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Abstract: As clean and low-carbon energy, wind energy has attracted the attention of many countries.
The main bearing in the transmission system of large-scale wind turbines (WTs) is the most important
part. The research on the condition monitoring of the main bearing has received more attention
from many scholars and the wind industry, and it has become a hot research topic. The existing
research on the condition monitoring of the main bearing has the following drawbacks: (1) the
existing research assigns the same weight to each condition parameter variable, and the model
extracts features indiscriminately; (2) different historical time points of the condition parameter
variable are given the same weight, and the influence degree of different historical time points on
the current value is not considered; and (3) the existing literature does not consider the operating
characteristics of WTs. Different operating conditions have different control strategies, which also
determine which condition parameters are artificially controlled. Therefore, to solve the problems
above, this paper proposes a novel method for condition monitoring of WT main bearings by
applying the dual attention mechanism and Bi-LSTM, named Dual Attention-Based Bi-LSTM (DA-
Bi-LSTM). Specifically, two attention calculation modules are designed to extract the important
features of different input parameters and the important features of input parameter time series,
respectively. Then, the two extracted features are fused, and the Bi-LSTM building block is utilized to
perform pre-and post-feature extraction of the fused information. Finally, the extracted features are
applied to reconstruct the input data. Extensive experiments verify the performance of the proposed
method. Compared with the Bi-LSMT model without adding an attention module, the proposed
model achieves 19.78%, 2.17%, and 18.92% improvement in MAE, MAPE, and RMSE, respectively.
Compared with the Bi-LSTM model which only considers a single attention mechanism, the proposed
model achieves the largest improvement in MAE and RMSE by 28.84% and 30.37%. Furthermore, the
proposed model has better stability and better interpretability of the monitoring process.

Keywords: wind turbine; main bearing; condition monitoring; attention mechanism; Bi-LSTM

1. Introduction

At present, the new round of the world’s energy pattern is undergoing in-depth adjust-
ment and fundamental transformation, dominated by clean, low-carbon, smart, and efficient
energy sources and supplemented by fossil energy. Gradually reducing the consumption
of fossil energy and gradually increasing the proportion of renewable energy is becoming
a new state [1,2]. Wind energy is one of the clean and low-carbon green renewable energy
sources, which has naturally attracted the attention of many countries. Since the end of the
20th century, especially in the past ten years, many large-scale wind farms and WTs have
been put into use. Owing to the severe operating environment and complicated working
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conditions, WTs are prone to failure, and the reasons for some failures are still unclear [3]. To
assure the stable and dependable operation of WTs and reduce operational and maintenance
costs, it is crucial to carry out condition monitoring and fault diagnosis [4,5].

The main bearing is a core component of the transmission system in the wind turbine [6,7].
However, the WT main bearing is a low-speed and low-frequency large component, its
operating condition is very complex, and the dynamic load and dynamic behavior during
operation are, so far, not clear [8,9]. According to literature reports, alternating load and strong
impact are some of the main reasons for the failure of WT main bearing, and its fault rate has
reached 15% to 30% [10]. The condition monitoring and fault diagnosis of the main bearing of
WTs is worth studying. For WTs with a 20-year service life, which are equipped with SCADA
systems as standard, wind farms have generated enormous SCADA data. Many scholars have
carried out some research work on the main bearing of wind turbines due to the availability
of abundant data collected by the SCADA system and the necessity of not installing other
hardware devices [11,12]. Natili et al. [13] studied the main bearing temperature trends of
SCADA systems and built a support vector model of normal behavior to monitor the difference
between measured and estimated values to identify impending failures. Beretta et al. [14]
constructed a main bearing condition identification model by using some SCADA parameters,
such as main bearing temperature, wind speed, rotor speed, and power. Guo et al. [15] propose
a condition monitoring method for the main bearing of WTs using Gaussian process regression
and double sliding window residual processing based on some condition parameters such
as temperature, wind speed, power, and torque. Also based on some SCADA condition
parameters, the authors [16–18] take the previous values of these parameters to build machine-
learning models to identify main bearing failures. The above research work mainly focuses on
the main bearing temperature parameters and their related parameters. Historical information
about main bearing condition parameters is rarely considered. Some studies use weekly
statistical indicators for research and analysis; however, the research results are rough, and
the modeling accuracy is not enough. Therefore, some modeling methods that consider more
historical information of main bearing condition parameters and new deep learning models
have been proposed [19–21]. Some researchers have also begun to pay attention to the study
on shaft misalignment [22], main bearing degradation [23], and remaining service life [24].

The above studies mainly focus on the related parameters of the WT drive chain in
the SCADA system, such as temperature, vibration, voltage, current, and some external
environmental parameters. The research results deepen the understanding of the operation
monitoring of the main bearing. These proposed data-driven models also improve the
condition monitoring level and the ability of condition abnormal identification, especially
in some deep learning model building, such as autoencoder, and LSTM. However, there are
still three shortcomings in the above research: (1) The existing literature assigns the same
weight to each parameter variable so that the model can extract features indiscriminately
during the model learning, but in the actual process, some parameters change slowly,
some parameters change rapidly, and the influence degree of each parameter varies, so it
is necessary to assign different weights to these parameters, and select some parameter
variables in a targeted and differentiated manner. (2) The current value of the parameter
variable is influenced by its historical value, that is, the degree of influence of different
historical time points on the current value is also different, and it is necessary to assign
different weights to different historical time points. (3) The existing literature does not
consider the operating characteristics of the WT. Different wind speed ranges have different
control strategies. For example, during the maximum wind energy tracking phase, the WT
adjusts the rotor speed according to the wind speed to keep the optimal tip speed ratio.
The speed ratio enables the WT to obtain the maximum wind energy, and in the constant
power stage, the WT maintains a constant rotational speed, so that the WT has a constant
output power by adjusting the pitch angle.

To solve the above problems, taking the large-scale direct-driven WT main bearing
of the transmission system as the research object, this paper put forward a condition
monitoring method for the WT main bearing by using the dual attention mechanism and Bi-
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LSTM, named Dual Attention-Based Bi-LSTM (DA-Bi-LSTM). Recently, some deep learning
models incorporating attention mechanisms have shown good performance [25–27]. In
terms of feature extraction of time series data, some of them have been applied in the field of
wind power. Su et al. [28] utilize a dual attention mechanism and gated recurrent unit (GRU)
to realize the condition monitoring of an offshore wind turbine gearbox based on SCADA
data. Xiang et al. [29] use convolutional neural network (CNN) and LSTM with attention
mechanism based on SCADA data to diagnose early failures of wind turbines. Motivated
by the above research, we introduce the attention mechanism and Bi-LSTM model to the
condition monitoring of the wind turbine main bearing. The main contributions of this
paper are summarized in the following three points:

(1) A novel operating condition monitoring method for WT main bearing by using
WT operating characteristics and SCADA dataset is proposed, named DA-Bi-LSTM, based
on the dual attention mechanism and Bi-LSTM.

(2) Utilizing the dual attention mechanism, the proposed model can further probe
the spatiotemporal relationship among the condition parameters of the main bearing itself
and its related condition parameters, strengthen the key information in the input data,
and weaken the secondary information. The parameter attention and temporal attention
mechanism can express the interpretability of the DA-Bi-LSTM model more clearly.

(3) Extensive experiments are conducted on a real-world SCADA dataset. The ex-
perimental results indicate that the proposed model outperforms Bi-LSTM and two other
Bi-LSTM models that only consider a single attention mechanism. The proposed model has
better stability and better interpretability of the monitoring process.

The remainder of the paper is organized as follows. Section 2 depicts the working
condition analysis and condition parameters selection of large-scale direct-driven WTs. The
proposed condition monitoring model DA-Bi-LSTM is presented in Section 3, including
the problem definition, the framework for the proposed model with six submodules,
and the training algorithm. The experimental setup, results, performance analysis, and
interpretability are presented in Section 4. Conclusions are drawn in Section 5.

2. Working Condition Analysis and Parameters Selection of Large-Scale Direct-Driven WT

According to the control principle of the direct-driven WT, its working conditions can
be divided into four stages. Figure 1 gives a detailed illustration.
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Figure 1. The curve of wind speed and power output of direct-driven wind turbine. Figure 1. The curve of wind speed and power output of direct-driven wind turbine.

(1) Shutdown stage (seen in OA and D+): This stage includes two working conditions.
Working condition 1 (OA stage) means that the wind speed is below the cut-in wind speed
set on the nameplate, and the wind speed at this time is not enough to start the WT. Working
condition 2 (D+ stage) means the wind speed exceeds the cut-out wind speed set on the
nameplate. At this moment, the wind speed is very large. From the perspective of safety
and protection of the WT, the WT is forced to stop.

(2) Startup stage (seen in AB): The characteristics of the working condition in this
stage is that the wind speed exceeds the cut-in wind speed. After the startup condition is
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satisfied, the blades are turned from the stop position to the starting position (set to 30◦ in
our study), but the rotational speed of the hub is very low, less than the cut-in speed (set to
3.5 r/min in our study), and the WT is pre-generating.

(3) Maximum wind energy tracking stage (seen in BC): The characteristics of working
condition in this stage is that the wind speed is between the cut-in wind speed and the rated
wind speed. The hub speed is greater than the cut-in speed (3.5 r/min in our study) and less
than the rated speed. The blades turn to the working position and remain there at all times. At
this stage, the WT control system adjusts the speed of the blades according to the wind speed,
keeps the optimal tip speed ratio, and maximizes the wind power utilization coefficient.

(4) Constant power stage (seen in CD): The characteristics of the working condition
in this stage is that the wind speed is between the rated wind speed and the cut-out wind
speed. The pitch control system adjusts the pitch angle of the blade by driving the pitch
motor, variable speed gearbox, and pitch bearing, and then controls the rotational speed
of the hub. The change of the pitch angle can keep the speed of the hub around the rated
speed, and the output power is around the rated output power. At this time, the wind
energy utilization coefficient is not the optimal value.

From the above analysis, it can be seen that the direct-drive WTs have different control
strategies at different stages. Based on the data we collected from our research object of
large-scale direct-drive WTs, we derived a scatter plot of wind speed and output power,
as well as a distribution map of the data in the two dimensions of wind speed and output
power, which are shown in Figure 2. In Figure 2, the BC stage and the CD stage are the main
operating stages of WT operation. These two stages mainly involve four core parameters,
namely wind speed, power, rotational speed, and pitch angle. Specifically, the main feature
of the BC stage is that the rotational speed is adjusted according to the wind speed, and
the pitch angle is always kept constant. In this way, the maximum wind energy utilization
coefficient value is the largest, which also ensures that the WT can obtain more wind energy
and power. The main feature of the CD stage is to adjust the pitch angle based on the wind
speed to keep the rotation speed almost constant, the output power is always stable near
the rated power, and the WT is in a full state. Therefore, like most researchers, this paper
also selects the data sets of these two segments for modeling and analysis.

Energies 2022, 15, 8462 5 of 18 
 

 

 
Figure 2. The scatter and distribution of wind speed and power. 

To accurately monitor and evaluate the operating condition of the main bearing, 
combined with our previous research results [30], there are eleven parameters that should 
be considered in the BC stage, namely, wind speed, ambient temperature, main bearing 
temperature, rotor speed, output power, generator operation frequency, generator torque, 
generator stator temperature, 5-s mean yaw to wind, vibration in the X direction, and vi-
bration in the Y direction. In the CD stage, the pitch angle parameter should be added, so 
there are twelve parameters in this stage. 

3. Proposed Condition Monitoring Model DA-Bi-LSTM 
In this section, we first give the problem definition of condition monitoring of the WT 

main bearing. Then, we present the framework for the proposed model DA-Bi-LSTM. Fi-
nally, we design the corresponding algorithm pseudocode for training the DA-Bi-LSTM 
model. 

3.1. Problem Definition 
Under normal conditions, the condition data of the WT main bearing itself and its 

associated condition data will satisfy a dynamic and stable internal equilibrium relation-
ship, with the data fluctuating within a certain range and maintaining some constraint 
characteristics between them. In the event of a failure of the main bearing, the dynamic 
equilibrium is broken. The WT main bearing condition monitoring problem can be de-
fined as a combination of a nonlinear model and reconstruction error, which is described 
as follows: ൜ 𝑍(𝑡) = 𝐹(𝑋(𝑡))𝑅௘ = |𝑍(𝑡) − 𝑋(𝑡)| (1)

where 𝑡 denotes sampling time, 𝑋(𝑡) is the condition parameters describing the main 
bearing at the tth moment, which is the input vector of the function 𝐹(∙), especially, 𝑋(𝑡) = {𝑋ଵ(𝑡), 𝑋ଶ(𝑡), ⋯ , 𝑋௠(𝑡)} ∈ 𝑅௠∗௪ . 𝑍(𝑡)  is the output value of the function 𝐹(∙) , 
which represents the reconstructed value of the condition parameters of the main bearing 
at the tth moment, especially, 𝑍(𝑡) = {𝑍ଵ(𝑡), 𝑍ଶ(𝑡), ⋯ , 𝑍௠(𝑡)} ∈ 𝑅௠∗௪. 𝑚 is the number of 
feature parameters that characterize the operating condition of the main bearing. 𝑤 rep-
resents the length of the sliding window. 𝑋௜(𝑡) is a row vector containing the ith condi-
tion parameter with w measured values, and 𝑍௜(𝑡) is also a row vector of the ith condi-
tion parameter with w predicted values. 𝐹(∙) represents a series of nonlinear mapping 
functions. 𝑅௘ is the reconstruction error value. Therefore, the essence of condition moni-
toring of the main bearing is that the reconstructed vector 𝑍(𝑡) is as similar as possible to 

Figure 2. The scatter and distribution of wind speed and power.

To accurately monitor and evaluate the operating condition of the main bearing,
combined with our previous research results [30], there are eleven parameters that should
be considered in the BC stage, namely, wind speed, ambient temperature, main bearing
temperature, rotor speed, output power, generator operation frequency, generator torque,
generator stator temperature, 5-s mean yaw to wind, vibration in the X direction, and
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vibration in the Y direction. In the CD stage, the pitch angle parameter should be added, so
there are twelve parameters in this stage.

3. Proposed Condition Monitoring Model DA-Bi-LSTM

In this section, we first give the problem definition of condition monitoring of the WT
main bearing. Then, we present the framework for the proposed model DA-Bi-LSTM. Finally,
we design the corresponding algorithm pseudocode for training the DA-Bi-LSTM model.

3.1. Problem Definition

Under normal conditions, the condition data of the WT main bearing itself and its
associated condition data will satisfy a dynamic and stable internal equilibrium relationship,
with the data fluctuating within a certain range and maintaining some constraint characteristics
between them. In the event of a failure of the main bearing, the dynamic equilibrium is broken.
The WT main bearing condition monitoring problem can be defined as a combination of a
nonlinear model and reconstruction error, which is described as follows:{

Z(t) = F(X(t))
Re = |Z(t)− X(t)| (1)

where t denotes sampling time, X(t) is the condition parameters describing the main
bearing at the tth moment, which is the input vector of the function F(·), especially,
X(t) =

{
X1(t), X2(t), · · · , Xm(t)

}
∈ Rm∗w. Z(t) is the output value of the function F(·),

which represents the reconstructed value of the condition parameters of the main bearing
at the tth moment, especially, Z(t) =

{
Z1(t), Z2(t), · · · , Zm(t)

}
∈ Rm∗w. m is the number

of feature parameters that characterize the operating condition of the main bearing. w
represents the length of the sliding window. Xi(t) is a row vector containing the ith condi-
tion parameter with w measured values, and Zi(t) is also a row vector of the ith condition
parameter with w predicted values. F(·) represents a series of nonlinear mapping functions.
Re is the reconstruction error value. Therefore, the essence of condition monitoring of the
main bearing is that the reconstructed vector Z(t) is as similar as possible to the input
vector X(t), with a minimum residual between the two vectors. Re represents the residual
value. The Re value will exceed the threshold or alarm value if there is an abnormality or
failure in the main bearing. Under normal conditions, this residual value fluctuates within
the specified normal range.

3.2. Framework for the Proposed Model

The architecture of the proposed model for condition monitoring of the WT main
bearing is shown in Figure 3. The architecture consists of six submodules, namely the input
module, the temporal attention computation module, the parametric attention computation
module, the dual attention merging module, the Bi-LSTM module, and the reconstruction
module. The following subsections describe these modules in detail.

3.2.1. Input Module

For a comprehensive description of the operating condition of the main bearing, the
condition parameters of the main bearing itself and the associated condition parameters
should be extracted. Note that the extracted parameters will be different for different
operation phases because the control strategy is different for different phases. According to
the analysis in Section 2, we obtain the input condition parameters for the maximum wind
energy tracking phase as an input matrix X, which is defined in this form (m, w), where m
is the number of variables and w is the length of the window. In this study, m is set to 11,
and w is set to 5, while in the constant power phase, m is set to 12, and w is also set to 5.
For the convenience of subsequent calculations, we only discuss the BC phase here. Thus,
the input vector at the ith moment can be described as X(i) =

{
X1

i , X2
i , · · · , Xm

i
}

, where i
can take values in the range of 1, 2, 3, 4, and 5.
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3.2.2. Parametric Attention Computation Module

In the process of parameter feature extraction, to distinguish the importance of differ-
ent condition parameters, and assign different weights to different condition parameters,
the parametric attention computation module can calculate the weights of the condition
parameters within each time step. For the given input vector Xt =

{
X1

t , X2
t , · · · , Xm

t
}

, we
can use Equations (2) and (3) to compute parametric attention weight distribution values.

pt = σ(Wt ∗Xt + dt) (2)

aj
t = exp

(
pj

t

)
/ ∑m

k=1 exp
(

pk
t

)
. (3)

where Wt represents the weight coefficient matrix, and dt represents the bias term, σ represents
the sigmoid function, and aj

t is the normalized attention weight for the jth condition parameter,
which is a calculation method of entropy weight, and the following is the same.

3.2.3. Temporal Attention Computation Module

The values of the condition parameters of the main bearing have a clear time series
characteristic. The current value of the sequence is influenced by its historical moment
value. However, the contribution or influence of different historical moment values is
different. The temporal attention computation module can calculate the weights for each
condition parameter over multiple consecutive time steps. For the given input vector
Xi =

{
Xi

1, Xi
2, · · · , Xi

w
}

, we can use Equations (4) and (5) to compute their temporal
attention weight distribution values.

et = σ
(

Wi ∗ Xi + di
)

(4)

bi
t = exp

(
ei

t

)
/ ∑w

k=1 exp
(

ek
t

)
(5)

where Wi represents the weight coefficient matrix, and di represents the bias term. σ
represents the sigmoid function, and bi

t. is the normalized attention weight for the ith
condition parameter.

3.2.4. Dual Attention Merging Module

To merge and fuse the temporal attention feature value and the parameter attention
feature value, the dual attention merging module first calculates the temporal attention and
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the parametric attention by the element-wise product method separately, then, calculates
the final input vector using the element-wise sum method by using Equation (6).

X̃ = Xt ∗ aj
t + Xi ∗ bi

t (6)

3.2.5. Bi-LSTM Module

The Bi-LSTM (Bi-directional Long Short-Term Memory) is a bi-directional recurrent
neural network based on LSTM, which combines information from input data in both
forward and backward directions, and is a variant of LSTM. The Bi-LSTM model has
made remarkable achievements in speech processing, temporal data prediction, and text
classification [25,31]. Figure 4 illustrates the architecture of a single LSTM cell/unit, where
ft, it, and Ot are the forget, input, and output gates, respectively. The X̃t represents input
vector. The ht−1 represents the output of the previous unit at time t − 1, and ht represents
the output of the current time t. The Ct−1 represents the cell state at the previous time t − 1,
and Ct represents the cell state at the current time t. The σ and tanh are activation functions.
These parameters at the time t are updated by:

ft = σ
(

W f ∗ ht−1 + W f ∗ X̃t + d f

)
(7)

it = σ
(

Wi ∗ ht−1 + Wi ∗ X̃t

]
+ di) (8)

C̃t = tanh
(

Wc ∗ ht−1 + Wc ∗ X̃t + dc

)
(9)

Ct = ft ∗ Ct−1 + it ∗ C̃t (10)

Ot = σ
(

Wo ∗ ht−1 + Wo ∗ X̃t + do

)
(11)

ht = Ot ∗ tanh(Ct) (12)

where W f , Wi, Wc, Wo, b f , di, dc, and do are weight parameters and their biases, respec-
tively. These parameter values are obtained by iterative iterations during the DA-Bi-LSTM
model training.
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The Bi-LSTM model is created by adding an LSTM layer in the opposite direction
of the information flow, which has the benefit of capturing the past and future temporal
dependencies. Figure 5 shows the architecture of Bi-LSTM. For the kth time point, X̃k
is input to the forward and reverse LSTM, and then we get the forward and reverse

hidden layer representations vectors
→
h k and

←
h k, respectively, and we use Equation (13)
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to combine these two hidden layer representations to get the output hk at kth time point.
After the sequence X̃ is input into the Bi-LSTM, we get the final output of the module, i.e.,
h = {h1, h2, · · · , hw}.

hk =
→
h k +

←
h k (13)
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3.2.6. Reconstruction Module

This module is a reconstruction of the extracted feature vectors. Specifically, the output
vector of Bi-LSTM is nonlinearly transformed, and then the reconstructed vector Z of the
same dimension as the input vector is obtained, which is calculated by Equation (14).

Z = σ(Wh ∗ h + dh) (14)

where Wh represents the weight coefficient matrix, and dh represents the bias term, and σ
represents the sigmoid function. Z is the reconstruction vector.

3.3. Training Algorithm for the DA-Bi-LSTM Model

Based on the framework in Figure 3, an algorithm for the DA-Bi-LSTM model is
proposed. The critical procedures are described as: (1) loading SCADA data in CSV files
under different operating conditions in normal conditions; (2) performing data cleaning
and resampling; (3) selecting the relevant condition parameter variables; (4) constructing
train, verify and test datasets according to the given ratio; (5) building the proposed model
DA-Bi-LSTM; (6) training the model according to the range given by the hyperparameters;
(7) preserving the optimal model. A more detailed description of the training process is
listed in the following pseudo-code Algorithm 1.

Algorithm 1: Pseudo-code for DA-Bi-LSTM

Input: D = {(X(1), X(1)), (X(2), X(2)), · · · , (X(i), X(i)), · · ·}, X(i) ∈ Rm∗w

Output: The optimal DA-Bi-LSTM model
1: Read SCADA historical data in a normal state;
2: Clean and resample data;
3: Select condition parameter variables related to the main bearing;

//generate training data set, test dataset, verify data set;
4: X = ∅, TRD = ∅, VD = ∅, TED = ∅
5: while i in (1, n-w) do:
6: X = X ∪ X(i)
7: end while
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Algorithm 1: Cont.

8: According to the ratio of 64%, 16%, and 20%, generate TRD, VD, TED
//train DA-Bi-LSTM model

9: Set the range of units sl, hidden layers nl, iterations e, learning rate
lr, ne and batch size;

10: Initialize parameters;
11: while i ≤ e or ne = epoch numbers when the loss has not changed:
12: Execute the temporal attention module;
13: Execute the parametric attention module;
14: Combine the values of the two attention modules;
15: Reconstruct input data;
16: Update parameters with the Adam algorithms to minimize

reconstruction error in TRD;
17: Verify the DA-Bi-LSTM model using the VD;
18: Save the structure and parameters of the optimum model;
19: end while
20: Test the model using the test dataset TED;
21: Return the optimal DA-Bi-LSTM model;

4. Experiment Setup and Result Analysis

In this section, we first probe the distribution characteristics of the relevant condition
parameters of the WT main bearing based on the WT SCADA system. Second, we introduce
methods for data cleaning, data resampling, and dataset construction. Third, we present
the structure determination of the proposed model and the performance comparison with
other models. Finally, we present the attention and interpretability analysis of the model.
The experiment setup is as follows: Python 3.6 and the deep learning framework Keras
API are used for experimental design.

4.1. Distribution Characteristics of Partial Conditional Parameters

In this paper, the main bearing of a 2 MW direct-drive WT is investigated. The wind
turbine’s cut-in, cut-out, and rated wind speeds are 3, 25, and 11 m/s, respectively. The
wind turbine is equipped with a SCADA system that collects data at 1 Hz and stores it in a
10-min CSV file. We collected data for three months, from 5 September 2020, to 4 December
2020. According to the discussion in Section 2, we extracted the continuous data of the BC
segment and the CD segment. After removing the outage data, we found that the amount
of data in the CD segment was relatively small, which was related to the wind conditions
at that time. The wind speed is not above rated wind speed most of the time. Therefore,
the following experiments were carried out on the BC stage.

Figure 6 depicts a scatter plot of some parameters associated with the WT main bearing.
As shown in Figure 6, there is a heavy nonlinear relationship among the parameters.
Temperature, output power, and vibration are the core parameters that characterize the
operating condition of the main bearing. The temperature increases with the increase of
power, but in the same output power value range, the temperature varies widely. The
vibration values in the two directions also keep the range reduced with the increase of the
output power, but the performance is more obvious in the axial direction (X-axis direction),
and weaker in the radial direction (Y-axis direction). The complex nonlinear relationship
between these parameters requires powerful nonlinear fitting functions to realize. We
designed such a complex function Z(t) = F(X(t)) to solve this problem.
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4.2. Data Cleansing and Resampling

Data cleaning aims to deal with invalid data such as null values and outliers in
the SCADA dataset due to transmission problems and WT downtime. These invalid
data are usually empty, negative data, packet loss data, and unreasonable abnormal data.
Additionally, according to existing research, data resampling techniques were used [32,33].
In this study, the resampling frequency is 1 min. The processing formula is as follows:

delete xi, f or xi ∈ hault data
xi = xi+1 or xi−1, f or xi ∈ packet loss data

xi = 0, f or xi < 0 or xi is null

xi =
1
2 (xi−1 + xi+1)

f or xi ≥ 2xi−1 and xi ≥ 2xi+1 or
f or xi ≤ xi−1/2 and xi ≤ xi+1/2

x = 1
n

n
∑

i=1
xi, f or data resampling

(15)

where, xi represents the data value collected by sensors, which is second-level data. n represents
the number of data points. x represents the resampled data, which is an average value.

4.3. Dataset Construction

To continuously extract the observation data and generate the training samples and
test samples required by the proposed model, we use the sliding window method to process
the original condition parameter data. Figure 7 shows its specific construction process,
where w represents the width of the sliding window, s represents the sliding step size,
i represents a certain time point, and m represents the number of condition parameters
representing the main bearing. For each input vector with window length w and input
dimension m, the input vector is denoted as X.
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4.4. Evaluation Metrics

In this paper, three different evaluation metrics are chosen to evaluate the performance
of the proposed model and competitor models. The evaluation metrics are the mean
absolute error (MAE), the mean absolute error percentage (MAPE), and the root mean
square error (RMSE). Their calculation expressions are defined as follows:

MAE =
1
N ∑N

i=1|Zi − Xi| (16)

MAPE =
1
N ∑N

i=1

∣∣∣∣Zi − Xi
Xi

∣∣∣∣ (17)

RMSE =

√
1
N ∑N

i=1(Zi − Xi)
2 (18)

where Zi is the reconstructed value at the ith time. Xi is the measured value at the ith time.
N is the number of sample points.

In this study, we collect 495,900 sample data. After data cleaning and resampling, the
total number of samples is 8265, of which 6612 samples are used for training and 1653
samples are used for testing. Partial samples are shown in Table 1.

Table 1. Partial samples for training and testing.

Main
Bearing

Tempera-
ture

Generator
Stator

Tempera-
ture

Wind
Speed

Ambient
Tempera-

ture

Rotor
Speed

Power
Output

Generator
Operation
Frequency

Generator
Torque

5-s Mean
Yaw to
Wind

Vibration
in X

Direction

Vibration
in Y

Direction

38.6058 52.9444 8.9750 24.7250 14.8435 1954.3667 15.2940 1220.3000 11.6267 −0.1697 −0.2777
38.8133 55.0144 8.5450 24.6900 14.2665 1732.3333 14.7403 1120.2333 6.6992 −0.1698 −0.2767
39.0233 53.3061 7.2950 24.5283 12.3272 973.0333 12.7153 727.9333 8.4467 −0.1688 −0.2768
39.2017 54.2426 6.7783 24.5000 11.4243 688.2500 11.7608 555.4583 7.2292 −0.1690 −0.2778

4.5. Determination of the DA-Bi-LSTM Model

Neural networks and deep learning models have certain randomness during training,
such as weight initialization randomness, regularization randomness, and optimization
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randomness. Therefore, for the same data given, the output of the model has a certain
difference. A common approach is to run the network multiple times, then some statistical
methods are used to summarize the performance of the model, and finally, the best model
is selected [34,35]. During the training of DA-Bi-LSTM, many hyperparameters need to be
determined. Since the structure of the model designed in this paper is relatively simple, it
is an auto-encoding reconstruction model, so only the learning rate and batch size need
to be determined here. This paper uses the grid search method to run the model multiple
times. The experimental results of some evaluation indicator values, such as MAE, MAPE,
and RMSE, are shown in Table 2. It should be pointed out that the time required for the
model to run is also an important evaluation indicator, and its value is given accordingly.

Table 2. Performance indexes of different hyperparameters in DA-Bi-LSTM.

Batch Size Learning Rate MAE MAPE RMSE Time (min)

4

0.001 1.304305 ± 0.836807 0.052495 ± 0.397203 3.519565 ± 2.322510 {8,9}
0.002 0.864058 ± 0.596909 0.056605 ± 0.512678 2.319833 ± 1.678099 {7,11}
0.003 0.856221 ± 0.557203 0.061018 ± 0.570364 2.260499 ± 1.569071 {8,14}
0.004 0.785344 ± 0.524116 0.049320 ± 0.450459 2.084963 ± 1.470836 {8,16}
0.005 0.899751 ± 0.576920 0.056278 ± 0.548135 2.352721 ± 1.596467 {11,17}
0.006 0.831057 ± 0.597686 0.072474 ± 0.758543 2.177138 ± 1.677285 {9,20}
0.007 0.967146 ± 0.620336 0.073080 ± 0.715136 2.515065 ± 1.719582 {12,27}

8

0.001 1.896889 ± 1.116898 0.061770 ± 0.409709 5.176646 ± 3.097641 {4,5}
0.002 0.968291 ± 0.659174 0.048102 ± 0.392758 2.594862 ± 1.822798 {6,7}
0.003 0.926366 ± 0.604838 0.047017 ± 0.399360 2.510316 ± 1.702183 {5,8}
0.004 0.841708 ± 0.542544 0.053985 ± 0.456547 2.239096 ± 1.516001 {6,9}
0.005 0.823974 ± 0.543782 0.056058 ± 0.531651 2.197976 ± 1.530926 {7,9}
0.006 0.882462 ± 0.619273 0.060000 ± 0.582828 2.325437 ± 1.722824 {6,10}
0.007 0.904848 ± 0.601930 0.056594 ± 0.542598 2.383833 ± 1.671474 {9,12}

16

0.001 2.556960 ± 1.320332 0.073033 ± 0.438661 6.974637 ± 3.682909 {2,3}
0.002 1.650315 ± 1.015608 0.062074 ± 0.481981 4.478816 ± 2.802205 {3,4}
0.003 1.148293 ± 0.758176 0.053121 ± 0.413128 3.114942 ± 2.115525 {4,5}
0.004 0.936918 ± 0.653807 0.052956 ± 0.438176 2.519213 ± 1.825722 {4,6}
0.005 0.892945 ± 0.605100 0.044812 ± 0.351199 2.387302 ± 1.682407 {5,12}
0.006 0.982730 ± 0.651114 0.053701 ± 0.453724 2.619971 ± 1.799305 {5,9}
0.007 0.975500 ± 0.634203 0.060583 ± 0.559166 2.587093 ± 1.773496 {6,8}

32

0.001 3.017067 ± 1.558755 0.127041 ± 1.102463 8.207864 ± 4.373313 {2,2}
0.002 2.275105 ± 1.203766 0.071594 ± 0.481565 6.197045 ± 3.352271 {2,3}
0.003 2.002779 ± 1.120925 0.076850 ± 0.608935 5.439411 ± 3.070086 {2,3}
0.004 1.431755 ± 0.858475 0.064426 ± 0.534677 3.830619 ± 2.366009 {3,6}
0.005 1.276032 ± 0.750272 0.061427 ± 0.506284 3.417497 ± 2.065064 {4,6}
0.006 1.303502 ± 0.728047 0.064615 ± 0.546178 3.471839 ± 2.030046 {5,16}
0.007 1.200432 ± 0.745935 0.086588 ± 0.844691 3.187429 ± 2.047071 {9,26}

64

0.001 3.927755 ± 2.075948 0.251386 ± 2.178752 10.464730 ± 5.834217 {1,2}
0.002 2.925926 ± 1.526210 0.106664 ± 0.925961 7.986035 ± 4.261907 {1,2}
0.003 2.606756 ± 1.318098 0.086379 ± 0.693012 7.130800 ± 3.717076 {2,2}
0.004 2.284217 ± 1.219294 0.075765 ± 0.571431 6.228751 ± 3.406993 {2,3}
0.005 2.094401 ± 1.116843 0.076662 ± 0.578012 5.678073 ± 3.089247 {2,3}
0.006 2.180400 ± 1.137641 0.087591 ± 0.770607 5.922371 ± 3.188089 {2,4}
0.007 1.861028 ± 0.983870 0.088477 ± 0.795060 5.015731 ± 2.743637 {4,4}

From Table 2, as the batch size increases, the metrics MAE, MAPE, and RMSE values
on the test dataset tend to increase. The average proportions of batch-by-batch increase
are, in terms of MAE: 11.32%, 26.21%, 36.78%, and 42.97%. In terms of MAPE: −8.96%,
4.37%, 38.04%, and 39.89%; in terms of RMSE: 12.76%, 27.04%, 36.75%, and 43.48%. The
training time of the model shows a gradual downward trend. The proposed model is a
reconstruction model, which is relatively simple, so it does not mean that the larger the
batch size, the better, or the smaller the better. The optimal value of MAPE is reflected in
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the batch size of 8, not 4. In addition, although the training time of the model shows a
gradual downward trend, according to the relevant selection principles, within the time
range commonly used for data collection in the industry, the smaller the three evaluation
metrics values, the better [8]. Therefore, our final choice is that the batch size is set at 8, and
the learning rate is set at 0.005.

4.6. Performance Comparison

To compare the performance of the proposed model, three baseline models are used,
such as the Bi-LSTM model, the temporal attention-based Bi-LSTM (Temporal-Att-Bi-LSTM)
model, and the parameter attention-based Bi-LSTM (Parameter-Att-Bi-LSTM). All models
use the same input data format, but each input data is handled differently within each
model. Among them, the Bi-LSTM model is not added with an attention module, and it
only considers the before and after information of the time series. The Temporal-Att-Bi-
LSTM model takes into account both the temporal attention information and the before
and after information of the time series. The Parameter-Att-Bi-LSTM model considers the
parameter attention information and the before and after information of the time series.
The comparison results are listed in Table 3 and Figure 8.

Table 3. Performance indexes of different models (best values displayed in boldface).

Models MAE MAPE RMSE

Bi-LSTM 1.027185 ± 0.752840 0.057300 ± 0.533444 2.710831 ± 2.086212
Temporal-Att-Bi-LSTM 0.934075 ± 0.642100 0.054747 ± 0.508762 2.513496 ± 1.836888
Parameter-Att-Bi-LSTM 1.157930 ± 0.784342 0.055885 ± 0.417240 3.156833 ± 2.374727

DA-Bi-LSTM 0.823974 ± 0.543782 0.056058 ± 0.531651 2.197976 ± 1.530926

Energies 2022, 15, 8462 13 of 18 
 

 

From Table 2, as the batch size increases, the metrics MAE, MAPE, and RMSE values 
on the test dataset tend to increase. The average proportions of batch-by-batch increase 
are, in terms of MAE: 11.32%, 26.21%, 36.78%, and 42.97%. In terms of MAPE: −8.96%, 
4.37%, 38.04%, and 39.89%; in terms of RMSE: 12.76%, 27.04%, 36.75%, and 43.48%. The 
training time of the model shows a gradual downward trend. The proposed model is a 
reconstruction model, which is relatively simple, so it does not mean that the larger the 
batch size, the better, or the smaller the better. The optimal value of MAPE is reflected in 
the batch size of 8, not 4. In addition, although the training time of the model shows a 
gradual downward trend, according to the relevant selection principles, within the time 
range commonly used for data collection in the industry, the smaller the three evaluation 
metrics values, the better [8]. Therefore, our final choice is that the batch size is set at 8, 
and the learning rate is set at 0.005. 

4.6. Performance Comparison 
To compare the performance of the proposed model, three baseline models are used, 

such as the Bi-LSTM model, the temporal attention-based Bi-LSTM (Temporal-Att-Bi-
LSTM) model, and the parameter attention-based Bi-LSTM (Parameter-Att-Bi-LSTM). All 
models use the same input data format, but each input data is handled differently within 
each model. Among them, the Bi-LSTM model is not added with an attention module, and 
it only considers the before and after information of the time series. The Temporal-Att-Bi-
LSTM model takes into account both the temporal attention information and the before 
and after information of the time series. The Parameter-Att-Bi-LSTM model considers the 
parameter attention information and the before and after information of the time series. 
The comparison results are listed in Table 3 and Figure 8. 

Table 3. Performance indexes of different models (best values displayed in boldface). 

Models MAE MAPE RMSE 
Bi-LSTM 1.027185 ± 0.752840 0.057300 ± 0.533444 2.710831 ± 2.086212 

Temporal-Att-Bi-LSTM 0.934075 ± 0.642100 0.054747 ± 0.508762 2.513496 ± 1.836888 
Parameter-Att-Bi-LSTM 1.157930 ± 0.784342 0.055885 ± 0.417240 3.156833 ± 2.374727 

DA-Bi-LSTM 0.823974 ± 0.543782 0.056058 ± 0.531651 2.197976 ± 1.530926 

 
Figure 8. Performance comparison of different models with standard deviation distribution. 

In Table 3 and Figure 8, the proposed DA-Bi-LSTM model shows the best perfor-
mance, followed by the Temporal-Att-Bi-LSTM model and Bi-LSTM, and the worst model 
is the Parameter-Att-Bi-LSTM. The MAE value and RMSE value of the proposed model, 
and their corresponding standard deviations, are the smallest. Specifically, compared 

Figure 8. Performance comparison of different models with standard deviation distribution.

In Table 3 and Figure 8, the proposed DA-Bi-LSTM model shows the best performance,
followed by the Temporal-Att-Bi-LSTM model and Bi-LSTM, and the worst model is the
Parameter-Att-Bi-LSTM. The MAE value and RMSE value of the proposed model, and their
corresponding standard deviations, are the smallest. Specifically, compared with Bi-LSTM,
Temporal-Att-Bi-LSTM, and Parameter-Att-Bi-LSTM, the MAE value of the proposed model
decreases by about 19.78%, 11.79%, and 28.84%, respectively. The standard deviation of the
MAE values of the proposed model is lower than 22.77%, 15.31%, and 30.67%, respectively.
Compared with Bi-LSTM, Temporal-Att-Bi-LSTM, and Parameter-Att-Bi-LSTM, the RMSE
values of the proposed model drop by about 18.92%, 12.55%, and 30.37%, respectively.
The standard deviation of the RMSE value of the proposed model is lower than 26.62%,
16.66%, and 35.53%, respectively. The MAPE values of all models are around 0.055, and the
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discrimination is not obvious because MAPE is the mean of the relative percentage of the
reconstruction error to the measured value.

In Figure 8, the Parameter-Att-Bi-LSTM model that only considers parameter attention
is worse than the Bi-LSTM model because the model assigns different weights to different
parameters before extracting the information before and after the time series, ignoring
weak timing information for unimportant parameters. So, its effect is worse than the
Bi-LSTM model. The Temporal-Att-Bi-LSTM model works better than Bi-LSTM because
our data itself is time series data, and the time series attention module further highlights
the importance of the data at different times. The DA-Bi-LSTM model performs the best
because it integrates time-series attention information and parameter attention information,
the time-series information of important parameters, and the weak time-series information
of non-important parameters, which are all included. Specifically, the DA-Bi-LSTM model
emphasizes the extraction of the importance of different input parameters and the extraction
of parameter time series features. Then, the extracted information from the two aspects
is further fused, and the time series features of the composite information are finally
extracted and learned. Therefore, its information representation and extraction ability are
the strongest, and the effect is also the best.

4.7. Attention and Interpretability Analysis

The attention mechanism module in the proposed model can give the dynamic atten-
tion score of each parameter of each input sample to the operating condition of the main
bearing in real time and can reflect the contribution of different time points and different
parameter variables to the main bearing in real time. In a heatmap of attention scores, the
darker the color, the higher the attention value, and vice versa.

In the parametric attention score calculation module, we extract the parametric at-
tention score value of a sample, as shown in Figure 9. Where the horizontal coordinate,
X-axis, represents different time points, the vertical coordinate, Y-axis, represents 11 con-
dition parameters, and the numbers in the figure represent the contribution of parameter
attention. The attention score of each condition parameter variable is different. Vibration
in two directions and “5 s mean yaw wind” are important parameters, especially in the
Y direction. However, the degree of influence for some parameters such as temperature
is not as obvious. Specifically, the attention score of “Y vibration value” is the largest,
accounting for about 17.72% on average, and it is maintained, followed by “5 s mean yaw
wind”, “X vibration”, “average temperature of generator stator”, and “wind speed”, which
accounted for 13.09%, 12.13%, 10.52%, and 9.73%, respectively. The lowest attention scores
are “average temperature of the main bearing” and “power output”, which are 4.36% and
4.42%, respectively. The parameter attention calculation module can select some parameter
variables and can assign different attention scores to these parameters according to the
speed of parameter change and the constraint relationship between parameters in the actual
process of monitoring.

In the temporal attention score calculation module, we also extract the temporal
attention score value of a sample, as shown in Figure 10, where the horizontal coordinate
represents different time points, the vertical coordinate represents 11 condition parameters,
and the numbers in the figure represent the contribution of the temporal attention score.
Relative to time t, most of the temporal attention scores are highest at time t − 1 and
time t − 3, accounting for about 20.23% and 20.14%, respectively. The most obvious one
is “wind speed”, accounting for 20.6%, followed by “generator torque”, accounting for
20.47%, followed by “power output” and “5-s mean yaw to wind”, accounting for 20.35%
and 20.3%, respectively. The temperature parameter is a gradually changing quantity.
However, the time-series attention score distribution of temperature parameters still has
differences in the main bearing and related components parameters. The attention score
distribution of the temperature of the main bearing itself is relatively balanced at about
20%, at times t − 2 and t − 4, the proportion is larger, showing a high in the middle and
low at both ends. However, there is no obvious regularity in the changes of the generator
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stator temperature parameters and the external environment temperature parameters, and
the standard deviation of its attention score is the lowest, 0.0011. The standard deviation of
attention scores for the vibration parameter of “vibration in X direction” was the largest,
followed by the wind speed parameter, which was 0.008 and 0.0057, respectively. This
also shows that the wind speed fluctuates greatly, and the X-axis fluctuates greatly. The
temporal attention calculation module can select different time points and can assign
different attention scores to different historical time points, emphasizing the expression of
key information at important time points.
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5. Conclusions

This work presents a novel method of condition monitoring for WT main bearing
by using the dual attention mechanism and Bi-LSTM. The effectiveness of the proposed
method is verified by using the WT SCADA data. The research results show that the
proposed model for the different working conditions can further exactly explore the spa-
tiotemporal correlation between the condition parameters of the WT main bearing itself
and its associated condition parameters, strengthen the key information in the input data,
weaken the secondary information, and improve the precision of the main bearing condition
monitoring and the interpretability of the monitoring model.

In the future, we will further expand the verification and application of the proposed
model in the constant power stage, and also include the modeling of the model on other
key components or subsystems, such as generators, hubs, pitch systems and yaw systems,
etc. At the same time, we will also consider field testing and deployment of the proposed
method for better monitoring and earlier warning of WT main bearing failures.

Author Contributions: The research in this paper was the result of the joint efforts of all authors.
X.X.: methodology, software, validation, writing—original draft preparation; J.L.: conceptualization,
supervision, writing—reviewing and editing, funding acquisition; D.L.: conceptualization, super-
vision, writing—reviewing and editing, funding acquisition; Y.T.: conceptualization, supervision,
writing—reviewing; S.Q.: validation, visualization; F.Z.: validation. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by National Key R&D Program of China, grant number 2020YFB1-
707602, the National Natural Science Foundation of China, grant number 51475160, and the Key
Research and Development Project of Hunan Province, China, grant number 2018WK2022.

Data Availability Statement: The datasets used in the current study are available from the corre-
sponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Brodny, J.; Tutak, M.; Bindzár, P. Assessing the level of renewable energy development in the European union member states. A

10-year perspective. Energies 2021, 14, 3765. [CrossRef]
2. Li, J.; Ho, M.S.; Xie, C.; Stern, N. China’s flexibility challenge in achieving carbon neutrality by 2060. Renew. Sustain. Energy Rev.

2022, 158, 112112. [CrossRef]
3. Yang, Q.; Liu, G.; Bao, Y.; Chen, Q. Fault Detection of Wind Turbine Generator Bearing Using Attention-Based Neural Networks

and Voting-Based Strategy. IEEE/ASME Trans. Mechatron. 2021, 27, 3008–3018. [CrossRef]
4. Xiang, L.; Yang, X.; Hu, A.; Su, H.; Wang, P. Condition monitoring and anomaly detection of wind turbine based on cascaded and

bidirectional deep learning networks. Appl. Energy 2022, 305, 117925. [CrossRef]
5. Civera, M.; Surace, C. Non-Destructive Techniques for the Condition and Structural Health Monitoring of Wind Turbines: A

Literature Review of the Last 20 Years. Sensors 2022, 22, 1627. [CrossRef]
6. Hart, E.; Clarke, B.; Nicholas, G.; Kazemi Amiri, A.; Stirling, J.; Carroll, J.; Dwyer-Joyce, R.; McDonald, A.; Long, H. A review of wind

turbine main bearings: Design, operation, modelling, damage mechanisms and fault detection. Wind Energy Sci. 2020, 5, 105–124.
[CrossRef]

7. Gbashi, S.M.; Madushele, N.; Olatunji, O.O.; Adedeii, P.A.; Jen, T.-C. Wind Turbine Main Bearing: A Mini Review of Its Failure
Modes and Condition Monitoring Techniques. In Proceedings of the 2022 IEEE 13th International Conference on Mechanical and
Intelligent Manufacturing Technologies (ICMIMT), Cape Town, South Africa, 25–27 May 2022; pp. 127–134.

8. Hart, E. Developing a systematic approach to the analysis of time-varying main bearing loads for wind turbines. Wind Energy
2020, 23, 2150–2165. [CrossRef]

9. Nejad, A.R.; Keller, J.; Guo, Y.; Sheng, S.; Polinder, H.; Watson, S.; Dong, J.; Qin, Z.; Ebrahimi, A.; Schelenz, R. Wind turbine
drivetrains: State-of-the-art technologies and future development trends. Wind Energy Sci. 2022, 7, 387–411. [CrossRef]

10. Hart, E.; Turnbull, A.; Feuchtwang, J.; McMillan, D.; Golysheva, E.; Elliott, R. Wind turbine main-bearing loading and wind field
characteristics. Wind Energy 2019, 22, 1534–1547. [CrossRef]

11. Tutivén, C.; Vidal, Y.; Insuasty, A.; Campoverde-Vilela, L.; Achicanoy, W. Early Fault Diagnosis Strategy for WT Main Bearings
Based on SCADA Data and One-Class SVM. Energies 2022, 15, 4381. [CrossRef]

12. Encalada-Dávila, Á.; Puruncajas, B.; Tutivén, C.; Vidal, Y. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA
Data. Sensors 2021, 21, 2228. [CrossRef] [PubMed]

http://doi.org/10.3390/en14133765
http://doi.org/10.1016/j.rser.2022.112112
http://doi.org/10.1109/TMECH.2021.3127213
http://doi.org/10.1016/j.apenergy.2021.117925
http://doi.org/10.3390/s22041627
http://doi.org/10.5194/wes-5-105-2020
http://doi.org/10.1002/we.2549
http://doi.org/10.5194/wes-7-387-2022
http://doi.org/10.1002/we.2386
http://doi.org/10.3390/en15124381
http://doi.org/10.3390/s21062228
http://www.ncbi.nlm.nih.gov/pubmed/33806744


Energies 2022, 15, 8462 17 of 17

13. Natili, F.; Daga, A.P.; Castellani, F.; Garibaldi, L. Multi-Scale Wind Turbine Bearings Supervision Techniques Using Industrial
SCADA and Vibration Data. Appl. Sci. 2021, 11, 6785. [CrossRef]

14. Beretta, M.; Julian, A.; Sepulveda, J.; Cusidó, J.; Porro, O. An Ensemble Learning Solution for Predicitive Manintenance of Wind
Turbines Main Bearing. Sensors 2021, 21, 1512. [CrossRef] [PubMed]

15. Guo, P.; Wang, Z. Wind turbine spindle state monitoring based on Gaussian process regression and double moving window
residual processing. Electr. Power Autom. Equip. 2018, 38, 34–40. [CrossRef]

16. Beretta, M.; Vidal, Y.; Sepulveda, J.; Porro, O.; Cusidó, J. Improved ensemble learning for wind turbine main bearing fault
diagnosis. Appl. Sci. 2021, 11, 7523. [CrossRef]

17. Zheng, Y.; Wei, J.; Zhu, K.; Bo, D. Fault Monitoring Method of Wind Turbine Main Bearing. J. Vib. Meas. Diagn. 2021, 41, 341–347 + 415.
[CrossRef]

18. Liu, C.; Duan, B.; Xiaodan, Z. An abnormal identification method for the main bearing of wind turbines based on BPNN-NCT.
Power Syst. Prot. Control 2022, 50, 114–122. [CrossRef]

19. Zhang, Y.; Zheng, H.; Liu, J.; Zhao, J.; Sun, P. An anomaly identification model for wind turbine state parameters. J. Clean. Prod.
2018, 195, 1214–1227. [CrossRef]

20. Xu, Z.; Yang, P.; Zhao, Z.; Lai, C.S.; Lai, L.L.; Wang, X. Fault diagnosis approach of main drive chain in wind turbine based on
data fusion. Appl. Sci. 2021, 11, 5804. [CrossRef]

21. Tutiv’en, C.; Benalcazar–Parra, C.; D’avila Escuela, A.E.; Vidal, Y.; Puruncaias, B.; Fajardo, M. Wind Turbine Main Bearing
Condition Monitoring via Convolutional Autoencoder Neural Networks. In Proceedings of the 2021 International Conference on
Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, 7–8 October 2021; pp. 1–6.

22. Tonks, O.; Wang, Q. The detection of wind turbine shaft misalignment using temperature monitoring. J. Manuf. Sci. Technol. 2017,
17, 71–79. [CrossRef]

23. Yucesan, Y.A.; Viana, F.A. A hybrid physics-informed neural network for main bearing fatigue prognosis under grease quality
variation. Mech. Syst. Signal Process. 2022, 171, 108875. [CrossRef]

24. Rezamand, M.; Kordestani, M.; Orchard, M.E.; Carriveau, R.; Ting, D.S.-K.; Saif, M. Improved remaining useful life estimation of
wind turbine drivetrain bearings under varying operating conditions. IEEE Trans. Ind. Inform. 2020, 17, 1742–1752. [CrossRef]

25. Zheng, Y.-F.; Gao, Z.-H.; Shen, J.; Zhai, X.-S. Optimising Automatic Text Classification Approach in Adaptive Online Collaborative
Discussion-A perspective of Attention Mechanism-Based Bi-LSTM. IEEE Trans. Learn. Technol. 2022, 1–14. [CrossRef]

26. Yin, X.; Wu, G.; Wei, J.; Shen, Y.; Qi, H.; Yin, B. Multi-stage attention spatial-temporal graph networks for traffic prediction.
Neurocomputing 2021, 428, 42–53. [CrossRef]

27. Hu, J.; Zheng, W. Multistage attention network for multivariate time series prediction. Neurocomputing 2020, 383, 122–137.
[CrossRef]

28. Su, X.; Shan, Y.; Li, C.; Mi, Y.; Fu, Y.; Dong, Z. Spatial-temporal attention and GRU based interpretable condition monitoring of
offshore wind turbine gearboxes. IET Renew. Power Gener. 2022, 16, 402–415. [CrossRef]

29. Xiang, L.; Wang, P.; Yang, X.; Hu, A.; Su, H. Fault detection of wind turbine based on SCADA data analysis using CNN and LSTM
with attention mechanism. Measurement 2021, 175, 109094. [CrossRef]

30. Xiao, X.; Liu, J.; Liu, D.; Tang, Y.; Dai, J.; Zhang, F. SSAE-MLP: Stacked sparse autoencoders-based multi-layer perceptron for
main bearing temperature prediction of large-scale wind turbines. Concurr. Comput. Pract. Exp. 2021, 33, e6315. [CrossRef]

31. Zhang, H.; Huang, H.; Han, H. A Novel Heterogeneous Parallel Convolution Bi-LSTM for Speech Emotion Recognition. Appl. Sci.
2021, 11, 9897. [CrossRef]

32. Cambron, P.; Masson, C.; Tahan, A.; Pelletier, F. Control chart monitoring of wind turbine generators using the statistical inertia of
a wind farm average. Renew. Energy 2018, 116, 88–98. [CrossRef]

33. Xiao, X.; Liu, J.; Liu, D.; Tang, Y.; Zhang, F. Condition Monitoring of Wind Turbine Main Bearing Based on Multivariate Time
Series Forecasting. Energies 2022, 15, 1951. [CrossRef]

34. Pei, S.; Qin, H.; Yao, L.; Liu, Y.; Wang, C.; Zhou, J. Multi-step ahead short-term load forecasting using hybrid feature selection and
improved long short-term memory network. Energies 2020, 13, 4121. [CrossRef]

35. Hossain, M.A.; Chakrabortty, R.K.; Elsawah, S.; Ryan, M.J. Very short-term forecasting of wind power generation using hybrid
deep learning model. J. Clean. Prod. 2021, 296, 126564. [CrossRef]

http://doi.org/10.3390/app11156785
http://doi.org/10.3390/s21041512
http://www.ncbi.nlm.nih.gov/pubmed/33671601
http://doi.org/10.16081/j.issn.1006-6047.2018.06.006
http://doi.org/10.3390/app11167523
http://doi.org/10.16450/j.cnki.issn.1004-6801.2021.02.019
http://doi.org/10.19783/j.cnki.pspc.211178
http://doi.org/10.1016/j.jclepro.2018.05.126
http://doi.org/10.3390/app11135804
http://doi.org/10.1016/j.cirpj.2016.05.001
http://doi.org/10.1016/j.ymssp.2022.108875
http://doi.org/10.1109/TII.2020.2993074
http://doi.org/10.1109/TLT.2022.3192116
http://doi.org/10.1016/j.neucom.2020.11.038
http://doi.org/10.1016/j.neucom.2019.11.060
http://doi.org/10.1049/rpg2.12336
http://doi.org/10.1016/j.measurement.2021.109094
http://doi.org/10.1002/cpe.6315
http://doi.org/10.3390/app11219897
http://doi.org/10.1016/j.renene.2016.09.029
http://doi.org/10.3390/en15051951
http://doi.org/10.3390/en13164121
http://doi.org/10.1016/j.jclepro.2021.126564

	Introduction 
	Working Condition Analysis and Parameters Selection of Large-Scale Direct-Driven WT 
	Proposed Condition Monitoring Model DA-Bi-LSTM 
	Problem Definition 
	Framework for the Proposed Model 
	Input Module 
	Parametric Attention Computation Module 
	Temporal Attention Computation Module 
	Dual Attention Merging Module 
	Bi-LSTM Module 
	Reconstruction Module 

	Training Algorithm for the DA-Bi-LSTM Model 

	Experiment Setup and Result Analysis 
	Distribution Characteristics of Partial Conditional Parameters 
	Data Cleansing and Resampling 
	Dataset Construction 
	Evaluation Metrics 
	Determination of the DA-Bi-LSTM Model 
	Performance Comparison 
	Attention and Interpretability Analysis 

	Conclusions 
	References

