωs, the magnitude
of the LM-CM series resonant branch should be large, to reduce the fundamental and third
harmonic currents in LM. The small capacitor and large inductor form a high characteristic
impedance, which reduces unnecessary circling losses. Therefore, the ratio of CM and CF is
selected as a design constraint to represent circling loss in the LM-CM branch, i.e.,

k1 =
CF
CM

(23)

where k1 is larger than 1.
Additionally, to guarantee zero-voltage switching (ZVS) of the power switch, Zds(jωs)

must be inductive at ωs. Therefore, the lower poles (P1,2) of ZMR(jωs) need to be located
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between ωs and 2ωs. The location of P1,2 is selected as another design constraint for class
Φ2 inverters, i.e.,

P1,2 = k2ωs (24)

where k2 is in range [1,2). The following explores the influence of k1 and k2 on wave-
forms and RMS values of branch currents. Constraints of the resonant parameters are
summarized as {

k1 = CF
CM

, P1,2 = k2ωs

Z1,2 = 2ωs,
Zds(jωs)
Zds(j3ωs)

= 6I3
I1

(25)

With (25), the four resonant parameters LF, CF, LM, and CM can be determined uniquely.
The influence of k1 and k2 on branch current RMS values and component losses are thor-
oughly analyzed, to provide detailed design guidance and improve power efficiency of
class Φ2 inverters.

Substituting the main specifications of class Φ2 inverters, the values of LF, CF, LM, and
CM are calculated with different selection of k1 and k2. The main specifications used in the
following calculations are consistent with experiments, where vin = 40 V, fs = 27.12 MHz,
PO = 25 W and RL = 25 Ω.

Choosing k2 = 1.1 and a scanning k1 from 3 to 11, waveforms of iLF(t), iLM(t), ids(t) and
iLS(t) under different k1 values are shown in Figure 5. As k1 increases, current magnitudes
of iLF(t), iLM(t) and ids(t) are reduced, whereas the current waveform of iLS(t) remains
unchanged. This indicates that increasing k1 can effectively reduce unnecessary circling
loss while maintaining the same output current. However, as k1 increases, the reduction
rate of the resonant current decreases.
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To further explore the influence of k1 on circling losses, RMS values of iLF(t), iLM(t),
ids(t) and iLS(t) with respect to k1 were calculated and are shown in Figure 6. By increasing
k1, the RMS values of iLF(t), iLM(t) and ids(t) are effectively reduced, while the RMS current
of the output branch, i.e., iLS(t), remains unchanged. This illustrates that the unnecessary
circling losses are reduced, which improves power efficiency. However, the slope of the
curve in Figure 6b decreases with the increase of k1. This indicates that as k1 increases, the
effect on reducing the RMS current of iLF(t) diminishes. From Figure 6b, k1 is selected as 10.
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Furthermore, at k1 = 10 and a scanning k2 from 1.05 to 1.25, waveforms of iLF(t), iLM(t),
ids(t) and iLS(t) under different k2 values are shown in Figure 7. RMS values of branch
currents are shown in Figure 8. According to the calculation results, setting k2 close to 1
can reduce the circling current in class Φ2 inverters. However, to guarantee zero voltage-
switching of the power switch, the switching node impedance must be inductive at the
switching frequency. Therefore, the lower poles P1,2 should be located higher than ωs, i.e.,
k2 > 1. To leave a margin for ZVS, k2 is selected as 1.1.
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Furthermore, based on the following assumptions, inductor and power switch losses
under different k1 and k2 values were calculated. (1) The equivalent series resistance of
the inductor is proportional to the inductance. Specifically, ωsL/RESL = 100. (2) The on-
resistance of the power switch is 100 mΩ. The calculated total loss and overall power
efficiency are shown in Figure 9. As k1 increases and k2 decreases, the total loss is reduced
and the power efficiency is increased.
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Combining analyses of RMS branch currents and total loss, optimal values of k1 and
k2 are derived as {

k1 = 10
k2 = 1.1

(26)

Finally, combining (26) and (25), the optimal circuit parameters LF, CF, LM and CM are
calculated, which reduce circling losses and improve power efficiency. Furthermore, the
proposed design method is still effective in a VHF DC–DC power converter by modeling
the rectifier stage as a resistor. A VHF DC–DC power converter consists of an inverter stage
and a rectifier stage. When designing a VHF class Φ2 DC–DC power converter, the input
impedance of the rectifier at fundamental frequency is tuned to be nearly resistive. Thus, the
rectifier is modeled as a resistor in the design of the inverter stage. Therefore, the proposed
design method can be easily adopted when designing the DC–DC power converter.
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4. Simulation Results Comparisons

To verify the effectiveness of the above analysis and the proposed design constraints,
circuit simulations were carried out with different design methods. The main specifications
of the simulated class Φ2 inverter are shown in Table 1, which are the same as those
of experiments. Parameters of the proposed design are calculated with (25) and (26),
and parameters of conventional design are calculated with the method in [23]. Resonant
parameters with different design methods are shown in Table 2. The simulations are carried
out in LTspice, and the SPICE netlist is provided in Appendix A. Branch current waveforms,
RMS values of branch currents, and component power losses are compared as follows.

Table 1. Main specifications of the class Φ2 inverter.

Parameters Values

Switching frequency 27.12 MHz

Input voltage 40 V

Output power 25 W

Load resistance 2.5–25 Ω

Table 2. Circuit parameters with different design methods.

Parameters Proposed Design Method Conventional Design Method
[23]

LF 138 nH 65 nH

CF 205 pF 262 pF

LM 420 nH 56 nH

CM 20.2 pF 150 pF

LS 152 nH 152 nH

CS 4 nF 4 nF

RL 25 Ω 25 Ω

5. Branch Current Waveform Comparisons

Waveforms of iLF(t), iLM(t), ids(t) and iLS(t) at RL = 25 Ω are shown in Figure 10.
RMS values of branch currents are marked on the figures. With the proposed efficiency
optimization design method, the peak and RMS value of branch currents are reduced, thus
reducing circling losses and improving the power efficiency of the class Φ2 inverter.
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6. Loss and Efficiency Comparisons

RMS values of branch currents under different load resistances are summarized in
Table 3. Component losses are summarized in Table 4. Parasitic resistances of the proposed
design are rLF = 0.21 Ω, rLM = 0.62 Ω, rLS = 0.33 Ω and rds_on = 0.10 Ω. Parasitic resistances
of the conventional design are rLF = 0.15 Ω, rLM = 0.60 Ω, rLS = 0.33 Ω and rds_on = 0.10 Ω.
Compared with the conventional design, the proposed design method significantly reduces
the RMS value of iLF(t) from 3.31 A to 1.60 A at 25 W, while reducing the loss of LF from
1.64 W to 0.54 W. The RMS value of LM is reduced from 1.82 A to 1.03 A, while the loss
of LM is reduced from 1.98 W to 0.65 W. The RMS value of LS under different designs are
essentially the same, which indicates a similar output power. The RMS value of the power
switch is reduced from 2.28 A to 1.84 A, while the loss of the power switch is reduced from
0.52 W to 0.34 W. The total loss is reduced from 4.49 W to 1.84 W. At 18 W and 8 W, the
RMS values of branch currents and the total loss are also reduced.

Table 3. RMS values of branch currents.

Component RL = 25 Ω RL = 10 Ω RL = 5 Ω

Proposed Conventional Proposed Conventional Proposed Conventional

LF 1.60 A 1.60 A 1.60 A 3.34 A 1.60 A 3.34 A

LM 1.03 A 1.03 A 1.56 A 2.22 A 1.56 A 2.22 A

LS 0.97 A 0.97 A 1.33 A 1.37 A 1.33 A 1.37 A

Power switch 1.84 A 1.84 A 2.34 A 2.76 A 2.34 A 2.76 A

Table 4. Component losses of the class Φ2 inverter.

Component RL = 25 Ω RL = 10 Ω RL = 5 Ω

Proposed Conventional Proposed Conventional Proposed Conventional

LF 0.54 W 1.64 W 0.54 W 1.67 W 0.51 W 1.66 W

LM 0.65 W 1.98 W 1.51 W 2.96 W 1.83 W 3.31 W

LS 0.31 W 0.34 W 0.58 W 0.61 W 0.67 W 0.70 W

Power switch 0.34 W 0.52 W 0.55 W 0.76 W 0.59 W 0.80 W

Total loss 1.84 W 4.49 W 3.18 W 6.01 W 3.60 W 6.48 W

7. Experimental Results

To verify effectiveness of the proposed efficiency optimization design method, two
prototypes are built with the conventional and proposed design method, respectively. A
block diagram of the prototype is shown in Figure 11, the prototypes are shown in Figure 12,
and the main specifications of the prototypes are shown in Table 5. The power switch is
EPC2019 from EPC, the gate driver is realized with high-speed buffer NC7WZ17.
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Table 5. Circuit parameters with different design methods.

Parameters Proposed Design Method Conventional Design
Method

LF 140 nH 60 nH

CF 200 pF 290 pF

LM 430 nH 56 nH

CM 20 pF 153 pF

LS 150 nH 150 nH

CS 4.7 nF 4.7 nF

RL 25 Ω 25 Ω

Power switch EPC2019 EPC2019

Gate driver 3 NC7WZ17 3 NC7WZ17

7.1. Waveform Comparisons

The voltage waveforms were measured with the oscilloscope MDO3054. Figure 13
shows the waveforms at Vin = 40 V and RL = 25 Ω, Figure 14 shows the waveforms at
Vin = 40 V and RL = 16 Ω, and Figure 15 shows the waveforms at Vin = 30 V and RL = 16 Ω.
Output voltages of the proposed and conventional design are essentially the same at
different working conditions, whereas the proposed design method reduces the harmonic
components of the switching node voltage. This indicates smaller circling losses in the
resonant network, which improves the overall power efficiency of the class Φ2 inverter.
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Figure 15. Voltage waveforms of the class Φ2 inverter at Vin = 30 V, RL = 16 Ω. (a) Switching node
voltage; (b) output voltage.

7.2. Efficiency Comparisons

The input power is obtained by measuring the average input voltage and current
with multimeters. The output power is obtained with the value of load resistance and
the RMS value of the output voltage. Figure 16a shows the prototype efficiency with
respect to load resistance, and Figure 16b shows the prototype efficiency with respect to
input voltage. Compared with conventional design, the proposed efficiency optimization
design significantly improves the power efficiency over the whole load range. At a rated
output power, the proposed design achieves a peak efficiency of 93.6%. Compared with
conventional design, an improvement of 9.6% is achieved. Over the whole load range, the
power efficiency is improved by more than 7%. The experiments demonstrate that the
proposed design method can effectively improve power efficiency of a class Φ2 inverter by
reducing the resonant current magnitude and unnecessary circling losses.
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8. Conclusions

This paper proposed an efficiency optimization design method for a very high fre-
quency class Φ2 inverter based on an analytical loss model. The analytical expression of
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the switching node voltage was derived by analyzing its harmonic components. With the
result, the circuit was simplified by modeling the power switch as a voltage source. Then,
analytical expressions and the RMS value of branch currents were derived to calculate
components losses, which form the analytical loss model. Furthermore, the influence of
circuit parameters on the total loss and power efficiency were thoroughly analyzed, to
derive the optimal design equations and minimize circling losses in the class Φ2 inverter.
Finally, the proposed design method was verified by experiments. The proposed harmonic
analysis modeling method and analytical losses model can also be used in other resonant
topologies to improve power efficiency.
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Appendix A

This appendix provides the SPICE netlist used in LTSPICE simulations.
* SPICE netlist for the proposed design
V1 N005 0 PULSE(0 4 0 1p 1p 13.4n 36.87315n 10000)
L1 N001 N002 138n Rser=0.28
L2 N002 N003 152n Rser=0.1
L3 N002 N006 420n Rser=0.6
C1 N006 0 20.2p
C2 N004 N003 4n
R1 N004 0 25
V2 N001 0 40 Rser=0.1
C3 N001 0 1µ
C4 N002 0 205p Rser=0.2
S1 N002 0 N005 0 MySwitch
D1 0 N002 D
.model D D
.lib C:\Users\10652\Documents\LTspiceXVII\lib\cmp\standard.dio
.model MySwitch SW(Ron=.1 Roff=1Meg Vt=1)
.tran 5u
.backanno
.end
* SPICE netlist for the conventionals design
V1 N005 0 PULSE(0 4 0 1p 1p 15N 36.87315n 10000)
L1 N001 N002 65n Rser=0.28
L2 N002 N003 152n Rser=0.1
L3 N006 N002 56n Rser=0.6
C1 N006 0 150p
C2 N004 N003 4n
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R1 N004 0 25
V2 N001 0 40 Rser=0.1
C3 N001 0 1µ
C4 N002 0 262p Rser=0.2
S1 N002 0 N005 0 MySwitch
D1 0 N002 D
.model D D
.lib C:\Users\10652\Documents\LTspiceXVII\lib\cmp\standard.dio
.model MySwitch SW(Ron=.1 Roff=1Meg Vt=1)
.tran 10U
.backanno
.end
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