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Abstract: A thermoelectric effect occurs when a material’s intrinsic property directly converts temper-
ature differences applied across its body into electric voltage. This manuscript presents the prediction
for maximum and optimal heat transfer efficiency of a thermoelectric fluid via the non-classical
approach of the differential operator. The fractionalized mathematical model is also established to
analyze the efficiency and characteristics of thermoelectric fluid through a temperature distribution
and velocity field. The comprehensive analytical approach of integral transforms and Cardano’s
method are applied to provide analytical solutions that include the dynamic investigation of the
temperature distribution and velocity field. A dynamic investigation of the temperature distribution
and velocity field of the thermoelectric fluid is explored on the basis of magnetization and anti-
magnetization, which describe the behavior for sine and cosine sinusoidal waves. The rheological
parameter, i.e., magnetization, suggests that by employing varying magnetic fields, the magnetized
intensity generates 34.66% of the magnetic hysteresis during the thermoelectric effect.

Keywords: circulation of thermoelectric fluid; magnetization and anti-magnetization; integral
transforms and differential operator; prediction of temperature

1. Introduction

It is a well-established fact that thermal analysis of various materials has become the
central point for various thermal industries and technologies due to enhancing power
density. The performance of various power devices in many industries depends upon the
interplay among thermal, optical and electronic sensation. Various thermal industries and
technologies desire thermoelectric devices for obtaining electrical and thermal stability,
due to its significant applications in numerous fields, such as sensors of thermal energy,
superconductors, aeronautics, space industries and various others. Because of its significant
applications, the stability of thermoelectric analysis has been studied by various researchers,
scientists and mathematicians. Riffat et al. [1] investigated potential applications of thermo-
electric devices and stability analysis of the thermoelectric devices. Chein et al. [2] analyzed
the thermoelectric applications in coolers for electronic cooling. Their investigation pro-
vided a computational technique for the capacity of the cooling junctional temperature,
coefficient performance and thermal resistance of a heat sink. Zhang et al. [3] studied the
thermoelectric cooler’s performance for the packages of higher power, and found exact
solutions of temperature junction and cooling power. Kashif et al. [4] fractionally ana-
lyzed the thermal analysis of Casson fluid having porous medium with exact solutions via
Laplace transform. M. Ezzat [5] fractionally analyzed generalized thermoelectric properties
with magnetic effects based on Laplace transform. Wiriyasat et al. [6] studied a system of
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thermoelectric modules and presented experimental results. The study of thermoelectric
properties is extensive and can be continuous; for more details, we refer to [7–14]. Most
of the differential models of thermal studies are based on fractional order derivatives;
this is due to its dynamical significance in various applications, such as computational
fluid dynamics, viscoelastic problems, biological and physical applications and engineering
applications. The most vibrant properties in fractional operators for which the operators are
studied are non-singularity and non-locality in a kernel of fractional operators. The exact
analysis of the several thermoelectric problems has become a central point for numerous
researchers, mathematicians and scientists due to its heredity property. The fractional oper-
ators have been followed from Riemann-Liouville to Caputo, Caputo to the modification
of Riemann-Liouville, modification of Riemann-Liouville to Caputo-Fabrizio, Caputo to
Caputo-Fabrizio, Caputo-Fabrizio to modified Caputo-Fabrizio and an extended form of
Caputo with modification in kernel and Caputo-Fabrizio to Atangana-Baleanu fractional
operators. Initially, the Riemann-Liouville fractional operator was applied by Abel in
Tautochrone problems, in which Riemann-Liouville fractional operator could not perform
well in research field because of its objectionable initial and boundary conditions. The main
drawback of Riemann-Liouville was based on the derivative of the constant. Then, the
fractional derivative of Caputo was overcome by the Riemann-Liouville fractional operator.
The Caputo fractional derivative has been suggested by several researchers to be suitable.
Meanwhile, the singular kernel became the major drawback in this operator, which cannot
collect the memory impacts of the domain. In this continuity, the Caputo-Fabrizio fractional
operator was introduced based on the claim of the non-singular exponential kernel [15,16].
Owolabi and Gomez-Aguilar [17] simulated the classical system of differential equations
into fractional differential equation by a Fourier spectral algorithm. Khader and Saad [18]
employed an accurate numerical procedure of a finite difference method and spectral
Chebyshev collocation method on the fractional Korteweg-de Vries, Korteweg-de Vries-
Burgers equations. They focused their research on convergence analysis with properties
of Chebyshev polynomials of the third type. The study of different fractional operators
has been employed by several researchers in different aspects of science; for instance,
chemistry [19,20], biology [21,22], electricity [23–25], fluids and nanofluids [26–32] and also
a few recent attempts in distinct varieties of fields [33–41]. Inspired by the abovementioned
studies that focused on different research aspects, the authors’ main aim is to present the
prediction for maximum and optimal heat transfer efficiency of thermoelectric fluid via the
non-classical approach of the differential operator. A fractionalized mathematical model is
also established to analyze the efficiency and characteristics of thermoelectric fluid through
temperature distribution and velocity field. The comprehensive analytical approach of
integral transforms and Cardano’s method are invoked for the sake of analytical solutions
with a dynamic investigation of the temperature distribution and velocity field. The dy-
namic investigation of temperature distribution and velocity field of thermoelectric fluid is
explored on the basis of magnetization of anti-magnetization, which describes the behavior
for sine and cosine sinusoidal waves. The rheological parameters suggest that a decrement
of temperature difference enhances the thermoelectric effect, which leads to a temperature
gradient in the heat flow.

2. Mathematical Modeling of Thermoelectric Fluid

Assume a thermoelectric fluid with incompressible and unsteady flow lying above
the surface of xz − plane which fills the non-conducting half-space y > 0. At the initial
stage of fluid and plate, both fluid and plate are considered at rest. When t = 0+, the
plate has oscillating velocity with sinusoidal variable form u(0, t) = R0sin(ωt) entirely
in the x direction. A magnetic field of strength H0 is invoked constantly in the vertical
direction. Due to the motion of the fluid, an electric current is induced that is caused
by the buoyancy forces, which does not distort the applied magnetic field, where T∞ is
the temperature of the fluid and Tw is the temperature of the plate away from the plate.
Here, the reference temperature is considered as T0 = Tw − T∞, where the Thomson
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relation at room temperature is π0 = T0k0, where π0 denotes the Peltier coefficient and
k0 represents the Seebeck coefficient. Under these assumptions, no flow occurs in the y
and z directions. Taking the usual assumptions on the equation of motion with modified
Ohm’s law and generalized energy equation, the governing boundary layer equations are
subject to imposed appropriate initial, boundary and natural conditions when the medium
is quiescent:

1
ν

∂u
∂t

=

(
∂2

∂y2 −
B2

0σ0

ρν

)
u− B0k0σ0

ρν

∂T
∂y

, (1)

∂

∂t

(
1 + τ0

∂

∂t

)
T =

(k0σ0π0 + k)
ρCp

∂2T
∂y2 +

B0π0σ0

ρCp

∂u
∂y

, (2)

u(y, 0) = T(y, 0) = u′(y, 0) = 0

u(0, t) = R0sin(ωt),R0H(t)cos(ωt) T(0, t) = 1

u(∞, t) = 0, T(∞, t) = T∞

(3)

By invoking the non-dimensional parameters on Equations (1) and (2) and then devel-
oping the governing partial differential equations in terms of Caputo-Fabrizio fractional
operator, we arrive at:

Pr
∂

∂t

(
1 + λ1

CFDα
t

)
θ = λ2

∂2θ

∂y2 + λ3
∂u
∂y

, (4)

CFDα
t u =

(
∂2

∂y2 −M
)

u− K0
∂θ

∂y
, (5)

where CFDα
t u represents the Caputo-Fabrizio fractional operator of order 0 < α < 1, as

published in previous literature [42–45]. The definition of the Caputo-Fabrizio fractional
operator is stated as:

CFDα
t u =

1
1− α

t∫
0

u′exp
(
−α(z− t)

1− α

)
dt. (6)

The normalization function for Equation (6) is M(α) = M(0) = M(1). Meanwhile, the
parameters of the fractional partial differential equations for the temperature distribution
and velocity field are described in Equation (7) as:

Pr =
Cpµ

k , λ1 = τ0, λ2 = (1 + ZT0),

λ3 = νB0π0σ0
T0k , M =

B2
0νσ0
R2

0ρ
, K0 = T0B0k0σ0

R2
0ρ

, (7)

3. Analytic Solution of the Problem via the Caputo-Fabrizio Approach
3.1. Case-I: Sine Sinusoidal Waves u(0, t) = R0sin(ωt)

Applying Laplace transform [46,47] on coupled system of partial differential
Equations (4) and (5), we obtain the following expression with help of Equation (3) as:(

∂2

∂y2 + λ4q +
q2ε0λ1λ4

(q + ε0α)

)
θ = λ5

∂u
∂y

, (8)

(
∂2

∂y2 −
qε0

q + ε0α
−M

)
u = K0

∂θ

∂y
, (9)
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where ε0 = 1
1−α , λ4 = Pr

λ3
, and λ5 = λ3

λ2
. In order to eliminate θ from Equations (8) and (9),

by solving both equations simultaneously, we obtain:

∂4u
∂y4 (α1 + α2 + α3) +

∂2u
∂y2 (β1 + β2 + β3 + β4)− (γ1 + γ2 + γ3) = 0, (10)

Now, defining the letting parameters involved in Equation (10) as below:

α1 = q2, α2 = 2ε0αq, α3 = ε2
0α2, β1 = q3(λ1λ4ε0), β2 = q2(λ4 + λ1λ4ε2

0α−M− ε0
)
,

β3 = q
(
λ4ε0α− 2Mε0α− ε2

0α
)
, β4 = ε2

0α2M,γ1 = q3(Mλ4 + Mλ1λ4ε0 + λ4ε0 + ε2
0λ1λ4

)
,

γ2 = q2(Mλ1λ4ε2
0α + λ4ε2

0α
)
,γ3 = q(3Mλ4ε0α),

(11)

In order to eliminate the spatial variable involved in Equation (10), a Fourier Sine
transform [48,49] is invoked with the help of Appendix A (A1)–(A3), where the final form
is reduced as:(

−ξ4us(ξ, q) +
√

2
π
R0 ξ3ω
q2+ω2 +

√
2
π
R0 ξω3

q2+ω2

)
(α1 + α2 + α3) +

(
−ξ2us(ξ, q)

+
√

2
π
R0 ξω
q2+ω2

)
(β1 + β2 + β3 + β4)− (γ1 + γ2 + γ3)us(ξ, q) = 0

, (12)

Employing Equation (11) in Equation (12) and simplifying Equation (12), we obtain
the following suitable equivalent expression of velocity field as:

us(ξ, q) =
√

2
π
R0ωξ−1

q2+ω2

−R0ω
√

2
π
(R1q3+R2q2+R3q+R4)+ξ2(1+ξ2)(1+ω2)(q2+2αβq+α2β2)

ξ(q2+ω2)(R1q3+R2q2+R3q+R4)
,

−R0ωξ−1
√

2
π

(R5q3+R6q2+R7q+R8)
(q2+ω2)(R1q3+R2q2+R3q+R4)

(13)

where the letting variables of rheology for Equation (13) are defined as:

R1 = ξ2λ1λ3β + Mλ3 + Mλ1λ3β + λ3β + β2λ1λ2,

R2 = ξ4 + ξ2λ3 + ξ2λ1λ3αβ2 −Mξ2 − ξ2β + Mλ1λ3αβ2 + λ3αβ2

R3 = 2ξ4αβ + ξ2λ3αβ− 2Mξ2αβ− ξ2αβ2 + 3Mλ3αβ,

R4 = ξ4α2β2 −Mξ2α2β2,

R5 = λ1λ3β,

R6 = λ3 + λ1λ3αβ2 −M− β,

R7 = λ3αβ− 2αβM− αβ2,

R8 = α2β2M,

(14)

Inverting Equation (13) [5,50] by means of Fourier sine transform and invoking the
fact of integral as per condition of y > 0, the integral

∫ ∞
0

sin(yξ)
ξ dξ = π

2 is employed for the
verification of imposed conditions on velocity field; thus, we obtain:

us(y, q) = R0ω
q2+ω2 − 2R0ω

π

∞∫
0

sin(yξ)
(R1q3+R9q2+R10q+R11)

ξ(q2+ω2)(R1q3+R2q2+R3q+R4)
dξ

− 2R0ωξ−1

π

∞∫
0

sin(yξ)
(R5q3+R6q2+R7q+R8)

(q2+ω2)(R1q3+R2q2+R3q+R4)
dξ

, (15)
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To simplify Equation (15), the mathematical assumptions are taken as in Equation (16):

R9 = R2 + ξ2(1 + ξ2)(1 + ω2),R10 = R3 + ξ2(1 + ξ2)(1 + ω2)αβ

R11 = R4 + ξ2(1 + ξ2)(1 + ω2)α2β2
, (16)

us(y, q) = R0ω
q2+ω2 − 2R0ω

π

∞∫
0

sin(yξ)
(q3+R12q2+R13q+R14)

ξ(q2+ω2)(q3+R15q2+R16q+R17)
dξ

− 2R5R0ωξ−1

R1π

∞∫
0

sin(yξ)
(q3+R18q2+R19q+R20)

(q2+ω2)(q3+R15q2+R16q+R17)
dξ

, (17)

where the letting parameters are taken as: R12 = R9
R1

, R13 = R10
R1

, R14 = R11
R1

, R15 = R2
R1

,

R16 = R3
R1

, R17 = R4
R1

, R18 = R6
R5

, R19 = R7
R5

and R20 = R8
R5

.
In order avoid the lengthy and cumbersome calculation of Equation (17), the following

expression is taken with the help of Cardano’s method [51], which is defined as:

q1 =
3

√
− δ1

2 −
√

δ2
1
4 +

∆3
1

27 +
3

√
− δ1

2 +

√
δ2

1
4 +

∆3
1

27

q2 = γ
3

√
− δ1

2 −
√

δ2
1
4 +

∆3
1

27 + γ2 3

√
− δ1

2 +

√
δ2

1
4 +

∆3
1

27 ,

q3 = γ2 3

√
− δ1

2 −
√

δ2
1
4 +

∆3
1

27 + γ
3

√
− δ1

2 +

√
δ2

1
4 +

∆3
1

27

(18)

where q1, q2 and q3 are the roots of an algebraic cubic equation. The roots of an algebraic
cubic equation are obtained in Equation (19) by using Cardano’s formulae as:(

q3 +R15q2 +R16q +R17

)
= (q− q1)(q− q2)(q− q3), (19)

Solving Equation (17) in its simplest form with the help of Equation (19), we arrive at:

us(y, q) = R0ω
q2+ω2 − 2R0ω

π

∞∫
0

ξ−1sin(yξ)
(q3+R12q2+R13q+R14)

(q2+ω2)(q−q1)(q−q2)(q−q3)
dξ

− 2R5R0ωξ−1

R1π

∞∫
0

sin(yξ)
(q3+R18q2+R19q+R20)

(q2+ω2)(q−q1)(q−q2)(q−q3)
dξ

, (20)

Invoking Appendix A (A4) with inverse Laplace transform on Equation (20), we obtain
the expression of velocity via the exponential elementary functions as:

u(y, t) = R0sin(ωt)− 2Uω
π

∞∫
0

ξ−1sin(yξ)
t∫

t
cosω(t− ε)

{
R14

q1q2q3
−
(

R14−q1R13+q2
1R12−q2

1
q1(q2−q1)(q3−q1)

)
×exp(−q1t)−

(
R14−q2R13+q2

2R12−q3
2

q2(q1−q2)(q3−q2)

)
exp(−q2t)−

(
R14−q3R13+q2

3R12−q3
3

q3(q1−q3)(q2−q3)

)
exp(−q3t)

}
dξ dε

− 2R5Uωξ−1

R1π

∞∫
0

sin(yξ)
t∫

t
cosω(t− ε)

{
R14

q1q2q3
−
(

R20−q1R19+q2
1R18−q2

1
q1(q2−q1)(q3−q1)

)
exp(−q1t)

−
(

R20−q2R19+q2
2R18−q3

2
q2(q1−q2)(q3−q2)

)
exp(−q2t)−

(
R20−q3R19+q2

3R18−q3
3

q3(q1−q3)(q2−q3)

)
exp(−q3t)

}
dξ dε.

(21)

Equation (20) is the general solution for the velocity field based on the fractional
approaches of Caputo-Fabrizio for sine sinusoidal waves; it also validates the imposed
initial and boundary conditions.
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3.2. Case-II: Cosine Sinusoidal Waves u(0, t) = R0H(t)cos(ωt)
In order to avoid lengthy and cumbersome calculation, the solution for the velocity

field of the cosine sinusoidal waves has been investigated by employing similar procedure
as discussed in case-I:

u(y, t) = R0H(t)cos(ωt)− 2Uω
π

∞∫
0

ξ−1sin(yξ)
t∫

t
sinω(t− ε)

{
R14

q1q2q3
−
(

R14−q1R13+q2
1R12−q2

1
q1(q2−q1)(q3−q1)

)
×exp(−q1t)−

(
R14−q2R13+q2

2R12−q3
2

q2(q1−q2)(q3−q2)

)
exp(−q2t)−

(
R14−q3R13+q2

3R12−q3
3

q3(q1−q3)(q2−q3)

)
exp(−q3t)

}
dξ dε

− 2R5UH(t)ωξ−1

R1π

∞∫
0

sin(yξ)
t∫

t
sinω(t− ε)

{
R14

q1q2q3
−
(

R20−q1R19+q2
1R18−q2

1
q1(q2−q1)(q3−q1)

)
exp(−q1t)

−
(

R20−q2R19+q2
2R18−q3

2
q2(q1−q2)(q3−q2)

)
exp(−q2t)−

(
R20−q3R19+q2

3R18−q3
3

q3(q1−q3)(q2−q3)

)
exp(−q3t)

}
dξ dε.

(22)

Meanwhile, the solutions investigated for both cases viz sine and cosine sinusoidal
waves, can also be retrieved for ordinary/classical differential operator by letting the
fractional parameter equal the one in Equations (21) and (22). Additionally, similar solutions
can be investigated in light of [52–56].

4. Parametric Results

The mathematical analysis of thermoelectricity has been constructed with a newly
presented fractional approach of Caputo-Fabrizio based on a non-singular kernel. The main
contribution is to investigate the analytical solutions of velocity field based on fractional and
non-fractional approaches. The general solutions have been established through Fourier
sine and Laplace transform by setting suitable imposed conditions. The Cardano’s method
for the simplifications of lengthy and cumbersome mathematical expressions is employed.
However, the dynamics and synchronization of the problem is listed as:

(i) Figure 1 is prepared for the time analysis of velocity field based on thermoelec-
tric effects. Here, the velocity field is profiled for three different increasing times
t = 2 s, 4 s, 6 s. It is observed that thermoelectric conversion efficiency is increasing
as time increases. From a physical point of view, enhancing the behavior of the ther-
moelectric effect leads to a temperature gradient in the heat flow. Additionally, the
bar graph is sketched in Figure 1, reflecting the similar stability of thermoelectric
efficiency as time increases. Furthermore, a good thermal insulator provides good
thermal insulation to the industrial processes during material manufacturing.
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(ii) It is a well-noted statement that thermoelectric effects depend on the relative alignment
of the magnetization. The effects of a magnetic field on the velocity field are depicted
in Figure 2. It is noted from the behavior depicted in Figure 2 that a mosaic magnetic-
domain structure is achieved through increasing effects of the magnetic field. From a
practical approach, a velocity field vividly reduces when the magnetic field parameter
is increased; this is due to the fact that a magnetic field depends upon the Lorenz
force, which leads to the resistivity and retardation of thermoelectric fluid flow.
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(iii) The characterization of convection is usually based on the Prandtl number, in which
momentum diffusivity can be achieved by supplying larger values of the Prandtl
number, while thermal diffusivity is perceived when smaller values of the Prandtl
number are employed. In this analysis, the temperature and velocity field are coupled,
so three different larger values of Pr = 25, 50, 75 are utilized in Figure 3 for the
thermoelectric fluid flow. Practically, higher heat transfer of thermoelectric fluid can
be detected by supplying a lower Prandtl number; hence, we utilized a larger Prandtl
number for obtaining the suitable velocity profile based on momentum diffusivity. It
should be noted that most of the common thermoelectric fluids, Pr of water = 1 to 10,
Pr of ethylene glycol = 2 to 30, Pr of engine oil = 50 to 2000, have certain physical
aspects due to their larger Prandtl number.
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(iv) Figure 4 elucidates the dynamics of the fractional operator of Caputo-Fabrizio on
the profile of the velocity field. It is clear from Figure 4 that the velocity field shows
asymptotic exponential decay behavior, which is due to the Caputo-Fabrizio operator
having a non-singular exponential kernel. The possibility of a memory effect needs to
be considered, as when the value of the fractional derivative is closer to the classical
derivative, it has an increasing trend or velocity field.
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(v) The comparative analysis is based on three types of approaches, namely (i) solution
with fractional approach of Caputo-Fabrizio, (ii) solution with published approach [5]
(Caputo fractional operator) and (iii) solution with non-fractional approach (ordi-
nary operator). It can be seen from Figure 5 that the solution with the fractional
approach of Caputo-Fabrizio has a greater stability and accuracy in comparison with
the solution in [5] (Caputo fractional operator) and the solution with a non-fractional
approach (ordinary operator). This may be due to fact that the fractional approach
of Caputo-Fabrizio is based on the non-singular and exponential kernel, which de-
scribes the dynamics and other characteristic of hereditary thermoelectric materials in
better ways.
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5. Conclusions

This study demonstrated thermoelectric conversion efficiency via magnetization,
which provides a promising path to transfer continuous and uninterrupted heat. A mathe-
matical model based on thermoelectric effect is developed for the thermal analysis of fluid
flow that captured the rheological behavior through the local kernel approach. The major
findings can be summarized as follows:

- Enhancing the thermoelectric effect for three different increasing times, t = 2 s, 4 s, 6 s,
leads to a temperature gradient in the heat flow. This is because the thermoelectric
conversion efficiency increases as time increases.

- The effects of the magnetic field and mosaic magnetic-domain structure are achieved
by increasing the effects of the magnetic field on the velocity field.

- The temperature and velocity field are coupled for three different Prandtl values,
Pr = 25, 50, 75, where a higher heat transfer of thermoelectric fluid is detected for a
lower Prandtl number.

- The dynamics of the fractional operator of Caputo-Fabrizio on the velocity field display
asymptotic exponential decay.

- The comparative analysis suggests that the velocity and temperature distribution with
the fractional approach of Caputo-Fabrizio has a greater stability and accuracy in
comparison with other solutions.
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Nomenclature

t Time parameter
u Velocity field
H0 Strength of magnetic field
Tw Temperature of the plate away from the plate
π0 Peltier coefficient
Pr Prandtl number
CFDα

t u Caputo-Fabrizio operator
ε0 Letting parameter of Caputo-Fabrizio fractional operator
R0 Non-zero parameter
ω Frequency
T∞ Temperature of the fluid
T0 Reference temperature
k0 Seebeck coefficient
M Magnetic field
α Order of Caputo-Fabrizio operator
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Appendix A

Appendix A (A1)–(A3) are used for avoiding the lengthy and cumbersome calculation
of Equation (10).

Fs

{
∂4 f
∂t4

}
= −ξ4 fs + ξ3

√
2
π

=
fs + ξ

√
2
π

=
fs
′′

, (A1)

Fs

{
∂2 f
∂t2

}
= −ξ2 fs + ξ

√
2
π

fs, (A2)

Fs

{
∂ f
∂t

}
= fs, (A3)

Appendix A (A4) is employed for the inverse Laplace transforms of Equation (21).

L−1
{
(q3+R12q2+R13q+R14)
(q−q1)(q−q2)(q−q3)

}
= R14

q1q2q3
−
(

R14−q1R13+q2
1R12−q2

1
q1(q2−q1)(q3−q1)

)
×exp(−q1t)−

(
R14−q2R13+q2

2R12−q3
2

q2(q1−q2)(q3−q2)

)
exp(−q2t)

−
(

R14−q3R13+q2
3R12−q3

3
q3(q1−q3)(q2−q3)

)
exp(−q3t).

(A4)
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