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Abstract: As short-term load forecasting is essential for the day-to-day operation planning of power
systems, we built an ensemble learning model to perform such forecasting for Thai data. The
proposed model uses voting regression (VR), producing forecasts with weighted averages of forecasts
from five individual models: three parametric multiple linear regressors and two non-parametric
machine-learning models. The regressors are linear regression models with gradient-descent (LR),
ordinary least-squares (OLS) estimators, and generalized least-squares auto-regression (GLSAR)
models. In contrast, the machine-learning models are decision trees (DT) and random forests (RF). To
select the best model variables and hyper-parameters, we used cross-validation (CV) performance
instead of the test data performance, which yielded overly good test performance. We compared
various validation schemes and found that the Blocked-CV scheme gives the validation error closest
to the test error. Using Blocked-CV, the test results show that the VR model outperforms all its
individual predictors.

Keywords: short-term load forecasting; time series forecasting model validation; ensemble learning;
accuracy improvement; Thailand EGAT dataset

1. Introduction

The increased energy demand due to the rise in the population over the past few
decades has been an eye-opener for the efficient use of energy all over the world. One of the
critical objectives of energy forecasting is to allocate a sufficient and efficient energy supply
to cater for the future demand. Many countries seek alternative energy resources to balance
supply and demand [1]. Therefore, forecasting the required demand at least for a 1 day
ahead has become a popular theme among energy providers to maintain that equilibrium.

Forecasting is divided into three subsections according to the prediction horizon:
short-term load forecasting (STLF), medium-term load forecasting (MTLF), and long-term
load forecasting (LTLF) [2]. Each plays a different role in the power system, benefiting
supply and demand-side management. Accurate forecasting of a country’s short-term
electric energy demand is the key to making day-to-day decisions on hourly/day-ahead
demand compared to the medium-term and long-term forecasts. Forecasting the electric
energy demand is carried out by developing models using historical data, and many factors,
such as climate conditions, calendar parameters, and some seasonal features [3]. Since
Thailand is a tropical country, its electric demand is heavily influenced by climate and
weather conditions, along with many public, religious, and long holidays. The limited
research on Thai data found in the literature, which will be further elaborated in Section 2,
suggests that the accuracy of short-term forecasting can be further improved with a better
selection of features and using appropriate models.

Machine learning (ML) plays a leading role when predicting electricity demand com-
pared to classical methods, such as statistical time series analysis and smoothing techniques.
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They have become popular among developers because of their convenient computer imple-
mentation and ability to produce both linear and nonlinear, parametric/non-parametric
models suitable for the nature of the data. If sufficient historical data are available to train
a model, supervised learning is used. Adequate feature engineering must also tackle a
time series’s seasonality, trend, and possible irregularities. Unarguably, there are many
ML models already developed to forecast demand. For example, in [4], the authors ap-
plied regression and neural network (NN) to their dataset as ML methods. However, the
prediction accuracy of such models is still questionable, since the model’s variables and
hyper-parameters were selected from the test performance on the test data.

Model evaluation is crucial in ML before launching the model in practice. Developers
use various validation techniques to evaluate a model’s performance to ensure that the model
generalizes well for unseen data. After time series analysis, the most preferred technique is
cross-validation (CV). However, the use of CV in the context of time series is questionable
because of the potential non-stationarity and the serial correlation of data [5]. However, as
proposed in [5], cross-validation can be used in time series if the series is stationary. Since it
is hard to find studies on Thai electricity load data that have used validation techniques to
select the best models, model variables, and parameters, we used cross-validation in this
work. However, to use it, we needed to show that our data are stationary.

Many available supervised ML predictors are standalone learners. The accuracy of
the predictions might be low when considered individually. However, the forecasts from
multiple independent forecasters can be combined to form a better forecaster [6]. Regarding
Thai data in our context, the use of EL is lacking in the literature. Therefore, this research
focused on developing a cross-validated EL model to forecast the short-term electricity
load in Thailand.

Main Contributions

The main contributions of this paper are summarized as follows:

• We extended our previous work in [4] using the same dataset and data grouping
approach to use cross-validation. In our previous work, we used the test error to check
the model’s performance, which might have resulted in overly good test performance
due to over-fitting the test data.

• We considered linear regression models with decision tree and random forest methods.
We combined the forecasting models via a simple fixed-weight ensemble learning
with the weights selected manually to improve the forecasting performance. Although
simple, this ensemble learner outperforms all other individual forecasting models.

• We show via the augmented Dickey–Fuller (ADF) test that our data are stationary and
have high confidence levels. This means we can use the cross-validation schemes for
our time-series data.

• For each forecasting model, we evaluated the performances of three validation schemes
and found that most of the time, the Blocked-CV scheme gives the best performance,
and these results are also the closest to those of the ensemble model.

• Using this validation scheme, the test results show that the ensemble learning model
outperforms all its individual predictors.

The remainder of the paper is structured as follows. Section 2 presents a detailed
discussion of the related works. Section 3 presents the methods, including the data prepa-
ration, selection of the prediction horizon, and overall model design procedure, which
includes the details of all the estimators used and their model evaluation schemes. Section 4
presents the results, extensively comparing the forecasting accuracies of the individual
predictors based on the validation and the test errors. Finally, Section 5 concludes on the
findings and highlights some limitations and possible future directions.
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2. Related Works
2.1. Categories of Load Forecasting Based on the Prediction Horizon

As previously mentioned, STLF, MTLF, and LTLF are the three main categories of
load forecasting based on different prediction horizons [2]. Some researchers introduce
another category called very short-term load forecasting (VSTLF), which runs from only a
few minutes to hours [7]. A comparison of forecasting in different time scales and examples
of their applications are given in Table 1.

Table 1. Forecasting in different time scales and examples of their applications.

Forecasting Prediction Horizon Applications References

VSTLF Few minutes to hours Predict instant electric demand, power consumption monitoring [7,8]

STLF Hours to weeks Day-to-day energy management, economic dispatch (ED), unit commit-
ment (UC) [2,4,9]

MTLF Weeks to months Fuel allocation, system maintenance schedules, energy trading [2,10]

LTLF Months to years Planning generation expansion, energy policy reforms [8,11]

In common, there are several advantages of forecasting the electric energy demand,
both economic and environmental [12]. One of the most straightforward benefits, if pre-
dictions are accurate, is that there will be no unintentional over-generation of energy so
that it would reduce the costs associated with any possible wastage [13]. The same would
reduce environmental impacts, such as the emission of CO2 and global warming. On the
other hand, any underestimation of demand can result in severe power outages, risking
the power system’s stability, security, and reliability.

The focus of this research is on SLTF, whose horizon usually runs from hours to a
week. Energy providers use it to plan their day-to-day operations. Effective forecasting
helps them to decide on when and which power plants to operate and/or shut down to
cater to the required demand. That process is called unit commitment (UC), which ensures
the optimum utilization of resources. Furthermore, the energy providers also aim to meet
the required demand at a minimum cost. That is called economic dispatch (ED), which is
beneficial not only for the providers but also for the consumers. ED and UC are considered
direct benefits of STLF [2].

The works on SLTF for Thailand seem to have appeared only recently. Using the same
dataset that we used in this work (i.e., the data from the Electricity Generating Authority
of Thailand (EGAT) from 2009 to 2013), several works have been published [4,8,9,14–16].
The STLF model implemented in [4] implemented 1-day ahead forecasting by setting the
prediction horizon as 10 to 34 h.

2.2. Factors Affecting the Electric Energy Demand

Due to the auto-regressive and periodic nature of electricity consumption, the historical
or lagged load is a crucial factor to determine the electricity load. Huang and Shih [17]
developed a univariate auto-regressive moving average (ARMA) model capable of handling
both Gaussian and non-Gaussian processes. However, consideration of other factors which
affect the electric energy demand is essential. As explained previously, the demand is also
affected by weather/climate conditions, calendar parameters, and seasonal features. A
time-varying periodic spline model with temperature as the exogenous variable was used
in [18] and achieved the mean absolute percentage error (MAPE) value of about three.
Using the same dataset for this study, Chapagain and Kittipiyakul [8] developed two MLR
models and showed that the model with added temperature variables resulted in an at
least 20% accuracy improvement.

In [4], calendar parameters such as year, month, day of the week, and hour; and
seasonal features such as holidays and special days, were taken into account as driving
factors for the demand and used, along with other essential factors, to develop many pre-
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dictive models. In general, these factors are called deterministic variables. The demand on
weekdays has significantly different patterns compared to the demand on weekends [19].
Specifically, weekday demand is considerably higher and more stable compared to week-
end demand due to the presence of industrial sector operations on weekdays. Holidays,
whether on weekdays or weekends, see much lower demand. Therefore, we needed to
assign dummy variables to represent the seven days of the week as weekdays, weekends,
and holidays so that the different day types would be clearly specified.

Since we used the same dataset as in [4], we used a similar set of dummy variables to
represent the deterministic variables. Holidays/special days, such as bridging working
days between weekends and a major holiday or days before and after major holidays, also
affect the electric demand, and ignorance of their effects in a model can result in a severe
dip in accuracy. Non-stationarity in the data series due to special days can be overcome by
either introducing dummy variables or creating separate models for each hour or half-hour.
With the same dataset we used, Chapagain et al. [4] selected both options and obtained
better results. Since it is a Thai electric demand dataset, the special day factors considered
were Newyear, Songkran, etc. To make the predictions more accurate, they introduced a
series of dummy variables representing different holiday types and the days before/after
special days, as in [20].

Introducing interaction variables helps to increase forecasting accuracy. For example,
since the weekday demand is more sensitive to the weather parameters compared to
the weekend demand, implementing interaction terms between the demand and the
meteorological parameters, such as the temperature, after separating the weekdays and
weekends, has resulted in a significant accuracy improvement [21]. Furthermore, since
historical demand is used to predict the next day’s demand, there is a possibility of an error
in predicting the days around the margins between weekdays and weekends, since the
weekend demands are significantly less than on weekdays. Therefore, interaction terms
between the day-of-the-week dummy variables and the lagged load up to two days were
introduced in [4]. They also included interaction terms between the day-of-week/month
dummy variables and temperature to improve accuracy further.

2.3. Importance of Grouping the Dataset

Grouping a dataset into categories with similar demand patterns helps to improve the
accuracy of predictions. For example, working days/weekdays, weekends, and holidays
have their own demand patterns. Using the same EGAT dataset and grouping, Chapagain
et al. [4] built separate models and achieved improved results compared to having a single
model trained with the entire dataset. They achieved 1.81%, 1.74%, and 16.63% MAPE
accuracy for weekdays, weekends, and holidays, respectively. Since the holiday’s prediction
accuracy became worst due to limited observational data, they went with a model trained
with the entire dataset to predict the holiday demand and achieved an overall MAPE of
2.95%. A similar kind of grouping was carried out in [3] but using an energy dataset from a
cold region in Japan. They achieved 0.9%, 1.81%, 2.51%, and 1.72% MAPE for weekdays,
weekends, holidays, and overall demand, respectively.

Another effective two-fold grouping was also found in the literature as working days
and holidays [22]. Srinivasan et al. [23] considered holiday demand to resemble the de-
mand on Sundays and divided the dataset into working days, holidays and Sundays, and
Saturdays. They achieved impressive performance with 1% MAPE for all three categories.
Su and Chawalit [24], followed by [25], introduced seven groups of training data—Monday,
Tuesday, etc.—considering the days of the week. The authors of the latter research elimi-
nated the holiday and bridge-holiday effects by replacing them with the weighted average
load of the same day of the week from the previous two weeks.

2.4. Predictive Methods

Methods used to build forecasting models can be classified into two main categories:
classical methods and machine-learning methods. A few examples of classical methods



Energies 2022, 15, 8567 5 of 30

used in the literature are statistical time series analysis; and the ARMA model and its
extensions, such as auto-regressive integrated moving average (ARIMA), seasonal auto-
regressive integrated moving average (SARIMA), auto-regressive moving average with
exogenous variable (ARMAX), and regression methods. However, their applications are
limited to supporting only linear problems or limited forms of nonlinearity. A comparison
between linear and nonlinear models for forecasting short-term electricity demand in Czech
was performed in [22]. They concluded that forecasting the Czech electricity demand is
almost a linear problem. The selected linear ARIMA model outperformed the nonlinear
NN model in univariate and multivariate cases. Taylor et al. [26] compared six different
univariate short-term demand forecasting models with an hourly dataset in Brazil and a
half-hourly dataset in England. The double seasonal exponential smoothing model and the
ARMA model outperformed all other models in the accuracy of the predictions.

An ARMAX model was developed using the same dataset we used for our study. By
including temperature as the exogenous variable and another set of dummy variables, the
short-term electric demand in Thailand was forecast [4]. The estimation methods used in
the ARMAX model were MLR:OLS for non-serially correlated error cases and GLSAR for
serially correlated error cases. These two estimation methods of the ARMAX model were
then compared with a NN, and the results showed that the ARMAX model outperformed
the NN. Another study was conducted in [27]. Three different ARMA(2,6) models were
built to predict short-term electricity demand in Hokkaido, Japan. One of the models
included some meteorological parameters—temperature, wind speed, relative humidity,
solar irradiation, etc.—as the exogenous variables to make it an ARMAX model. The
results showed that the ARMAX model had a performance improvement of at least 0.015%
compared to the other two models.

Machine learning is now more often used for energy forecasting applications compared
to classical methods. The main reason for this is their applicability in linear and nonlinear
problems so that the seasonality issues can be quickly taken care of. The models developed
in ML also can be parametric or non-parametric. ML models such as artificial neural
networks (ANN), fuzzy logic, and support vector machines (SVM) are good examples in
recent literature. Three machine learning models were developed in [28]—SVM, nonlinear
auto-regressive (NAR) recurrent ANN, and long short-term memory (LSTM) ANN—to do
multi-step ahead forecasting in residential microgrids. Those ML models outperformed
an ARMA model. One of the problems of ML approaches such as SVM and ANN is
their vulnerability to getting stuck at a local optimum during the training. Furthermore,
an improved version of an LSTM model with the empirical wavelet transform (EWT)
developed in [29] outperformed several benchmark ML models, resulting in MAPE values
below 6% for three real-life cases.

ML models used for STLF with Thai data are limited in the literature. For example, a
combined particle swarm optimization (PSO) algorithm that used the ANN technique to
forecast the short-term electric demand in Thailand was developed in [15]. They achieved
the overall training MAPE accuracy of 3.44%. Furthermore, they extended their work by
introducing a hybrid PSO with a genetic algorithm (GA) and improved their accuracy to
2.86% [25]. Su and Chawalit [24] used more recent data than us to develop a deep neural
network (DNN), SVM, and NN to forecast the short-term energy demand in Thailand. They
found that the best test MAPE result among all the considered methods was 4.2% using
one of the DNN methods.

Not only in electric energy management but in many other fields is time-series fore-
casting being used. A classical example is electricity price forecasting, as in [30,31]. They
have used functional auto-regressive (FAR) models to optimally forecast the short-term
electricity prices and demand in different electricity markets. Furthermore, they have
proved that their component (deterministic and stochastic) estimation technique is highly
effective at forecasting electricity prices based on the short-term [32] and the medium-term
demand [33].
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2.5. Model Validation Techniques

There is an apparent scarcity of time series research that uses model validation schemes
to evaluate models and select the best hyper-parameters. The main reason for that gap
is that many developers believe validation is meaningless in time series data, since they
are prone to being serially correlated [5]. For independent and identically distributed
(i.i.d) data series, CV is used extensively to randomly divide the whole training dataset
into several validation sets for evaluation. Nevertheless, with time-series data, developers
omit that, since the random selections could create holes in the dataset destroying the
auto-correlative nature and could easily leak future information to the model [34].

Recently, several works [5,34,35] have started to look at when CV can be applied to
time series and which CV techniques are most appropriate. Validation is divided into
two categories: CV schemes and forward validation (FV) schemes. Each of them has
its extensions. Since Random CV causes problems with time series data, Nielsen [34]
suggested two FV schemes, EWFW and rolling window forward validation (RWFV), for
model validation. However, they used the whole dataset, including the test set, to combine
the full training, validation, and testing. In addition, Schnaubelt [35] compared eight
different validation schemes with three different ML models—LR, RF, and NN—including
both CV and FV extensions on non-stationary time-series data produced by a synthetic
data-generating process (DGP). Six validation schemes were 5-fold, and the other two were
derivations of a test-set-evaluation-like approach called last-block validation (LBV). The
author compared the validation error of each scheme with the test error and selected the
scheme, which yielded the minimum difference between them. The author concluded that
the FV schemes perform well when the perturbation strength of the stationarity gets higher.
However, with a closer look at the results, the author suggested that CV and FV schemes
perform similarly for small perturbation strengths and prefer LBV if the perturbation
strength is very high.

Validity of k-fold CV in time series forecasting under a few conditions was proved
in [5]. The conditions allowing the use of k-fold CV are:

1. the AR process should be stationary,
2. the model should be purely auto-regressive,
3. the model should be nonlinear and non-parametric (preferably an ML model), and
4. the fitted model should have uncorrelated errors/residuals.

They compared three different CV schemes: 5-fold CV, 5-fold non-dependent CV
(nonDepCV), and leave-one-out CV (LOOCV), with an LBV-like approach, called out-of-
sample (OOS) evaluation, in a linear and a nonlinear model. They used standard multi-layer
perceptron (MLP) NN as the nonlinear model. The results showed that the CV schemes
outperformed the OOS evaluation. They applied the Ljung box test to check the serial
correlation of residuals. They used an AR(5) model as the linear model, and the results
reflected the same. The authors indirectly suggested that if the series is stationary and the
model is linear, then CV can be applied without any problems.

It is not easy to find research on Thai electricity load data that has used validation
techniques to evaluate the forecasting models. The ARMAX model used in [4] followed a
similar RWFV-like training and testing pattern, as explained in [34], but real validation of
the model could not be seen there.

2.6. Ensemble Methods

The method of producing a robust model by combining a diverse set of individual
learners is called ensemble learning (EL) [6]. The simplest form of an ensemble in classifica-
tion is the voting classifier (VC) which aggregates the predictions of each model. A similar
form called the voting regressor (VR) is available for regression tasks. It takes the majority
voted class in the case of classification, but it is the simple average or the weighted average
for regression. In this work, we developed a voting regressor with weighted averaging as
our EL model.
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In addition to the voting EL models, there are three main methods of building more
complex EL models: bagging, boosting, and stacking [6]. Unlike VR, bagging uses a single
base estimator trained with different random samples of the entire dataset. An ensemble
of multiple DTs called RF uses the bagging method to train its model. Boosting is quite
different, as it can use different learners and tries to evolve by correcting the errors of each
predecessor. In contrast, stacking uses at least two stages of predictions. The first stage can
have multiple learners while using all of their predictions to train the second stage, and
so on.

Many researchers recently adopted the ensemble approach due to the proven accuracy
improvement in the predictions. A survey of load forecasting models for power system
management was conducted [2]. They included information about linear models such as
MLR, exponential smoothing, and nonlinear models such as NN. Finally, they preferred
the ensemble approach to get an optimum forecast by combining those multiple predictive
models with a probabilistic nature. Divina et al. [12] developed a stacking ensemble-
learning model to forecast short-term electric energy demand using a dataset in Spain
collected over nine years. Their model included two stages. In the first stage, they used
three regression-based machine-learning models: evolutionary decision tree (EvTree), RF,
and NN. Their predictions were then input to the second stage generalized boosted model
(GBM) to have the ultimate predictions, which were finally found to be more accurate than
all three first stage models.

EL methods have also been used to forecast electric demand in Thailand, particularly
for medium-term forecasting. For example, using Thai electric peak demand data from
2002 to 2017, reference [10] developed and compared several medium-term forecasting
models: ANN, SVM, deep belief network (DBN), and their ensembles. The EL models used
a simple averaging method similar to VR to aggregate the predictions. The results showed
that the ensemble model built by combining the ANN and DBN models outperformed
other models for 1-month-ahead forecasting with a MAPE accuracy of 1.44%.

EL is used in other fields, such as electricity price forecasting, as in [36]. They modeled
their stochastic component using an ensemble of ARMA, neural network auto-regressive
(NNAR), RF, support vector regression (SVR), and GBM. The results suggest that the
proposed EL method efficiently predicts electricity prices in the Italian electricity mar-
ket (IPEX).

A summary of recently published state-of-the-art related work that used our full
dataset or a part of the dataset to perform SLTF in Thailand is given in Table 2.

Table 2. A state-of-the-art comparison of recently published related work.

Dataset Methods Used Major Results Work

2009–2013 OLS, GLSAR, FF-ANN OLS and GLSAR models showed a better forecasting accuracy than FF-ANN. [4]

2009–2013 OLS Addition of interaction variables to the model has improved the prediction
accuracy. [14]

2009–2013 OLS and Bayesian esti-
mation

Addition of a temperature variable to the model has improved the prediction
accuracy by 20%. [8]

2009–2013 MLR with AR(2) Bayesian estimation provides better and more consistent performance than that
of OLS estimation [16]

2013 PSO with ANN PSO outperforms the backpropagation training algorithm to train the ANN for
STLF. [15]

2013 PSO + GA with ANN PSO + GA outperforms the backpropagation and PSO training algorithms. [25]

2013 ANN Addition of a temperature variable to the model has improved the prediction
accuracy. [9]
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3. Methods
3.1. Data Preparation

The dataset used to train and test the models throughout this study was provided
by EGAT, the leading player in the Thai energy market possessing almost 50% of the
generation and 100% of transmission system. EGAT divides the country into five regions
and keeps recordings of the electric loads separately. The central region, MCC, which
includes Bangkok and nearby provinces with the highest electricity demand, is the focus
of this research. The dataset includes 84,816 instances of half-hourly electricity load (in
MW) and the corresponding half-hourly temperature measurements (in °C) for almost
about five years (from 1 March 2009 to 31 December 2013). This dataset has been used
in many studies to develop different forecasting models in recent years [4,8,14,16]. The
final dataset provided for this study was a preprocessed version of [4], after filling in
some missing load values and some temperature adjustments. The preprocessed data also
include deterministic, meteorological, historical load, and interaction terms.

As in [4], the half-hourly data from 29 March 2009 to 31 December 2012 were selected
as the training set, which included almost four years (65,952 instances); we kept aside the
year 2013 for the test data (17,520 instances). We started training from 29 March 2009, since
we used a 28-day lag load as one of the features in our models.

As grouping the dataset proved to simplify modeling and showed a significant accu-
racy improvement in the literature, as discussed in Section 2.3, the dataset was divided into
four different groups, as illustrated in Figure 1, similarly to [4].

Figure 1. Data grouping.

Since the dataset included half-hourly (HH) data, each group was further divided into
N = 48 subsets (of similar half-hours). Therefore, the training and test instances for each
HH in each group were as follows.

• Group 1: train = 896, test = 239
• Group 2: train = 336, test = 87
• Group 3: train = 142, test = 39
• Group 4: train = 1374, test = 365

The corresponding training sets were used to train and validate the models. The
model selection in our study was based on the validation error. We did not use a rolling
window approach like in [4] to train and test the models. Therefore, the test sets were only
used to check the performances of the models trained with all the training data.

3.2. Prediction Horizon

Since for each working day, EGAT collects load data up to 2 pm and makes forecasts
for the next day’s demand, the HH forecasts are generally 10 to 34 h ahead. Our study is
also limited to predicting 10 to 34 leading hours of the next day, considering the data up
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to 2 pm are available for the current day. However, the “next day” has quite a different
meaning here, since the dataset is divided into groups. For example, it is 1-day ahead
forecasting in Group 4. However, in the case of Group 2, where it uses only weekends to
train the model, the next day for Saturdays is Sunday (1-day ahead), but for Sundays, it is
the following Saturday (6-days ahead). Similarly, Groups 1 and 3 also have their unique
interpretations for the “next day”.

3.3. Model Design

The general workflow of this work is shown in Figure 2. It had five major steps:
data preparation, model design, linear/nonlinear/ensemble estimation, model evaluation,
and performance analysis. Details of the data preparation have already been discussed in
Section 3.1.

Figure 2. Proposed methodology.

The overall model consists of five different individual predictors and their ensem-
ble. Those individual predictors are a set of classical and ML regression-based methods.
Classical methods include three MLR-based parametric ARMAX models, which use LR,
OLS, and GLSAR as estimators; and ML methods include two nonlinear nonparametric
estimators: DT and RF. The LR and OLS models are generally used for cases assuming
uncorrelated errors, and the GLSAR is for correlated errors. DT and RF are selected due to
their well-known adaptability to nonlinear nature of data.

For each group, these linear and nonlinear models were the training and test data as
explained in Section 3.1. They commonly used the lag loads (1-day, 7-day, 14-day, 21-day,
and 28-day), temperature as the exogenous variable, and some other deterministic and
interaction variables to tackle the seasonal effects. Corresponding feature identifications
for each group are presented in Appendix A.1. Since we did not use the rolling window
approach [32] to estimate the models, the parameters remained constant for a given half-
hourly model in a given group, irrespective of the day we predicted. Furthermore, a major
difference experienced between linear and nonlinear models was that the model parameters
of the MLR process could be known for the linear models but not the nonlinear models.
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3.3.1. Parametric Models

The MLR-based ARMAX models used in this study were parametric models which
used a fixed number of parameters/features. Therefore, we built an equation representing
the relationship between the target variable (load) and the features. The features included
deterministic variables, temperature, lag loads, and interaction terms. Since each group’s
datasets was divided into 48 subsets, each model included 48 individual equations to
perform a 1-day forecast. The demand at day d and half-hour h was modeled as

Dh,d =
n

∑
i=1

αi · (Dth,d)i +
m

∑
i=1

βi · (Tmph,d)i +
p

∑
i=1

θi · (LLh,d)i +
q

∑
i=1

γi · (Ith,d)i + µh,d (1)

where Dth,d, Tmph,d, LLh,d, and Ith,d are groups of deterministic, temperature, lag loads, and
interaction terms, respectively. Similarly, α, β, θ, and γ are groups of their corresponding
coefficients. The error term µh,d ∼ N(0, ∑) is vital to address, since it tends to be serially
correlated with errors in previous days. Depending on the properties of ∑, the model is
classified as [4]:

1. OLS/LR: for i.i.d errors ∑ = I
2. GLSAR: for AR(p) errors ∑ = ∑ (ρ)

Therefore, we used OLS and LR models with the assumption of uncorrelated er-
rors and the GLSAR with AR(1) structure for the correlated errors in our study. The
mathematical forms for OLS and LR models were quite similar and followed the exact
representation of the OLS model given in [4]. However, during the parameter estimation
process, OLS used the matrix inversion to minimize the loss function, and LR used the
iterative gradient-descent algorithm. GLSAR also used the same mathematical form given
in [4] with correlated errors, but we selected the AR(1) structure. The Durbin–Watson (DW)
test on the errors/residuals of the models was conducted to check for any serial correlation.
Its test statistic usually ranges from 0 to 4. The values between 1.5 and 2.5 suggest no
significant serial correlation of errors.

3.3.2. Nonparametric Models

The DT and the RF were the nonlinear nonparametric models used in this study.
Compared to parametric models, DT and RF do not have a fixed set of features in a
predetermined form but can be adjusted according to the information derived from the
data. Therefore, it was impossible to formulate a relationship between the features and the
target variable as we did with the parametric models.

DT is a robust ML algorithm that forms a tree-like structure to predict the target
variable based on the decision rules induced by the features [6]. Each internal node,
branch, and leaf node of the tree consist of a test conducted on a feature, the outcome
of the test, and the final decision which predicts the target variable, respectively. Usu-
ally, DT models are prone to over-fitting, since they have high flexibility. The over-
fitting could be overcome by fine-tuning their hyper-parameters. By comparing the
CV MAPE of a DT model with different random sets of hyper-parameters, as shown
in Table A3 of Appendix A.2, we selected a good hyper-parameter combination to proceed
(random_state = 42, max_depth = None, min_samples_split = 10, min_samples_leaf = 5,
max_features = None, max_leaf_nodes = None, etc.).

RF is an ensemble of several DTs trained on random subsets of instances and the
dataset’s features. It uses averaging to improve the accuracy of the prediction and controls
the over-fitting [6]. It usually uses bootstrap sampling with the max_samples set to the
size of the train set. The hyper-parameters for the RF model were also selected in a similar
approach to DT (n_jobs = −1, random_state = 42, n_estimators = 100, max_depth = None,
min_samples_split = 4, min_samples_leaf = 2, max_features = 1.0, etc.), as shown in
Table A4 of Appendix A.2. One issue is the time it takes to train several DTs, which was
compensated for by allocating all available cores on the machine.
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3.3.3. Ensemble Model

The EL model was developed by optimally combining the five aforementioned indi-
vidual predictors’ outputs. This is a VR model which uses the weighted-averaging method
to predict the demand. For simplicity, the corresponding weights (w1, . . . , wn) were real-
ized by a trial-and-error method giving higher weights for individual models with higher
accuracies. The predicted demand using the VR model at day d and half-hour h can be
modeled as

(D̂h,d)VR =
n

∑
i=1

wi.(D̂h,d)i, (2)

where n and (D̂h,d)i represent the number of individual predictors (n = 5 in our case) and the
predicted demand with the ith individual model at day d and half-hour h, respectively. The
method of identifying the best set of weights for the VR model is presented in Appendix A.3.
It is expected that VR has the best prediction accuracy compared to all other individual
models. Although there are various performance metrics, we use the mean absolute
percentage error (MAPE), defined as

MAPE =
1

N|D|
N

∑
k=1

∑
α∈D

∣∣∣∣∣Dh,d − D̂h,d

Dh,d

∣∣∣∣∣× 100%, (3)

where N = 48; D represents the set of test days; and Dh,d and D̂h,d represent the actual
demand and predicted demand, respectively, at day d and half-hour h [4].

3.3.4. Model Evaluation

Our work used the validation error to select the best model, model features, and
model parameters. Validation was conducted with the training dataset, which provided an
additional measure of the model’s accuracy before testing with unseen data. We used three
different 4-fold validation schemes, Random CV, Blocked-CV, and EWFV, on the training
set (2009–2012). They were set to 4-fold validation, since the training set spanned four
years. Figure 3 illustrates the three validation schemes.

Figure 3. Illustration of validation schemes. Each split consisted of the corresponding validation fold
(orange) and the training fold (blue). Since there were four data splits, we used four validation folds
for each scheme.

If the ith data split of a validation scheme x has the validation error of ei,x, the overall
validation error (Ev,x) for scheme x is given as the average across all splits:

Ev,x =
1
s

s

∑
i=1

ei,x, (4)

where s represents the number of splits (s = 4 in our case).
We used the standard k-fold CV as the Random CV here with k = 4. The issue with

this scheme for time series data is evident, since it randomly selects the validation folds
without considering any serial correlations/dependencies of the data. Furthermore, this
randomness could cause a validation fold to become a weaker representative of the full-
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time series dataset. However, it is still applicable if the time series is found to be almost
stationary [35], and that is one primary reason for us to find the stationarity of the data
series at the beginning before putting them into the models.

Blocked-CV seems the most attractive scheme, since it uses each year from 2009 to
2012 as its four validation folds, making each fold uniform and a clear representation of
the entire dataset. For example, if any annual seasonality persists on the entire dataset, a
one-year fold can represent that. However, the Blocked-CV still has a dependency issue,
but at a lower level compared to Random CV, since the selection of the validation fold is no
longer random, and the validation fold for each split breaks precisely at the beginning/end
of the year.

The previous two schemes are categorized as CV schemes, and the last, EWFV, as an
FV scheme. The main difference between CV and FV is that the latter never uses future
data to predict the past data so that it can adapt well to deal with possible non-stationarity
in time series data [35]. This difference also benefits validation with time series data,
providing a minimum dependency issue. One major characteristic of EWFV is that it uses
validation folds with a fixed size while increasing the size of the training folds with every
split. For example, we used data from March 2009 to December 2010 to create the training
fold of the first split and selected only the following six months (from January 2011 to June
2011) as the validation fold. Therefore, we had the disadvantage of inefficient data usage,
since the initial splits did not cover all available data.

3.3.5. Performance Analysis

As stated in Equation (3), the performance index used to measure the accuracy of the
predictions in this study was the MAPE value. The usual practice is to use the test accuracy
(or the test MAPE value) to decide the final model. However, the overall model developed
here is capable of determining all the training, validation (for all three schemes discussed
in Section 3.3.4), and test MAPE values denoted by Etrain, Ev,x, and Etest, respectively, for
each model, including the EL model in each group.

For each model in each group, the validation scheme with the minimum difference
between the Ev,x and Etest values in the majority was chosen as the final validation scheme.
Furthermore, the model with the minimum validation MAPE under that chosen validation
scheme denoted by Ev,x∗ in each group was selected as the final model. It was expected
that the minimum validation error Ev,x would lead the final model to reflect the minimum
test error Etest too, which is proved with experimental results in Section 4.

4. Results and Discussion

We first show the results of the stationarity test of our data to show that it is stationary
and has high confidence levels, and hence validation schemes can be applied. Then, we
performed the training and validation of different models. We then evaluated the models
with their best hyper-parameters and/or features on the test data to compare the test
performance with the validation performance.

4.1. Checking for the Stationarity of Time-Series Data

It is required to analyze the given time series dataset beforehand to check for station-
arity. If any non-stationarity persists, it may result in spurious regressions. Furthermore,
prior identification of the stationarity/non-stationarity of the time series is essential when
selecting an appropriate validation scheme [35]. For example, CV uses random samples
at the risk of not being a clear representation of the entire data series due to possible
non-stationarity.

The load profile for the whole EGAT electricity data used in this paper is plotted in
Figure 4. From a visual inspection of the plot, it might seem that some parts of the data,
especially during the transition of 2011 and 2012 when a heavy flood occurred, may be
non-stationary or trend away from being stationary. Monthly, weekly, and daily electricity
load profiles shown in Figure 5 also seem to have seasonal effects. However, since we
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divided our dataset into groups and further into half-hours, we only need to focus on the
stationarity of each half-hourly series. To test for stationarity, we employed the augmented
Dickey–Fuller (ADF) test [37], which tests the null hypothesis that a unit root is present
in the time series data. The ADF test statistic was computed, and if it was less than the
relevant critical value of the Dickey–Fuller (DF) test, the null hypothesis could be rejected.
There are three versions of the ADF and DF tests [38]: test for a unit root with no constant
and trend terms, test with only a constant term, and test with both constant and trend
terms. For our dataset, we used the version with only a constant term, since it means
stricter stationarity than the trend of stationarity. The ADF tests for the whole dataset and
individual half-hourly series show that we can reject the null hypothesis at high confidence
levels (more than 90%).

Figure 4. Half-hourly electricity load profile from 1 March 2009 to 31 December 2013.

For the whole dataset, the ADF test results shown in Table 3 show that we can reject
the null hypothesis at almost 100% confidence. The test statistic is −18.18, much less than
the critical value of −3.43 for 99% confidence. Hence, the test result shows that the whole
dataset is stationary, even without the trend term. Among all the half-hourly data series (in
all four groups) used in our study, the ADF test results show that about 80% of the series are
stationary at a 95% confidence level. In contrast, the other series are stationary at slightly
less confidence levels (around 90% to 95%). Therefore, the ADF test results confirm that our
dataset, either as the whole or the sub-scale of each group, is stationary at high confidence
levels. This result assisted in conveniently implementing the validation schemes discussed
in Section 3.3.4.

Table 3. ADF test result for the full dataset.

Test Statistic −18.18469

p-value 2.427935 × 10−30

#lags used 64

number of observations used 84751

critical value (1%) −3.430427

critical value (5%) −2.861574

critical value (10%) −2.566788
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Figure 5. (a) Monthly variation in electric load for the year 2010. (b) Weekly variation in electric load
for May 2011. (c) Daily variation in electric load for the period 22–28 May 2011. (d) Daily load curves
(half-hourly variation) for the period 22–28 May 2011.

4.2. Model Selection

The key quantitative task of this study was to train, validate, and test the models.
There were six models, including the VR, for each group to proceed with. Corresponding
MAPE values determined using Equation (3) for each group are presented in Table 4.

The “Error type” column in Table 4 includes the training MAPE Etrain; the validation
MAPE Ev,x, where x denotes the corresponding validation scheme (Random CV, Blocked-
CV, and EWFV as Random CV, Blocked−CV, and EWFV, respectively); and the test MAPE
Etest. Note that a bold Ev,x value is the minimum among all three validation schemes for
the corresponding model in each group. Blocked-CV dominates, with 75% of Ev,x values
among all groups. Surprisingly, in groups 1 and 4, we see some unrealistic error figures for
Random CV and EWFV with LR and VR models. After an analysis, we found that some
predictions of LR and VR models at the half-hour HH = 28 (i.e., at 2:00 p.m. where the usual
weekday peak occurs) are extraordinarily large with those particular validation schemes.
The issue primarily appeared in the LR model, which uses the iterative gradient-descent
algorithm to minimize the loss function. The VR model is also affected, since it uses the
LR model as one of the individual predictors, even through it is given a small weight.
Nevertheless, the OLS model, which uses the matrix inversion technique for coefficient
estimation, generated no such large errors.
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Table 4. Training, validation, and test MAPE values (in %) for all groups.

Group # Error Type LR OLS GLSAR
(rho = 1) DT RF VR

1

Etrain 1.7929 1.7929 1.8809 1.6775 1.1043 1.6816
Ev,Random CV 2.0111× 106 2.6740 2.6754 4.2787 3.4503 2.6257
Ev,Blocked−CV 2.6113 2.6110 2.6142 4.2785 3.4557 2.5636
Ev,EWFV 3.4955× 106 3.1891 3.1891 4.2930 3.7216 6.9911× 105

Etest 1.9055 1.9053 1.9661 3.6142 3.0299 1.8817

2

Etrain 1.6163 1.6163 1.6274 1.6718 1.1103 1.5171
Ev,Random CV 2.7604 2.7598 2.7814 4.2924 3.4702 2.6976
Ev,Blocked−CV 2.7506 2.7505 2.7535 4.2450 3.4046 2.6665
Ev,EWFV 3.0149 3.0132 3.0074 4.2301 3.3950 2.8311
Etest 2.0161 2.0161 2.0201 3.6391 3.0927 1.9458

3

Etrain 4.4025 4.4025 4.6923 6.8680 4.6377 4.1866
Ev,Random CV 9.2514 9.2524 9.3811 15.4341 12.6259 8.8199
Ev,Blocked−CV 8.2515 8.2530 8.2161 15.4770 12.3826 7.9559
Ev,EWFV 10.8780 10.8790 10.9010 14.8387 12.4338 10.3365
Etest 5.5077 5.5084 5.4306 13.7666 11.7341 5.1858

4

Etrain 2.3238 2.3225 2.4048 2.3436 1.5115 2.1789
Ev,Random CV 1.8061× 106 3.2325 3.2329 5.3151 4.1512 8.1916× 103

Ev,Blocked−CV 3.1880 3.1817 3.1822 5.3634 4.2053 3.0910
Ev,EWFV 3.7727× 106 3.7141 3.7106 5.2222 4.3171 7.5455× 105

Etest 2.4577 2.4564 2.5760 4.8106 4.0102 2.4549

The findings from Table 4 are not strong enough to justify how good the Blocked-CV
scheme is compared to the other two schemes. One suggestion is to compare the validation
performance with respect to the test performance [35]. The difference between these two
errors (Ev,x – Etest) for each model in each group is listed in Table 5.

Table 5. Differences between validation MAPE and test MAPE for all groups.

Group # Validation Scheme LR OLS GLSAR
(rho = 1) DT RF VR

1
Random CV 2.0111× 106 0.7687 0.7093 0.6645 0.4204 0.7440
Blocked-CV 0.7058 0.7057 0.6481 0.6643 0.4258 0.6819
EWFV 3.4955× 106 1.2838 1.223 0.6788 0.6917 6.9911× 105

2
Random CV 0.7443 0.7437 0.7613 0.6533 0.3775 0.7518
Blocked-CV 0.7345 0.7344 0.7334 0.6059 0.3119 0.7207
EWFV 0.9988 0.9971 0.9873 0.5640 0.3023 0.8853

3
Random CV 3.7437 3.744 3.9505 1.6675 0.8918 3.6341
Blocked-CV 2.7438 2.7446 2.7855 1.7104 0.6485 2.7701
EWFV 5.3703 5.3706 5.4704 1.0700 0.6997 5.1507

4
Random CV 1.8061× 106 0.7761 0.6569 0.5045 0.1410 8.1892× 103

Blocked-CV 0.7303 0.7253 0.6062 0.5528 0.1951 0.6361
EWFV 3.7727× 106 1.2577 1.1346 0.4116 0.3069 7.5455× 105

According to [35], the best validation scheme has its validation MAPE close to the
test MAPE. For example, for data group 1 and the OLS model, the Blocked-CV has the
minimum MAPE difference of 0.7057%; compare that to 0.7687% for Random CV and
1.2838% for EWFV. Furthermore, for all the linear models (LR, OLS, and GLSAR) and the
VR model, the Blocked-CV was the best validation scheme for all data groups.

However, for the nonlinear models (DT and RF), there was no dominating validation
scheme among all data groups. Nevertheless, note that for DT, the EWFV performed
significantly better than other schemes for data groups 2 to 4. One of the reasons for such
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varying performance among validation schemes may be that the hyper-parameters of these
nonlinear models may have stuck in some local optima. Furthermore, the splits of DT and
RF were optimized based on the default mean-squared error (MSE), not the MAPE.

If we consider all the bold minimum values in Table 5, 75% (majority) of that values
resulted from the Blocked-CV scheme. Therefore, we selected it as the best validation
scheme to proceed, as per our suggestion in Section 3.3.5. However, although the Blocked-
CV dominates, Random CV performed very similarly to it. EWFV was significantly worse
than the other two schemes.

Note that a 75% majority is the same figure we found in Table 4 too. This implies that
a minimum Ev,x results in a minimum Ev,x − Etest for each model with each group of our
study. For a given model with a given group, the corresponding Etest value is always less
than all three Ev,x values.

Since we planned to select the best model based on the minimum validation error of
the selected scheme (Blocked-CV in our case), we can see from Table 4 that the VR performs
better than all other individual models, resulting in minimum Ev,Blocked−CV values of
2.5636%, 2.6665%, 7.9559%, and 3.0910% for Groups 1, 2, 3, and 4, respectively. Further, as
per our expectation in Section 3.3.5, the minimum Ev,Blocked−CV also led the final VR models
to reflect a minimum test MAPE, resulting in Etest values of 1.8817%, 1.9458%, 5.1858%,
and 2.4549% for Groups 1, 2,3, and 4, respectively.

In addition, another important result when looking at the Blocked-CV error and the
test error in Table 4 is that the parametric MLR models always performed better than
nonparametric ML models on our dataset. For example, the Ev,Blocked−CV values for LR,
OLS, and GLSAR models in Group 1 are 2.6113%, 2.6110%, and 2.6142%, respectively.
However, those for DT and RF models are comparatively higher, at 4.2785% and 3.4557%,
respectively. Etest values for Group 1 also convey a similar pattern.

Note that the MAPE values shown in Table 4 are the average values across all half
hours. To see what the MAPE is in each half-hour, we plotted the validation and test MAPE
values for each half-hour in Figure 6 and Figure 7, respectively.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Comparison of the Blocked-CV MAPE values obtained by each half-hourly model in each
group; (a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4.

The errors of DT and RF models are comparatively higher than those of the other
models for each half-hour in each group, and they are worse during off-peak times. The
use of MSE instead of MAPE to measure the quality of the split in default for these two
nonparametric models could be one reason for this. The other three parametric models
always produced lower error values than DT and RF. Overall, the results suggest that the
VR model (green color curve) in each group excels in predicting with lower values for both
Ev,Blocked−CV and Etest.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Comparison of the test MAPE values obtained by each half-hourly model in each group.
(a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4.

In Appendix A, we show additional results on the feature identification for the models
in each group, hyper-parameter tuning of the nonlinear models, weight identification
of the individual predictors in the VR model, Ev,Blocked−CV and Etest values obtained by
each half-hourly model in each group, the graphical representation of the forecasting
performance of the VR model in each group, and the auto-correlation function (ACF) and
partial auto-correlation function (PACF) plots of the VR model residuals (HH = 28) in
each group.

5. Conclusions and Future Work

This paper presented a trending ML approach using EL to perform SLTF in Thailand
accurately. The individual predictors in the EL model consisted of LR, OLS, and GLSAR—
parametric predictors; and DT and RF as nonparametric predictors. The dataset provided
by EGAT was divided into four groups and into half-hours for the convenience of modeling.

Three different model validation schemes were implemented to evaluate the models,
and the Blocked-CV was then selected as the best scheme based on the results. The ADF
test results greatly supported the validity of applying model validation on time series data,
as they show that all sub-data series used in this study are stationary at high confidence
levels.

The proposed EL model resulted in the minimum Blocked-CV MAPE values of
2.5636%, 2.665%, 7.9559%, and 3.0910% for Groups 1, 2, 3, and 4, respectively; and the
minimum test MAPE values of 1.8817%, 1.9458%, 5.1858%, and 2.4549% for Groups 1, 2, 3,
and 4, respectively. MAPE values for forecasting holiday loads (Group 3) are quite high
because of the limited amount of training data available. However, they are still competi-
tive compared to the holiday models in previous research [4]. Grouping the dataset into
weekdays (Group 1) and weekends (Group 2) proved its worth, since this resulted in lower
values in both validation MAPE and test MAPE compared to the full dataset (Group 4).
Furthermore, for our data, when considering the forecasting accuracy of the individual
predictors, all MLR-based parametric regressive models outperformed the nonparametric
DF and RF models.

Let us discuss some limitations and the future directions of our work. Since the
dataset used in this study was somewhat old (2009–2013), the developed models may not
be efficiently used with more recent data. Therefore, an essential extension for this study
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might be to use more recent data to build models. The dataset size could also be increased
based on the availability to build robust models and achieve better prediction accuracy.

The EL model in our study only consists of classical and ML models. Although [4]
showed that a simple feed-forward neural network performed worse than linear regression
models with our dataset, it would be interesting to see how our EL model would perform by
adding some DL models such as neural networks to its aggregation. At the same time, it is
essential to see how more modern techniques would perform with respect to the regression
techniques within the cross-validation sets. In addition, our EL model was developed as
a voting regressor with a weighted average. However, stronger and more complex EL
models could be developed using bagging, boosting, or stacking methods, which could
also be a possible extension for this study to make the EL model more accurate.

Furthermore, we found some important statistical tests used in the literature to verify
the superiority of the models: Diebold and Mariano (DM) test [33] and Wilcoxon signed-
rank (WSR) test [29]. Those tests will be used in our future work to validate the results.
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Appendix A. Extended Results

Appendix A.1. Feature Identification

Since our dataset is a preprocessed version with many deterministic features and
meteorological parameters such as temperature, lag loads, and interaction terms, we
selectively utilized those available features for each group. Note that, to preserve uniformity,
we kept the selected set of features common to all the models in a given group. However,
selecting the best set of features among many available features for any model is challenging.
We have used two strategies: the correlation test and the CV. We selected the initial set of
features based on the standard correlation coefficient (also called Pearson’s r) [6], which
analyzes the correlation between each feature and the load. Since the Blocked-CV was
expected to be promising due to its structure, we used it to fine-tune and filter the best
set. The resulting set of features allocated to the corresponding group/s are presented in
Table A1.

Table A1. List of selected input features in each group.

Types Features Description Group

Deterministic

WD Week day dummy (Mon, Tue, . . . , Sat, Sun) 3
MD Month dummy (Jan, Feb, . . . , Nov, Dec) 1,2,4
DayAfterHoliday Binary 0 or 1 1,2,4
DayAfterLongHoliday Binary 0 or 1 1,4
DayAfterSongkran Binary 0 or 1 1,4
Flood Binary 0 or 1 1,2,4
Year Year (2009, . . . , 2013) 1,2,3,4
HolidayType Type of the holiday (Songkran, Newyear, . . . , etc) -

Temperature
MaxTempYesterday 1-day ahead maximum temperature 1,2,3
MaxTemp Maximum forecasted temperature 1,2
MA2pmTemp Moving avearage of temperature at 2:00 p.m. 2
Temp Forecasted temperature -

Lagged

Load2pmYesterday 1-day ahead load at 2:00 p.m. 1
load7d 7-days ahead load 1,2,3,4
load14d 14-days ahead load 1,2,3,4
load21d 21-days ahead load 1,2,3,4
load28d 28-days ahead load 1,2,3,4
load1d_cut2pm 1-day ahead untill 2:00 p.m. and 2-days ahead after 2:00 p.m. load -
load2d_cut2pm 2-days ahead untill 2:00 p.m. and 3-days ahead after 2:00 p.m. load -

Interaction

WD:Temp Interaction of week day dummy to temperature 2,3,4
MD:Temp Interaction of month dummy to temperature 1,4
WD:load1d_cut2pm Interaction of week day dummy to load1d_cut2pm 1,3,4
WD:load2d_cut2pm Interaction of week day dummy to load2d_cut2pm 2
WD:Load2pmYesterday Interaction of week day dummy to Load2pmYesterday 2,3,4
HolidayType:Load2pmYesterday Interaction of HolidayType dummy to Load2pmYesterday 3,4
MD:load1d_cut2pm Interaction of month dummy to load2d_cut2pm 2

The correlation matrix of some features used in this research is presented in Table A2.
Since our models use more than 115 features, we included only the first seven features with
the highest correlations with the load.
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Table A2. Correlation matrix for the first seven features with the highest correlations with the load.

load load7d load14d load21d load28d load1d
_cut2pm temp load2d

_cut2pm

load 1.0000 0.8227 0.8159 0.8019 0.7950 0.7578 0.6728 0.6598
load7d 0.8227 1.0000 0.8239 0.8216 0.8051 0.6545 0.5740 0.6057
load14d 0.8159 0.8239 1.0000 0.8250 0.8219 0.6369 0.5755 0.5703
load21d 0.8019 0.8216 0.8250 1.0000 0.8260 0.6306 0.5555 0.5717
load28d 0.7950 0.8051 0.8219 0.8260 1.0000 0.6208 0.5494 0.5543
load1d_cut2pm 0.7578 0.6545 0.6369 0.6306 0.6208 1.0000 0.6221 0.8103
temp 0.6728 0.5740 0.5755 0.5555 0.5494 0.6221 1.0000 0.5966
load2d_cut2pm 0.6598 0.6057 0.5703 0.5717 0.5543 0.8103 0.5966 1.0000

Appendix A.2. Hyper-Parameter Tuning of the Nonlinear Models

Since RF is made of several DTs, they have many hyper-parameters in common.
Selecting the best set of hyper-parameters for a nonlinear model is always challenging, and
there is a high chance that they will get stuck at a local optimum. The strategy used in our
study was comparing the Ev,Blocked−CV of nonlinear models with different random sets of
hyper-parameters. We changed only the most significant hyper-parameters while leaving
others at their default settings [6]. The sets that offer the minimum Ev,Blocked−CV for each
DT and RF model were then selected as the final hyper-parameter sets.

The hyper-parameter tuning process of the DT model for Group 1 is shown in Table A3.
The hyper-parameters not used in the tuning process were left at their default settings.

Table A3. Performance of the DT model with different sets of hyper-parameters (Group 1).

random
_state

max
_depth

min_samples
_split

min_samples
_leaf

max
_features

max_leaf
_nodes Etrain Ev,Blocked−CV Etest

42 max 2 1 max max 0 4.6386 4.0080
42 20 2 1 max max 0.0225 4.6249 4.0110
42 5 2 1 max max 2.7819 4.6158 3.8731
42 5 4 2 max max 2.8021 4.6111 3.8433
42 5 4 2 15 10 3.7598 4.6004 4.8738
42 10 2 1 max max 1.0252 4.5467 3.9288
42 max 4 2 max max 0.7222 4.4841 3.8579
42 20 4 2 max max 0.7278 4.4792 3.8521
42 max 10 5 max max 1.6775 4.2785 3.6142

The set of hyper-parameters in the last row of Table A3, shown in bold, resulted in
minimum Ev,Blocked−CV and Etest values for the DT model. Not only did this occur with
Group 1, but it also produced similar results with other groups. Therefore, that particular
set of hyper-parameters and those left at their default settings were selected to build the
DT model in each group as follows.

DecisionTreeRegressor(*, criterion = ‘squared_error’, splitter = ‘best’, max_depth = None,
min_samples_split = 10, min_samples_leaf = 5, min_weight_fraction_leaf = 0.0, max_features
= None, random_state = 42, max_leaf_nodes = None, min_impurity_decrease = 0.0, ccp_alpha
= 0.0).

The hyper-parameter tuning process of the RF model for Group 1 is shown in Table A4.
The hyper-parameters not used in the tuning process were also left at their default settings
with this model.

Similarly, the set of hyper-parameters in the last row of Table A4 shown in bold and
those left at their default settings were selected to build the RF model in each group as
follows.

RandomForestRegressor(n_estimators = 100, *, criterion = ’squared_error’, max_depth
= None, min_samples_split = 4, min_samples_leaf = 2, min_weight_fraction_leaf = 0.0, max_
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features = 1.0, max_leaf_nodes = None, min_impurity_decrease = 0.0, bootstrap = True,
oob_score = False, n_jobs = −1, random_state = 42, verbose = 0, warm_start = False,
ccp_alpha = 0.0, max_samples = None).

Table A4. Hyper-parameter tuning of the RF model (Group 1).

n_jobs random
_state

n
_estimators

max
_depth

min
_samples

_split

min
_samples

_leaf

max
_features Etrain Ev,Blocked−CV Etest

max 42 100 5 4 1 max 2.3844 3.8418 3.3234
max 42 200 5 4 1 max 2.3757 3.8360 3.3168
max 42 100 10 2 2 15 1.4864 3.6119 3.2806
max 42 200 max 10 5 20 1.7615 3.5757 3.2076
max 42 100 max 10 5 max 1.6615 3.4842 3.0356
max 42 200 max 10 5 max 1.6493 3.4831 3.0311
max 42 500 max 10 5 max 1.6467 3.4827 3.0336
max 42 100 max 2 1 max 0.9444 3.4733 3.0753
max 42 500 max 2 1 max 0.9241 3.4707 3.052
max 42 200 max 2 1 max 0.9266 3.4674 3.0536
max 42 100 max 6 2 max 1.2059 3.4574 3.0324
max 42 100 max 4 2 max 1.1043 3.4557 3.0299

Appendix A.3. Weight Identification of the VR Model

Even though we implemented a VR model with the weighted-averaging method, it is
hard to find a straightforward method to determine the corresponding weights associated
with its predictors. However, giving more weights to the best performing individual
models has proven its effectiveness by improving the performance of the final VR model,
as shown in Table A5.

Table A5. Performance of VR based on different weights for the individual models (Group 1).

Weights of VR (wi) Performance of VR

OLS GLSAR LR DT RF Ev,Blocked−CV Etest

0.1 0.1 0.2 0.3 0.3 2.8821 2.3769
0.3 0.3 0 0.25 0.15 2.6714 2.1047
0.2 0.2 0.2 0.2 0.2 2.6438 2.0797
0.3 0.3 0 0.15 0.25 2.6220 2.0589
0.4 0.3 0.3 0 0 2.6120 1.9055
0.3 0.3 0.3 0.05 0.05 2.5643 1.8818
0.6 0.1 0.2 0.05 0.05 2.5636 1.8817

We found that the parametric linear models OLS, GLSAR, and LR performed better
than DT and RF with our data. Therefore, we selected a few arbitrary sets of weights, but
many of them gave more weight to these parametric models (especially the OLS). The
last row which is in bold—0.6, 0.1, 0.2, 0.05, and 0.05 for OLS, GLSAR, LR, DT, and RF,
respectively—resulted in minimum Ev,Blocked−CV and Etest and values. Not only did this
occur with Group 1, but it also produced similar results with other groups. Therefore, that
particular set was selected to build the final VR model in each group.

Appendix A.4. Tables and Figures for More Detailed Information

The Blocked-CV and test MAPE values obtained by half-hourly models in each group
are presented in Table A6 and Table A7, respectively. In addition, the forecasting perfor-
mance of the VR models in each group are illustrated in Figure A1–A4. Finally, the ACF
and PACF plots for the residuals of VR models (special case: HH = 28) in each group are
shown in Figure A5.



Energies 2022, 15, 8567 23 of 30

Table A6. Blocked-CV MAPE value (in %) obtained by each half-hourly model in each group.

Group 1 Group 2 Group 3 Group 4

HH LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR

0 2.4310 2.4299 2.4337 4.1803 3.3336 2.3592 2.3608 2.3607 2.3631 5.1452 4.2357 2.3766 5.0767 5.0768 5.0343 14.5507 13.0661 4.9545 2.5302 2.5303 2.5321 5.3576 4.0958 2.4239
1 2.3847 2.3839 2.3875 4.1356 3.3681 2.3039 2.4382 2.4392 2.4462 5.1728 4.3240 2.4689 4.9403 4.9401 4.8714 14.7321 12.4802 4.8272 2.5563 2.5561 2.5588 5.3745 4.0761 2.4488
2 2.4754 2.4729 2.4766 4.3037 3.3953 2.4159 2.5159 2.5159 2.5133 4.7368 4.2390 2.5095 4.8118 4.8180 4.7540 14.9982 12.4134 4.7558 2.6295 2.6296 2.6306 5.4003 4.1432 2.5282
3 2.5367 2.5382 2.5431 4.2700 3.4242 2.4779 2.7899 2.7888 2.7757 5.0234 4.2097 2.7596 4.8839 4.8784 4.8793 14.4652 12.6275 4.8979 2.7224 2.7223 2.7223 5.3164 4.1148 2.6072
4 2.6573 2.6588 2.6646 4.3606 3.4047 2.6006 2.9581 2.9590 2.9474 4.8961 4.2375 2.8844 4.8992 4.8978 4.9006 13.9103 12.5296 4.8601 2.8637 2.8642 2.8653 5.2812 4.1902 2.7505
5 2.6780 2.6793 2.6839 4.2868 3.3695 2.6093 2.9689 2.9660 2.9549 4.9948 4.0980 2.9036 4.9312 4.9281 4.9286 14.8110 12.4283 4.9341 2.8520 2.8522 2.8536 5.2874 4.1909 2.7326
6 2.7262 2.7258 2.7310 4.4684 3.3811 2.6439 2.9260 2.9268 2.9202 4.6655 4.0699 2.8786 5.0590 5.0588 5.0727 14.4617 12.6898 4.9504 2.8612 2.8606 2.8629 5.3842 4.1731 2.7535
7 2.7183 2.7188 2.7247 4.2299 3.3399 2.6326 2.8419 2.8419 2.8413 4.9227 4.1071 2.7927 4.9746 4.9716 4.9888 15.4364 12.5801 4.9189 2.8309 2.8299 2.8333 5.4080 4.0853 2.7267
8 2.7640 2.7636 2.7691 4.2383 3.3699 2.6778 2.8957 2.8920 2.8743 4.9668 3.9018 2.8535 5.0222 5.0250 5.0440 15.9058 12.4580 4.9319 2.8640 2.8643 2.8665 5.3119 4.1192 2.7678
9 2.7015 2.7023 2.7071 4.2491 3.2892 2.6027 2.7930 2.7912 2.7781 4.8386 3.7447 2.7680 5.2220 5.2236 5.2528 13.9452 12.6082 5.0923 2.8160 2.8154 2.8176 5.0545 4.0188 2.7143
10 2.6154 2.6131 2.6182 4.0768 3.2658 2.5341 2.7143 2.7130 2.7036 4.0346 3.4320 2.6326 4.9934 4.9956 5.0156 14.0617 12.1876 4.8153 2.7305 2.7304 2.7328 4.9439 3.9075 2.6501
11 2.6489 2.6483 2.6534 4.1290 3.2771 2.5706 2.8387 2.8382 2.8289 3.9373 3.3386 2.7100 5.3051 5.3026 5.3141 16.8615 12.2315 5.1550 2.7734 2.7729 2.7748 5.0152 3.8752 2.7102
12 2.5487 2.5481 2.5522 4.2710 3.6706 2.5260 2.8805 2.8819 2.8976 3.7443 3.3776 2.7490 5.9025 5.9050 5.9160 14.8501 11.4190 5.7377 2.7857 2.7859 2.7893 4.9289 3.9853 2.7237
13 2.6199 2.6209 2.6267 4.7805 4.2020 2.6234 3.0707 3.0710 3.0713 4.1452 3.4535 2.9094 6.9625 6.9665 6.9501 14.8089 10.9926 6.7743 2.9199 2.9203 2.9229 5.2390 4.0780 2.8668
14 2.4680 2.4678 2.4734 4.3759 3.8379 2.4628 3.1698 3.1713 3.1560 4.0283 3.3103 3.0208 7.6285 7.6417 7.5528 13.0677 10.7485 7.2710 2.9345 2.9343 2.9337 4.9286 3.7233 2.8373
15 2.3192 2.3192 2.3245 3.8180 3.0699 2.2535 2.9338 2.9336 2.9354 3.5930 3.1931 2.7774 9.1358 9.1324 9.1473 14.7006 11.5698 8.7516 2.9968 2.9968 2.9985 4.8726 3.6422 2.8903
16 2.2770 2.2780 2.2807 3.5099 2.8977 2.1981 2.8742 2.8737 2.8834 3.5018 2.9611 2.6975 9.5672 9.5684 9.3278 15.2502 11.9663 9.0885 3.1494 3.1497 3.1529 4.9302 3.7474 3.0233
17 2.2949 2.2920 2.2939 3.6023 2.8936 2.2207 2.8523 2.8528 2.8582 3.6948 2.8584 2.6911 10.1200 10.1222 9.9444 17.8848 13.8165 9.8507 3.3877 3.3878 3.3914 5.5057 4.1115 3.2874
18 2.3298 2.3295 2.3310 3.5937 2.9724 2.2817 2.7523 2.7509 2.7594 3.6490 2.7941 2.6278 10.2235 10.2238 10.1268 18.4897 13.5299 9.9867 3.4666 3.4659 3.4710 5.3508 4.2055 3.3545
19 2.4463 2.4455 2.4486 3.7609 3.0535 2.4077 2.7545 2.7540 2.7625 3.6742 2.8081 2.6412 10.3383 10.3301 10.3237 18.1362 13.5328 10.0900 3.4802 3.4817 3.4853 5.3353 4.2748 3.3880
20 2.3249 2.3249 2.3266 3.5042 2.9751 2.2835 2.6421 2.6421 2.6511 3.7607 2.8449 2.5315 10.3026 10.3132 10.2866 18.3225 13.5937 10.0236 3.3571 3.3557 3.3594 5.4750 4.2942 3.2909
21 2.3755 2.3754 2.3779 3.5245 2.9570 2.3378 2.7240 2.7233 2.7316 3.5530 2.8973 2.6071 10.1516 10.1678 10.1015 16.7778 13.4937 9.7635 3.3871 3.3883 3.3894 5.2987 4.3717 3.3225
22 2.4530 2.4536 2.4565 3.6941 3.0099 2.4147 2.6803 2.6803 2.6908 3.6570 2.7732 2.5770 10.5812 10.5889 10.6145 16.6486 13.2651 10.1759 3.4422 3.4427 3.4426 5.6606 4.2954 3.3650
23 2.3838 2.3829 2.3855 3.6749 2.9099 2.3517 2.7296 2.7289 2.7401 4.0742 2.8609 2.6346 10.9435 10.9433 10.9876 17.5554 13.2557 10.4482 3.4018 3.4031 3.4023 5.5804 4.3388 3.3397
24 2.4414 2.4405 2.4433 3.7372 2.9975 2.4024 2.4964 2.4960 2.4958 3.7271 3.0056 2.4127 9.5198 9.5205 9.4444 15.7245 12.1110 9.0714 3.2490 3.2520 3.2513 5.8991 4.3881 3.1848
25 2.2794 2.2799 2.2820 3.7491 3.0241 2.2565 2.5303 2.5301 2.5328 3.8511 2.9307 2.4609 9.2112 9.2151 9.0467 14.8980 11.7713 8.8157 3.1091 3.1084 3.1071 5.3412 4.1004 3.0365
26 2.2700 2.2699 2.2725 3.7980 3.0146 2.2573 2.4627 2.4621 2.4618 3.7410 2.8511 2.3922 10.0324 10.0382 9.9816 15.8001 12.3047 9.5261 3.2374 3.2382 3.2385 6.0164 4.3722 3.1798
27 2.3078 2.3080 2.3111 3.5546 3.0050 2.2893 2.6820 2.6816 2.6923 4.0488 2.9787 2.6317 10.4021 10.3987 10.5198 17.5354 13.3845 9.8853 3.4246 3.4250 3.4232 5.6049 4.3240 3.3531
28 2.3061 2.3024 2.3051 3.4559 2.9577 2.2765 2.7188 2.7199 2.7302 3.9525 2.9552 2.6464 9.6605 9.6674 10.0588 18.1763 13.4573 9.3535 3.7014 3.3914 3.3916 5.7529 4.3940 3.3453
29 2.2945 2.2940 2.2954 3.6082 3.0618 2.2670 2.8088 2.8101 2.8267 3.9818 3.0073 2.7288 10.1999 10.2077 10.4019 19.5539 13.5246 9.9131 3.4451 3.4453 3.4450 5.6108 4.3841 3.3787
30 2.2628 2.2619 2.2634 3.6372 3.1594 2.2406 2.7414 2.7424 2.7516 4.1532 2.9923 2.6777 10.8234 10.8347 10.9037 18.7007 13.3191 10.3823 3.3823 3.3830 3.3831 5.1741 4.3662 3.2969
31 2.2842 2.2839 2.2859 3.8607 3.2394 2.2879 2.7868 2.7860 2.7960 4.0731 3.1156 2.7275 10.9546 10.9515 10.8792 18.5521 13.5019 10.3829 3.4121 3.4112 3.4109 5.6027 4.4686 3.3430
32 2.2711 2.2693 2.2713 3.8630 3.1900 2.2627 2.8520 2.8519 2.8605 3.9364 3.0828 2.7570 10.5977 10.6088 10.6220 16.4207 13.5917 9.9075 3.3707 3.3703 3.3702 5.4776 4.4276 3.3079
33 2.2898 2.2884 2.2904 3.9588 3.2651 2.2765 2.8206 2.8224 2.8251 4.0672 3.2204 2.7431 10.3175 10.3146 10.2315 21.1591 13.2674 9.7591 3.3268 3.3282 3.3271 5.6921 4.4517 3.2554
34 2.5191 2.5188 2.5213 4.0084 3.4432 2.4947 2.6407 2.6399 2.6507 3.9064 3.0917 2.5732 9.5576 9.5711 9.7515 16.6259 12.3087 9.0861 3.3523 3.3520 3.3495 5.4837 4.3731 3.2843
35 2.7271 2.7267 2.7299 4.5934 3.6465 2.6975 2.5716 2.5711 2.5834 3.7845 3.0696 2.4757 8.8375 8.8404 8.9474 13.3173 11.2307 8.3728 3.4163 3.4169 3.4142 5.3478 4.3906 3.3441
36 3.0137 3.0132 3.0162 4.2830 3.8438 2.9219 2.4448 2.4439 2.4634 3.9042 3.2980 2.3588 8.6497 8.6406 8.5422 14.2890 10.9366 8.2917 3.5467 3.5456 3.5433 5.2865 4.3017 3.4337
37 2.9683 2.9708 2.9736 4.6466 4.0361 2.9010 2.5074 2.5080 2.5062 3.8764 3.2969 2.4096 8.3557 8.3437 8.4651 12.8407 10.2389 8.0618 3.3961 3.3956 3.3952 5.3841 4.2240 3.2938
38 2.7927 2.7928 2.7953 4.4861 3.8681 2.7598 2.2789 2.2793 2.2758 3.8734 3.0221 2.1839 8.7827 8.7853 8.6908 12.5255 10.6675 8.4454 3.2535 3.2534 3.2512 5.0492 4.1021 3.1333
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Table A6. Cont.

Group 1 Group 2 Group 3 Group 4

HH LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR

39 2.8005 2.8008 2.8035 4.7368 3.7627 2.7701 2.2517 2.2517 2.2668 3.7167 3.0445 2.1798 8.7165 8.7213 8.5595 11.7371 10.7161 8.3071 3.2247 3.2243 3.2230 5.1346 3.9667 3.1279
40 2.8227 2.8226 2.8255 5.2978 3.7520 2.8116 2.3243 2.3235 2.3175 3.9169 3.1175 2.2502 8.6953 8.6932 8.5612 13.4336 11.0261 8.3184 3.1801 3.1804 3.1794 4.8376 3.9637 3.0695
41 2.8740 2.8744 2.8770 5.3450 3.9833 2.8551 2.4151 2.4154 2.4137 4.0154 3.2747 2.3485 8.3157 8.3150 8.1973 10.8769 10.7859 7.9863 3.1614 3.1615 3.1596 5.0513 3.9854 3.0622
42 2.9742 2.9749 2.9766 5.1515 4.0987 2.9452 2.6318 2.6328 2.6350 4.3298 3.4965 2.5497 8.4364 8.4322 8.2487 13.5478 11.1704 8.1240 3.2441 3.2442 3.2430 5.0109 4.0892 3.1414
43 3.0585 3.0580 3.0598 6.1914 4.1821 3.0422 2.7106 2.7117 2.7197 4.7270 3.6933 2.6344 8.3101 8.3106 8.1429 13.5850 11.5459 8.0354 3.2874 3.2855 3.2849 5.1292 4.1768 3.1860
44 3.1740 3.1747 3.1757 6.2450 4.3388 3.1361 2.8910 2.8902 2.8926 5.0446 3.9648 2.8144 8.3835 8.3744 8.2210 15.6902 12.5735 8.2382 3.4036 3.4010 3.3996 5.4993 4.4079 3.3121
45 3.3814 3.3807 3.3819 5.1909 4.2938 3.2771 3.2774 3.2764 3.2859 5.6486 4.2257 3.1977 8.5802 8.5824 8.3227 14.1206 12.6343 8.3030 3.6111 3.6120 3.6119 5.8413 4.5127 3.5006
46 3.5135 3.5135 3.5154 5.5094 4.4850 3.4153 3.4986 3.5001 3.5104 5.4973 4.2966 3.3805 9.2393 9.2346 9.0166 14.4375 13.1417 9.0219 3.7508 3.7518 3.7514 5.9089 4.7459 3.6242
47 3.5365 3.5370 3.5376 5.4243 4.5555 3.4188 3.5786 3.5790 3.5872 5.5784 4.3191 3.4559 9.5150 9.5216 9.2795 14.7160 13.6729 9.2377 3.8003 3.8017 3.8018 6.0642 4.8822 3.6697

avg 2.6113 2.6110 2.6142 4.2786 3.4557 2.5636 2.7506 2.7505 2.7534 4.2450 3.4046 2.6665 8.2515 8.2530 8.2161 15.4770 12.3826 7.9559 3.1880 3.1817 3.1822 5.3634 4.2054 3.0910

stdev 0.3294 0.3298 0.3296 0.6812 0.4642 0.3164 0.2732 0.2733 0.2728 0.5933 0.5173 0.2588 2.1118 2.1132 2.1120 2.1049 0.9900 1.9788 0.3189 0.3116 0.3109 0.3017 0.2372 0.3140

Table A7. Test MAPE values (in %) obtained by each half-hourly model in each group.

Group 1 Group 2 Group 3 Group 4

HH LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR

0 1.6367 1.6361 1.6585 3.8487 3.0361 1.6798 1.5067 1.5080 1.5074 4.7329 3.7762 1.5605 5.6291 5.6286 5.7646 11.9988 11.7283 4.4163 1.8075 1.8087 1.8165 4.9079 4.1017 1.7786
1 1.7090 1.7087 1.7178 3.9278 2.9936 1.7324 1.6345 1.6338 1.6149 4.1714 3.8416 1.6473 4.3676 4.3702 4.7070 12.8359 11.9655 3.4100 1.8417 1.8401 1.8755 5.1429 4.1813 1.8206
2 1.6873 1.6869 1.7052 4.0163 3.0758 1.7159 1.7313 1.7302 1.7078 4.7978 3.7795 1.7379 4.1892 4.1820 4.3853 12.2196 12.6604 3.5080 1.8131 1.8133 1.8602 5.0090 4.2415 1.8013
3 1.7573 1.7576 1.7702 4.0782 3.0425 1.7689 1.6785 1.6789 1.6525 4.0380 3.8914 1.6729 4.2924 4.2971 4.3590 12.2234 12.4522 3.5620 1.8887 1.8887 1.9209 4.9116 4.2535 1.8974
4 1.8142 1.8138 1.8436 3.8964 3.0276 1.8526 1.7655 1.7651 1.7279 4.4654 3.8314 1.7674 4.6843 4.6848 4.7217 11.2544 11.7404 3.8847 1.9417 1.9416 1.9745 4.9659 4.2764 1.9315
5 1.8797 1.8799 1.9034 3.8721 3.1085 1.9065 1.8163 1.8164 1.7993 4.0471 3.6953 1.8308 4.3780 4.3809 4.4250 13.0530 12.0709 3.6945 1.9840 1.9840 2.0379 4.7122 4.1702 1.9925
6 1.9133 1.9122 1.9527 3.9877 3.1096 1.9667 1.8562 1.8563 1.8226 3.7828 3.7183 1.8301 4.6323 4.6358 4.6616 11.5247 10.8906 3.9251 2.0164 2.0169 2.0837 4.9342 4.1356 2.0407
7 2.0101 2.0090 2.0492 4.5166 3.2271 2.0659 1.8784 1.8783 1.8583 5.5931 3.7931 1.8810 4.4459 4.4457 4.4550 10.9201 10.9253 3.6281 2.0743 2.0747 2.1967 5.2218 4.1787 2.1504
8 1.9201 1.9198 1.9632 4.3884 3.0976 1.9757 1.8643 1.8641 1.8567 4.0883 3.6567 1.8571 4.6663 4.6652 4.6433 9.9826 10.4138 3.9403 2.0180 2.0188 2.1500 4.9877 4.0030 2.0776
9 1.8929 1.8940 1.9301 4.1726 3.0299 1.9369 1.7663 1.7665 1.7552 3.9210 3.5847 1.7571 4.3969 4.4032 4.3971 9.3415 10.2251 3.7622 1.9853 1.9854 2.1084 5.2605 4.0177 2.0574
10 1.7993 1.8005 1.8382 3.6361 2.9246 1.8295 1.8059 1.8060 1.7940 3.7150 3.1701 1.7818 4.3415 4.3386 4.2674 12.3501 10.0841 3.6820 1.9002 1.9004 2.0053 5.2082 3.9547 2.0039
11 1.7079 1.7078 1.7405 3.5043 2.7747 1.7388 1.7110 1.7096 1.6916 3.0716 3.2750 1.6583 4.9343 4.9350 4.9137 13.9500 10.4617 4.3503 1.8078 1.8074 1.8772 4.7536 3.8269 1.9113
12 1.6149 1.6157 1.6419 3.3080 2.8904 1.6297 1.7307 1.7311 1.7171 3.1682 3.0185 1.6949 4.7098 4.7100 4.7209 12.8405 9.3243 4.0224 1.7963 1.7970 1.8422 4.3946 3.6452 1.8840
13 1.5999 1.5998 1.6494 3.5240 2.9851 1.5624 1.5635 1.5660 1.5348 3.5772 2.9075 1.5625 4.5434 4.5442 4.6086 12.5053 8.7819 4.4405 1.9098 1.9093 1.9561 4.1432 3.5129 1.9441
14 1.5981 1.5981 1.6280 3.3478 2.8135 1.5492 1.5868 1.5866 1.5388 3.3429 2.7710 1.5193 4.6398 4.6364 4.6364 10.1939 9.1903 4.6103 1.9381 1.9372 1.9714 3.7320 3.3390 1.9397
15 1.6871 1.6871 1.7268 3.0921 2.6594 1.6456 1.8848 1.8859 1.8666 3.3138 2.7956 1.8103 6.1097 6.1102 5.8105 13.3971 10.2593 6.0091 2.1382 2.1394 2.1613 3.7353 3.4160 2.1178
16 1.7447 1.7452 1.7886 3.7680 2.8206 1.7287 1.8050 1.8049 1.8176 3.4590 2.5555 1.7256 6.8598 6.8730 6.4473 12.2772 11.0759 6.6563 2.2850 2.2854 2.3070 5.0796 3.7683 2.3454
17 1.7324 1.7324 1.7801 3.4065 2.8912 1.7539 2.0269 2.0273 2.0601 2.6043 2.4779 1.9137 6.7337 6.7292 6.3091 13.2202 12.3810 6.7267 2.5190 2.5185 2.5421 4.5503 3.6690 2.5422
18 1.7318 1.7321 1.7863 3.5546 2.8993 1.7520 2.1813 2.1810 2.2258 3.0049 2.4579 2.0463 6.8644 6.8517 6.6157 13.2933 12.8977 6.9302 2.6147 2.6140 2.6307 4.4570 3.6682 2.6135
19 1.7335 1.7331 1.8046 3.1733 2.9719 1.7544 2.1962 2.1969 2.2532 3.1087 2.5132 2.0800 6.6093 6.6081 6.6867 14.4944 13.3143 6.4417 2.6408 2.6413 2.6691 4.3263 3.8538 2.6375
20 1.7611 1.7611 1.8439 3.4976 2.9870 1.7666 2.1591 2.1592 2.1959 2.9587 2.5326 2.0015 6.6658 6.6457 6.2722 14.6045 13.1461 6.7571 2.6105 2.6091 2.6400 4.1426 3.8740 2.5860
21 1.8325 1.8326 1.9352 3.4019 3.0901 1.8456 2.1599 2.1600 2.1837 3.1736 2.5457 2.0478 6.6145 6.6105 5.8697 19.9865 13.1463 6.7895 2.6523 2.6526 2.6827 4.2094 3.8363 2.6311
22 1.9306 1.9300 2.0283 3.3023 2.9146 1.9285 2.2163 2.2160 2.2403 3.0524 2.7686 2.1059 6.2122 6.2248 5.9416 13.6551 12.9035 6.2240 2.7196 2.7190 2.7549 4.2051 3.7889 2.6920
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Table A7. Cont.

Group 1 Group 2 Group 3 Group 4

HH LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR LR OLS GLSAR DT RF VR

23 1.9081 1.9081 2.0180 3.5875 2.8123 1.9169 2.1875 2.1871 2.2100 2.9604 2.5927 2.0702 6.8548 6.8433 6.6324 12.9296 13.2213 6.5592 2.6962 2.6965 2.7376 4.1782 3.7667 2.6702
24 1.8508 1.8510 1.9880 2.9187 2.6553 1.7913 2.1481 2.1485 2.1241 3.1980 2.5408 2.0395 5.9710 5.9584 6.0463 12.9834 12.1305 5.8795 2.5942 2.5976 2.6421 3.9819 3.7987 2.5728
25 1.7835 1.7828 1.8714 3.1748 2.6232 1.7292 2.0919 2.0920 2.0709 3.0854 2.6058 1.9582 5.6360 5.6597 5.9139 13.4519 11.6664 5.5132 2.4915 2.4905 2.5223 5.3190 3.8630 2.5128
26 1.7962 1.7952 1.8626 3.0945 2.6468 1.7858 2.2956 2.2935 2.2803 3.0970 2.4413 2.1597 7.3781 7.3823 7.4255 14.7204 13.0661 6.7933 2.6680 2.6680 2.6950 4.4811 3.9217 2.6486
27 1.9972 1.9967 2.0636 3.3686 2.8610 1.9656 2.3185 2.3176 2.3293 3.0128 2.6944 2.2508 8.4802 8.4751 8.1987 14.9524 14.0359 7.9946 2.9433 2.9434 2.9704 4.7949 4.1568 2.9190
28 2.1108 2.1107 2.1538 3.0343 2.8674 2.0766 2.3895 2.3918 2.4082 3.0882 2.6322 2.3122 6.5325 6.5156 6.3160 15.5854 13.9909 6.5177 3.1055 3.0530 3.0690 4.5689 4.1671 3.0140
29 1.9152 1.9152 1.9598 3.0687 2.7613 1.8865 2.3397 2.3395 2.3463 3.1281 2.7131 2.2520 6.4698 6.5033 6.3301 14.7285 13.9816 6.4056 2.9336 2.9348 2.9827 4.6562 3.9694 2.9090
30 1.9293 1.9293 1.9535 3.2359 2.6917 1.8815 2.2512 2.2512 2.2718 3.0524 2.7030 2.1671 6.5025 6.5104 6.3932 15.3273 14.3000 6.4288 2.9679 2.9664 3.0119 4.8461 4.0491 2.9335
31 1.9155 1.9154 1.9665 3.1895 2.7471 1.8770 2.4261 2.4261 2.4474 3.3497 2.7834 2.3360 6.5862 6.5499 6.4458 18.9477 14.1629 6.3601 3.0281 3.0291 3.0843 4.7192 4.0481 2.9974
32 1.9320 1.9320 2.0227 2.9762 2.6672 1.8804 2.5064 2.5066 2.5258 3.1862 2.7402 2.4174 6.1470 6.1470 6.2769 22.5275 13.4003 6.3989 3.0207 3.0203 3.0875 4.3495 4.0039 2.9419
33 1.9776 1.9775 2.0804 2.8687 2.6626 1.9005 2.5740 2.5738 2.6109 3.5626 2.6591 2.4501 5.8889 5.8828 6.1075 16.4594 12.9743 5.8477 3.0362 3.0361 3.1352 4.9549 3.9206 2.9912
34 2.2148 2.2152 2.3214 2.9426 2.5662 2.1100 2.4254 2.4254 2.4569 3.9142 2.7658 2.3056 5.4776 5.4584 5.6478 16.1051 12.1423 5.3629 3.0231 3.0235 3.1645 4.9954 3.9200 2.9757
35 2.4356 2.4360 2.4722 3.2967 2.5142 2.2747 2.4039 2.4037 2.3993 3.5119 2.7404 2.2724 5.3207 5.3470 5.2972 11.1930 11.0185 5.2752 3.1171 3.1154 3.2348 4.9084 3.7610 3.0318
36 2.4718 2.4718 2.5148 3.1825 2.5080 2.2837 2.3640 2.3636 2.3693 3.1140 2.5571 2.2546 5.4205 5.4655 5.4019 12.4659 10.1291 5.4197 3.0019 3.0000 3.1635 4.9833 3.6132 2.9209
37 2.4166 2.4164 2.3820 3.2724 2.9239 2.2316 2.0302 2.0301 2.0359 3.5874 2.6618 1.9783 5.3484 5.3473 5.1592 14.2433 10.1949 5.4401 2.7159 2.7172 2.9048 4.7924 3.7090 2.6561
38 2.1496 2.1494 2.1473 3.1581 2.9911 2.0065 1.7730 1.7728 1.7947 2.9492 2.6962 1.6923 4.7065 4.7122 4.7101 13.1695 10.0878 4.8308 2.4779 2.4784 2.7116 4.6642 3.6428 2.4327
39 2.0988 2.0989 2.0935 3.2778 3.0187 1.9675 1.7133 1.7131 1.7563 2.9783 2.8938 1.6264 4.6079 4.5998 4.6976 12.6184 10.3253 4.6022 2.4122 2.4077 2.6515 4.2397 3.5762 2.3620
40 2.0218 2.0215 2.0487 3.5231 3.1678 1.9188 1.6979 1.6978 1.7017 3.3371 3.1308 1.6100 4.4625 4.4631 4.6587 14.5196 10.1323 4.4438 2.3730 2.3728 2.6656 4.5839 3.8152 2.3629
41 1.9955 1.9954 2.0542 3.9092 3.3902 1.9116 1.7766 1.7767 1.7821 3.8420 3.1656 1.6858 4.4382 4.4432 4.5411 14.4521 10.2084 4.3087 2.4245 2.4242 2.7310 4.7599 4.0107 2.4278
42 1.9173 1.9173 2.0173 3.6457 3.6099 1.8530 1.9073 1.9072 1.9092 4.1288 3.4838 1.7953 4.5725 4.5710 4.5610 13.5601 10.8684 4.2087 2.4651 2.4648 2.8231 4.7594 4.3021 2.4469
43 1.8691 1.8688 2.0136 4.3373 3.7218 1.8215 1.9699 1.9693 1.9820 3.8866 3.7234 1.8968 4.9545 4.9569 4.4934 15.4543 10.8141 4.4234 2.4896 2.4912 2.8950 5.4263 4.4711 2.5055
44 1.9571 1.9558 2.1006 4.7005 3.8959 1.9164 2.0320 2.0320 2.0444 4.6403 3.7243 1.9594 5.2391 5.2444 4.4896 14.3310 11.7746 4.5557 2.6096 2.6091 3.0196 6.1245 4.7135 2.6394
45 1.9823 1.9813 2.1174 4.9546 4.1335 2.0284 2.1564 2.1563 2.1888 5.5487 4.0188 2.0612 5.1455 5.1339 4.6784 14.9741 12.0457 4.5503 2.7342 2.7334 3.1286 6.1233 5.0097 2.7527
46 2.0228 2.0215 2.1910 4.9381 4.3341 2.0727 2.2272 2.2272 2.2413 4.1861 4.2146 2.1790 5.3204 5.3213 5.1635 14.6814 12.2625 4.6947 2.8441 2.8441 3.2520 6.5123 5.2278 2.8897
47 2.0994 2.0999 2.2738 4.6027 4.2919 2.1488 2.2398 2.2403 2.2546 5.1449 4.2108 2.1774 5.3899 5.4018 5.4611 14.2930 12.2648 4.7329 2.8921 2.8891 3.2993 6.1935 5.3407 2.9244

avg 1.9055 1.9053 1.9661 3.6142 3.0299 1.8817 2.0161 2.0161 2.0201 3.6391 3.0927 1.9458 5.5077 5.5084 5.4305 13.7666 11.7341 5.1858 2.4577 2.4564 2.5760 4.8106 4.0102 2.4549

stdev 0.2010 0.2010 0.2079 0.5372 0.4214 0.1671 0.2800 0.2799 0.2939 0.6966 0.5477 0.2497 1.0041 1.0024 0.9277 2.3560 1.4314 1.1870 0.4248 0.4230 0.4660 0.5825 0.4042 0.3978
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Figure A1. Forecasting performance of the VR model (Group 1).

Figure A2. Forecasting performance of the VR model (Group 2).
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Figure A3. Forecasting performance of the VR model (Group 3).

Figure A4. Forecasting performance of the VR model (Group 4).
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(a)

(b)

(c)

(d)

Figure A5. ACF and PACF plots for the residuals of VR models (special case: HH = 28) in each group;
(a) Group 1. (b) Group 2. (c) Group 3. (d) Group 4.
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