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Abstract: This paper presents the design of a planar parallel manipulator with a pneumatic drive.
Such manipulators are used in production lines for sorting, selecting, packing, and palletizing
workpieces. This paper presents simulation studies of the designed manipulator in Matlab/Simulink
software and using the SimMechanics library. A simple kinematics problem and an inverse kinematics
problem were solved in order to carry out simulation studies of the designed manipulator. Simulation
studies were also carried out on the dynamics of the manipulator using a mathematical model
describing the physical phenomena occurring during the operation of the manipulator’s electro-
pneumatic servo-drives. The main objective of the simulation study was to determine the manipulator
working space and the possibility of positional control of the manipulator end-effector using a fuzzy
logic controller.

Keywords: planar parallel manipulator; fuzzy logic controller; pneumatic positioning system;
electro-pneumatic servo-drive

1. Introduction

The majority of pneumatically driven industrial robots and manipulators in use today
are applied in sorting, selection, packaging, palletizing, assembly, or other industrial
applications requiring only a few main (resulting from the actuator stroke) positions. The
most commonly used are standard pneumatic actuators, which provide high dynamics of
operation, overload capacity, accuracy, and repeatability. However, these uses do not allow
the actuator piston to be placed in all possible positions that could be desired. This is a
direct result of the properties of the standard pneumatic drive (which can only assume the
two extreme piston positions) and the working medium, which is compressed air. Complex
friction processes [1] occurring in pneumatic actuators and the stick–slip phenomenon [2]
also adversely affect the process of positioning and achieving precise movements of the
actuator piston. Pneumatic robots and manipulators use electro-pneumatic servos for
positional control. They are most commonly constructed with the use of rodless actuators
with an integrated internal piston position sensor, a flow or pressure proportional valve,
and a negative feedback control system.

Pneumatic manipulators are mainly designed as systems with serial kinematics. A
decisive factor influencing the positioning accuracy of manipulators is the rigidity of the
structure. The series-built drive axes deform elastically under the influence of the masses
of the conveyed objects and the drives themselves, which leads to the summation of
deformations at the end of the kinematic chain and a deterioration in positioning accuracy.
A number of simulation and experimental studies have been conducted on multi-axis
serial pneumatic manipulators [3,4]. Based on the analysis of the test results, it was found
that the positioning accuracy of the manipulator end-effector is several times lower than
for a single pneumatic drive axis. The kinematic structure that allows for the reduction
in positioning errors due to the peculiarities of serial manipulators is based on closed
kinematic chains of so-called parallel structures. Manipulators with parallel structures
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have kinematic pairs connected in parallel, forming a closed kinematic chain [5,6]. Such
manipulators are characterized by high stiffness, low inertia, high load capacity, and high
positioning accuracy compared with serial manipulators [7–13]. Parallel manipulators
and hybrid manipulators are currently the areas of mechatronics that are developing the
most [14,15]. The disadvantages of robots and manipulators with parallel structure are a
smaller working space, and a more complex control system.

In this article, the control system is based on the fuzzy logic controller. Fuzzy logic
controllers are recently more and more popular in pneumatic systems [16]. There are
different approaches to applications of fuzzy logic controllers [5,17]. Different methods
can support controllers to obtain a better quality of control [18]. Manipulators and parallel
robots are used in industry for palletizing, sorting, or assembling parts, as well as in medical
technology for rehabilitation, laparoscopy, or endoscopy.

The structure of this article is as follows: first, a 3D model of the manipulator is
presented, then, the kinematics, working space, and dynamics of the manipulator are
described. The paper ends with simulation studies. The details of the parallel manipulator
control system using a PD-type fuzzy logic controller, and the results of the experimental
studies on the prototype are presented in the second part.

2. Solid Model of the Manipulator

The solid model of the manipulator was designed in a 3D space using SolidWorks
software. Figure 1 presents a proposed model of a planar manipulator with two degrees
of freedom with a linear drive. The manipulator consists of two rodless actuators with an
integrated internal measurement of the position and speed of the piston of the actuator,
two rigid arms made of aluminium profiles, four bearings connecting the actuators to the
arms, the end-effector, and the base, to which the manipulator is attached. The actuators
are attached to the base in such a way that their carriages point inwards. Mounting plates
with bearings are attached to the carriages. The manipulator’s arms are placed between the
bearings, which limits the movement to only one plane. At the opposite ends of the arms,
bushings are set in holes and connected by a pin to which the manipulator end-effector
was attached.
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Figure 1. A solid model of a parallel manipulator (1—bearing, 2—actuator, 3—actuators, 4—arm,
5—end-effector, 6—position transducer, 7—mounting plates, 8—base).

The arms of the designed manipulator are connected by rotary joints to prismatic-type
drives. The drives are placed parallel to each other, defining the working plane. Each arm
has only class V kinematic pair connections in the kinematic chain (only one degree of
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freedom in the relative motion of its links and five imposed connection conditions). The
ends of the arms are connected by joints with a common axis of rotation, forming a working
platform for fixing the manipulator end-effector.

Figure 2 shows the four extreme end-effector positions obtained for maximum
actuator extensions.
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Figure 2. Extreme positions of the manipulator end-effector: both sliders at the minimum position (a),
left slider at the maximum position and right slider at the minimum position (b), both sliders at
the maximum position (c), left slider at the minimum position and right slider at the maximum
position (d).

During design, the length of the arms was assumed to be greater than half the width of
the working surface. The advantage of such a solution is an unambiguous control method,
since the extension of the actuator carriages determines only one possibility of positioning
the end-effector. Manipulators of this type more often operate in a vertical orientation
than a horizontal one. However, the designed manipulator was oriented horizontally
in order to more effectively illustrate the positioning capabilities of the end-effector. In
industrial conditions, it is recommended to orient the manipulator in such a position that
the technological forces applied to the end-effector work along the axis of the arms and
the drives themselves, i.e., to only cause them to apply tension or compress. The action
of tensile and compressive forces is a consequence of the articulated connection of the
projected manipulator arms, and the condition of machines with closed kinematic chains.

3. Kinematics of the Manipulator

The manipulator hinges are described using the internal coordinate qi where
i = 1, 2, 3, . . . , N denotes the degrees of freedom of the nodes. Variables qi, when
combined, form vector q = (q1, q2, q3, . . . , N)T ∈ Q called the internal coordinate vector.
In the designed case the manipulator is a control system, therefore q corresponds to a state
vector. When designing a manipulator, it is necessary to determine the position and orienta-
tion of its end-effector as defined in external coordinates, using vector (x, y, z, α, β, γ)T ∈ R6,
and as a function of internal coordinates (q1, q2, q3, . . . , N)T ∈ Q. The transformation
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Q→ R6 represents the manipulator kinematics in coordinates. The study includes changes
in the position, velocity, and acceleration of each manipulator component, and, in particular,
of the end-effector without taking into account the forces producing the motion. To solve
the simple and inverse kinematics problem, a computational diagram of the manipulator
kinematics was constructed with the variables plotted, as shown in Figure 3.
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Figure 3. Calculation scheme of manipulator kinematics.

The following variable designations were adopted:
rp—actuator spacing;
r—arm length;
a—distance between the carriage of the first actuator and the carriage of the

second actuator;
y1—distance of the carriage of the first actuator from the initial position;
y2—distance of the second actuator carriage from the initial position;
α—angle between the length of the arm and the distance between the

actuator carriages;
β—angle between the robot’s arms;
θ—angle between the spacing of the actuators and the distance between the

actuator carriages.

4. Simple Kinematics

Simple kinematics involves calculating the position and orientation of the end-effector
from the data on articulated variables. Knowing the configuration coordinates, the position
of a given point associated with the manipulator relative to the global coordinate system is
calculated, i.e., it is a description of the manipulator position in configuration coordinate
space into a description in Cartesian coordinate space. The relationships resulting from the
isosceles triangle shown in Figure 3 were used to determine the position of the end-effector
of the designed manipulator:

a =
√

r2
p +

(
yp − yl

)
(1)

β = arccos
(

1− a2

2r2

)
(2)

From the determined dependences (1) and (2), the following was obtained:

2 · r > a (3)

and therefore:
α =

π − β

2
(4)

θ = arctan
(

yp − yl

rp

)
(5)
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The position of the manipulator end-effector is determined by variables x and y:

x = r · cos(α + β) (6)

y = yl + r · sin(α + β) (7)

5. Working Space

The working space is limited by the geometry of the manipulator, and the mechanical
constraints. The extent of the end-effector’s working movement is naturally limited by the
spacing of the guides and their length. The lateral edges of the working space are straight
lines whose length is equal to the difference in length of the guides lp and the length of the
arm r. The upper edge is made up of two curves l3 and l4, and the lower edge is made up
of curves l1 and l2. The working space is shown in Figure 4, with the symbols plotted.
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The equation describing curves l1(l2) is obtained by setting the left (right) actuator
slider to the extreme lower position yl = 0 (yp = 0) and moving the right (left) actuator slider
from the extreme lower position upwards (increasing the yp-coordinate) until yp = r. The
movement of the end-effector along line l1 is then described by the equations:

xe = r · cos(α) (8)

ye = r · sin(α) (9)

where: α—angle between the left arm and the 0X-axis (Figure 3).
Analogous equations are derived for the remaining edges. In the case of edges l3

and l4, the left carriage was placed in the extreme upper position (yl = lp), whereas the
right actuator carriage, after being placed at the same height, was moved by a distance
corresponding to the length of the arm to the position yp = lp − r.

6. Dynamics of the Manipulator

The study of the dynamics of the planar-parallel manipulator was carried out on the
mathematical model of the electro-pneumatic servo-drive developed by Takosoglu J. [19].
The above-mentioned paper presents a complete derivation of the differential equations
describing the dynamics and detailed computational models of the electro-pneumatic servo-
drive, flow control servo-valve, friction forces, electromagnetic transducer, and servo-valve
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distributor. The nonlinear dynamic model of an electro-pneumatic servo-drive controlled
by a flow control servo-valve is described by the following differential equations:

• Equation of motion for the piston—slide of the rodless actuator:

d2y
dt2 =

1
M + m

{
A∆p−

[
flv + Fksgn(v) + Fpre(−

v
vk
)sgn(v) + kp|∆p|

]
+ m g sin α

}
(10)

where:
y, v—displacement and velocity of the piston—slide;
A—area of piston;
∆p—pressure difference between cylinder chambers; ∆p = p1 − p2
p1, p2—absolute pressures in cylinder’s chambers;
M—mass of piston and slide;
fl—viscous friction coefficient;
Fk—kinetic friction force (Coulomb friction force);
vk—critical value of velocity, characteristic velocity of the Stribeck friction;
Fpr—break away force;
kp—friction coefficient dependent upon seal dimensions;
m—initial load mass;
g—acceleration of gravity;
α—servo-motor infliction angle.

• Equation of motion for the spool of proportional directional control valve:

d2xr

dt2 =
1

mr

{
km

Rc
(u− nBlcvr)

(
1− e

Rc
L t
)
− ftvr − ksxr

}
(11)

where:
xr, vr—displacement and velocity of valve spool;
mr—mass of spool;
km—coefficient of electromechanical force transducer;
Rc—resistance of the solenoid;
u—coil voltage;
n—number of coils;
B—magnetic induction;
lc—length of coil;
L—inductance of the solenoid;
ft—coefficient of viscous friction;
ks—spool spring rate.

• Equations for pressure in cylinder chambers:

dp1
dt = κ

A(l0+y)

{
R dm1

dt − p1 Av − κ−1
κ α[A10(T1 − Ta) + A(T1 − T2)]

}
dp2
dt = κ

A (l+l0−y)

{
−R dm2

dt + p2 Av − κ−1
κ α[A20(T2 − Ta) + A(T2 − T1)]

} (12)

where:
κ—adiabatic exponent;
l0—length of dead zone of the pneumatic cylinder;
l—stroke length of pneumatic cylinder;
R—specific gas constant;
α—overall heat-transfer coefficient;
T1, T2—temperature in cylinder chambers;
Ta—ambient temperature;
A10, A20—heat transfer surface;
dm1
dt , dm2

dt —mass flow rate.

• Equations for temperature in cylinder chamber:
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dT1
dt = κT1

p1 A01(l0+y)

{
R
[(

Tz − T1
κ

)
dm14

dt −
κ−1

κ T1
dm45

dt

]
−

κ−1
κ

[
p1 A01

dy
dt + αQ[A1(T1 − Ta) + A01(T1 − T2)]

]} (13)

dT2
dt = κT2

p2 A02(l0+l−y)

{
R
[(

Tz − T2
κ

)
dm12

dt −
κ−1

κ T2
dm23

dt

]
+

κ−1
κ

[
p2 A02

dy
dt + αQ[A2(T2 − Ta) + A02(T2 − T1)]

]} (14)

• Equations for mass flow rate through proportional control valve:

dm1
dt = C14ρ0

√
T0
Tz

pzw14 − C45ρ0

√
T0
T1

p1w45

dm2
dt = C23ρ0

√
T0
T2

p2w23 − C12ρ0

√
T0
Tz

pzw12

(15)

where:
ρ0—air density in the normal reference atmosphere (ANR);
T0—normal ambient temperature;
pz—air supply pressure;
Tz—air supply temperature;
C14, C45, C12, C23—sonic conductance consistent with the standard ISO 6358-1989 for

critical pressure ratio. 
C14 ≈ α14

A14ψmax
p0

√
2R0T0

C45 ≈ α45
A45ψmax

p0

√
2R0T0

C12 ≈ α12
A12ψmax

p0

√
2R0T0

C23 ≈ α23
A23ψmax

p0

√
2R0T0

(16)

where:
α14, α45, α12, α23—flow resistance coefficients considered in real flows;
ψ14, ψ45, ψ12, ψ23—distributor’s flow functions on routes 1→4, 4→5, 1→2, 2→3,

reaching maximum ψmax = 0.4842 for critical pressure ratio b = 0.528;
w14, w45, w12, w23—nonlinear flow function (sonic flow and subsonic flow) depending

on the pressure ratio and on the critical pressure ratio.

w14 =


1√

1−
( p1

pz −b14

1−b14

)2
0 ≤ p1

pz
≤ b12

b12 ≤ p1
pz
≤ 1,

and

w45 =


1√

1−
( pa

p2
−b45

1−b45

)2
0 ≤ pa

p2
≤ b45

b45 ≤ pa
p2
≤ 1,

and

w12 =


1√

1−
( p1

pz −b12

1−b12

)2
0 ≤ p1

pz
≤ b12

b12 ≤ p1
pz
≤ 1,

and

w23 =


1√

1−
( pa

p2
−b23

1−b23

)2
0 ≤ pa

p2
≤ b23

b23 ≤ pa
p2
≤ 1

(17)

where:
b14, b45, b12, b23—critical pressure ratio (a constant value b = 0.28 was assumed in the

simulation model).
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7. Simulation Studies

Based on the kinematic model of the manipulator and the dynamic electro-pneumatic
servo-drive, a simulation study of the positioning of the parallel end-effector of a planar
manipulator with electro-pneumatic drive using a fuzzy logic controller was carried out. A
PD-type fuzzy logic controller developed by the authors was used, which is described in
detail in papers [2,6].

Fuzzy logic systems are considered expert systems. The main element of the system is
the knowledge base containing a set of rules which, when combined with the fuzzy sets
theory, create the control algorithm. The algorithm joins human experience and intuition
with an understanding of the behavior of the plant under control. The main advantage of
fuzzy logic systems is the abandonment of an analytical description [20].

The control system is based on a set of IF-THEN conditions [20] as in (18):

u(k) = F[e(k), e(k− 1), . . . , e(k− v), u(k− 1), u(k− 2), . . . , u(k− v)] (18)

where the non-linear function F represents the rules of the controller. Function F describes
the dependence of the error e(k) and its change ∆e(k) on the control signal u(k).

Variables of the process status, of the control, of the content of the antecedent, and the
consequent of each rule determine the type of controller. The state variables utilized in the
IF part can be taken as follows:

• Control error e;
• Control error change ∆e;
• Control error sum δe;
• The control variables used in the THEN part can be taken as follows;
• Control signal u;
• Control signal change ∆u.

Listed quantities are computed in the standard way, that is,

e(k) = y0(k)− y(k)
∆e(k) = e(k)− e(k− 1)
∆(∆e(k)) = e(k)− 2e(k− 1) + e(k− 2)

δe(k) =
k
∑

i=1
e(i)

∆u(k) = u(k)− u(k− 1)

(19)

where:
y0(k)—set-point (input function);
y(k)—output of the plant (response).
PID fuzzy logic controllers can be implemented in direct or incremental versions

(Figure 5).
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Figure 5. Two versions of the implementation PID fuzzy logic controller: direct (a) and incremen-
tal (b) [16].

The difference between direct and incremental versions is that in the direct controller
the control signal u(k) is calculated at any time, and in the incremental controller the control



Energies 2022, 15, 8482 9 of 16

signal change value ∆u(k) is calculated. To obtain the value of the control variable u(k) the
adder is required; thus, the incremental controller is susceptible to the measure noise. Due
to this fact, a direct fuzzy logic controller will be further used.

Figure 6 in a simplified way presents the five stages of fuzzy logic inference, that
is: fuzzification, determination of rule firing levels, launching of rules, aggregation of
individual rule outputs, and defuzzification. Three tracks (eP, eI, eD) and seven fuzzy sets
(NB, NM, NS, Z, PS, PM, and PB) were used to carry out fuzzification. The combination of
them gives 147 rules. The Mamdani implication was used to launch rules, then the launched
rules were aggregated by the MAX T-conormy operator, and the Center of Gravity method
was utilized for defuzzification.
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The main problems when designing fuzzy logic controllers concerns the determination
of the proper parameters and the structure of the controller. Additionally, the proper
membership function must be determined. There are helpful recommendations in the
process of designing the controllers that can be found in [21].

The great advantage of fuzzy logic algorithms is their similarity to human control
mechanisms. In fact, the algorithm does not need mathematical models describing the
behavior of the controlled object [20], but rather human experience and reasoning. There
is also the possibility of using the observations of the phase surfaces of conventional
controllers, from which fuzzy logic control rules can be derived.

A convenient tool to create the rule base with is the utilization of the template rule
base proposed by Mac Vicar-Whelan (Table 1).

Table 1. Mac Vicar-Whelan rule base [16].

∆e\e NB NM NS Z PS PM PB

NB NB NB NB NB NM NS Z
NM NB NB NM NM NS Z PS
NS NB NM NS NS Z PS PM
Z NB NM NS Z PS PM PB
PS NM NS Z PS PS PM PB
PM NS Z PS PM PM PB PB
PB Z PS PM PB PB PB PB

The full characteristics of pneumatic elements are required for the proper design
of the control system. Especially important are the characteristics of the control valve
which can facilitate the designing of the fuzzy logic controller. In the case of the described
manipulator, an electro-pneumatic servo-drive is applied. In such a case, fuzzy logic brings
extra advantages, as it can eliminate nonlinear aspects of the control process.
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Simulation studies were carried out in Matlab/Simulink software using the Fuzzy
Logic Toolbox and SimMechanics. A block diagram of the simulation model is shown in
Figure 7.
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Figure 7. Flow chart of the simulation model: 1—rodless cylinder, 2—position transducer,
3—proportional control valve, 4—computer Host, 5—computer Target.

A simulation study of the positioning of the parallel end-effector of a pneumatically
driven planar manipulator was carried out for three motion trajectories. In each case,
the manipulator end-effector starts movement from the starting point with coordinates
(172,295.6), and then moves to the point with coordinates (300,450). Reference signals,
actual signals, and errors are marked on all graphs. Figure 8a shows the trajectory of
the end-effector from the start position with coordinates (172,295.6) to the position with
coordinates (300,450). Due to the kinematic structure of the manipulator, the derivation
of such a trajectory requires the displacement of the manipulator’s pneumatic actuators
as shown in Figure 8b. Figure 8c on the other hand, shows the x- and y-coordinates of the
manipulator end-effector as a function of time.

Subsequent simulations involved the movement of the manipulator end-effector along
a square-shaped trajectory (Figure 9a) with a side of 200 mm centered at coordinates
(200,500). Introducing such a trajectory required the displacement of the manipulator’s
pneumatic actuators as shown in Figure 9b,c shows the x and y coordinates of the manipu-
lator end-effector as a function of time.

Figure 10a shows the movement of the manipulator end-effector along a circular
trajectory with a radius of 100 mm centered at coordinates (200,450). Introducing such
a trajectory required the displacement of the manipulator’s pneumatic actuators along
sinusoidal trajectories, as shown in Figure 10b. Figure 10c shows the x and y coordinates of
the manipulator end-effector as a function of time.
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Figure 8. Positioning of the manipulator end-effector from the point (172,295.6) to the point (300,450):
(a) end-effector trajectory, (b) displacement of actuators L and P, (c) x- and y-coordinates of the
end-effector.
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8. Summary and Final Conclusions

This paper focuses on the issues of kinematics, dynamics, and positional control using
a fuzzy logic controller. Solid models were presented showing the structure and principle
of operation of a pneumatic planar manipulator with a closed kinematic chain. The solid
model of the planar manipulator was designed using SolidWorks software. The solid
design made it possible to detect collisions and weak points in the designed structure. The
preparation of a correct design tested in laboratory conditions is particularly important
because it allows the prototype to be made avoiding additional costs associated with design
modifications, saves time, and increases the effectiveness of scientific research.

The problem of simple kinematics was determined and solved. Simulation studies
were carried out in Matlab/Simulink software using the developed kinematic models of the
manipulator, the dynamic models of the electro-pneumatic servo-drive, and studies with
positional control using a fuzzy logic controller. The planar manipulator was subjected to
simulation studies of the positioning of the end-effector, where it was commanded to:

• Move along a linear trajectory;
• Move along a square trajectory;
• Move along a circular trajectory.

For each manipulator end-effector trajectory, the end-effector coordinates and the
displacement of the servo-pneumatic axis actuators were read. The reference values were
compared with the actual values, and the control errors were determined.

The simulation results presented confirm the design assumptions made that the
proposed model of the planar parallel manipulator and its control system are correct. The
reference signals correspond with high accuracy to the obtained signals of the simulation
model, which can be observed in the characteristics of the end-effector trajectories by
analyzing the deviations for each of the three motion trajectories.

Our further work focuses on experimental investigations of a prototype manipulator
on selected trajectories. Prototype tests will be carried out for transposition and follow-up
control. Based on the results, we will present a control quality analysis.
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