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Abstract: Accurate electricity price forecasting (EPF) can provide a necessary basis for market decision
making by power market participants to reduce the operating cost of the power system and ensure
the system’s stable operation. To address the characteristics of high frequency, strong nonlinearity,
and high volatility of electricity prices, this paper proposes a short-term electricity price forecasting
model based on a two-layer variational modal decomposition (VMD) technique, using the sparrow
search algorithm (SSA) to optimize the long and short-term memory network (LSTM). The original
electricity price sequence is decomposed into multiple modal components using VMD. Then, each
piece is predicted separately using an SSA-optimized LSTM. For the element with the worst prediction
accuracy, IMF-worst is decomposed for a second time using VMD to explore the price characteristics
further. Finally, the prediction results of each modal component are reconstructed to obtain the final
prediction results. To verify the validity and accuracy of the proposed model, this paper uses data
from three electricity markets, Australia, Spain, and France, for validation analysis. The experimental
results show that the proposed model has MAPE of 0.39%, 1.58%, and 0.95%, RMSE of 0.25, 0.9, and
0.3, and MAE of 0.19, 0.68, and 0.31 in three different cases, indicating that the proposed model can
well handle the nonlinear and non-stationarity characteristics of the electricity price series and has
superior forecasting performance.

Keywords: electricity price forecasting; two-layer variational modal decomposition; sparrow search
algorithm; long short-term memory networks; hybrid model

1. Introduction

Electric energy can be traded freely in a market similar to other common commodities
in the electricity market. Electricity prices, which can reflect electricity supply and demand,
have become an essential element in the electricity market [1]. In recent years, many
researchers have demonstrated that it is difficult to forecast accurately because electricity
prices depend heavily on various factors [2,3]. As a special commodity, the price of
electricity usually exhibits complex characteristics such as seasonality, calendar effects, non-
stationarity, non-linearity, and mean reversion [4]. Combined with the fact that electricity
can not be stored on a large scale and must meet the balance of supply and demand at all
times, electricity prices are highly volatile and often accompanied by extreme spikes [5,6].
As decentralized commercial entities replace vertically integrated electric utilities, more
market players face fierce competition [7]. Accurate EPF not only enhances the efficiency
of the market in regulating the allocation of energy resources and improves the optimal
dispatch of the grid, but also provides an essential basis for all market participants to
make and adjust market decisions and thus obtain corresponding economic benefits [8].
Therefore, accurate EPF is necessary for the whole power system and market participants.
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There are numerous methods for EPF. In recent years, scholars have conducted extensive
research on the methods of EPF. According to the literature [9], the main methods of EPF
are econometric models [10–12], deep learning methods, and hybrid models.

Econometric models generally use econometric models for forecasting, mainly includ-
ing autoregressive moving average (ARMA), autoregressive integrated moving average
(ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Most
traditional econometric models combine historical and current data through mathematical
methods, so their fitting effect on electricity price series is not good [13]. Some researchers
have combined econometric models with other methods to improve their forecasting ability.
The literature [14] proposes a forecasting method with wavelet transform combined with
ARIMA and GARCH. In the literature [15], Zhang et al. propose a hybrid forecasting
method combining wavelet transform, adaptive particle swarm optimization kernel limit
learning machine (SAPSO-KELM) and ARMA. The literature [16] proposes an integrated
forecasting model based on IEMD, ARMAX-EGARCH, and ANFIS, which uses differ-
ent treatments for the linear and nonlinear components of electricity prices. However,
econometric models are more limited in capturing electricity prices’ nonlinear and highly
volatile characteristics, and they make it difficult to deal with complex or nonlinear time
series problems.

Deep learning methods combine elements of learning, fuzziness, and superior perfor-
mance in electricity price prediction problems by creating systems capable of adapting to
complex dynamic changes, making them immensely popular in EPFs in recent years. Deep
learning methods mainly contain artificial neural networks (ANN) [17–19], deep neural
networks (DNN) [20], support vector machines (SVM) [21–23], and other methods [24,25].
Among them, SVM makes it difficult to deal with large-scale data, ANN makes it easy
to overlearn and fall into local optimum, and its generalization ability needs to be im-
proved. DNNs are subdivided into three main categories: feedforward neural networks
(FNN) [26,27], recurrent neural networks (RNN) [28], and convolutional neural networks
(CNN) [29–32]. These methods can approximate any multivariate function to the desired
accuracy by adjusting the weights during online updates and can capture the complex,
dynamic, and nonlinear features of electricity prices [15].

Among them, RNNs obtain excellent performance in time series prediction by con-
structing additional mappings to preserve relevant information from past inputs and apply
it to the computation of current outputs. However, RNNs can suffer from gradient dis-
appearance or gradient explosion after multi-stage propagation, known as the long-term
dependence problem. The Long Short-Time Neural Network (LSTM) is an essential variant
of RNN, which introduces memory units based on the traditional RNN structure and
solves the gradient vanishing and gradient explosion problems well. The inclusion of
memory units makes LSTM more adept at discovering and exploiting the intrinsic patterns
of long sequence data, and it has been widely used in electricity price prediction. In the
literature [33], Lu et al. proposed a differential evolutionary algorithm to optimize the
forecasting model of LSTM and compared it with various models such as ANN and SVR.
In the literature [34], a prediction model using an enhanced particle swarm algorithm
to optimize LSTM was proposed and applied to forecast the closing price of the Indian
energy exchange. In the literature [7], Li et al. use LSTM combined with a feature selection
algorithm to predict electricity prices considering market coupling, and finally, use the
electricity price data of the Nordic electricity market to verify it. However, none of the
above methods can solve the nonlinear and non-stationarity characteristics of electricity
prices well.

The approach that has received the most scholarly attention in the past few years is
the hybrid model. Hybrid models generally consist of a combination of data processing or
feature extraction methods combined with one or more predictive models [15,16,35–44].
Due to the volatility and nonlinearity of electricity prices, many researchers would combine
some data decomposition techniques to preprocess the electricity price series to further
improve the model’s prediction accuracy. Among the existing decomposition methods,
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WT [13–15] and empirical modal decomposition (EMD) [45–47] have been widely used.
Although EMD can achieve better results than WT, it has an end effect that will affect the
accuracy of EMD decomposition [48]. Some researchers have addressed this problem by
improving the EMD. For example, in the literature [16], Zhang used an improved empirical
modal decomposition (IEMD). As well as in the literature [49], Jiang used fast integrated
empirical modal decomposition (FEEMD). However, EMD also has the problem of modal
mixing, which will harm the decomposition effect of EMD. To overcome the end effects
and modal aliasing in EMD, scholars have introduced variational modal decomposition
(VMD) [50,51]. VMD uses non-recursive theory to decompose the signal, which has
better robustness and improves the modal aliasing problem. However, although a single
decomposition technique can improve the predictive accuracy to some extent, it is often
difficult for a single decomposition technique to completely deal with the irregularity and
non-stationarity of the electricity price series.

This paper introduces a two-layer VMD technique to improve the model’s prediction
capability to further address this problem. Considering the excellent performance of LSTM
in time series prediction and the advantages of VMD in processing signals, this paper
proposes a hybrid model based on a two-layer VMD decomposition technique and a
sparrow search algorithm (SSA) to optimize LSTM. Firstly, the original electricity price
sequence is decomposed into multiple eigenmode functions (IMFs) with different center
frequencies by VMD. In the second step, the network structure parameters of the LSTM
are optimized using SSA, and each IMF component is predicted separately using the
optimized LSTM. In the third step, the prediction accuracy of each IMF is evaluated. The
IMF-worst with the worst prediction accuracy is decomposed for the second time using
VMD. Then, the second prediction is performed using SSA-optimized LSTM to obtain the
predicted value of IMF-worst. Finally, the prediction values of all IMFs are cumulatively
reconstructed to get the final prediction values.

This paper’s main innovations and contributions can be mentioned in the following
aspects: (1) This paper presents a hybrid model for electricity price prediction based on a
two-layer VMD technique and SSA-optimized LSTM. The two-layer VMD decomposition
technique is introduced for the characteristics of non-stationarity and non-linearity of
electricity price series. (2) SSA is used to optimize the LSTM and find the appropriate
network structure parameters for the LSTM to improve the model’s predictive power.
(3) Electricity price data from three electricity markets in New South Wales, Australia,
Spain, and France are used, allowing a comprehensive and systematic assessment of the
validity and accuracy of the proposed model. The results of the experiments show that the
proposed model has a better forecasting effect than other considered models. It is necessary
to state that in actual engineering practice, data of other variables such as temperature
and load are often difficult to obtain. Therefore, this paper tries to investigate a prediction
method based on historical electricity price data for the characteristics of nonlinearity,
non-stationarity, and high volatility of electricity price, and adapt to the electricity price
prediction in the scenario where data for other variables are not available.

The remainder of the paper is organized as follows: Section 2 introduces the basic
theoretical approach. Section 3 describes the framework of the model. Section 4 presents
the case study results. Section 5 provides some discussion and conclusions.

2. Methodology
2.1. Variational Mode Decomposition(VMD)

The literature [52] demonstrated that the decomposition of the original sequence
into multiple subsequences helps improve prediction results’ accuracy. VMD is an en-
tirely non-recursive adaptive variational pattern decomposition approach proposed by
Dragomiretskiy et al. [53]. Its core idea mainly involves the construction and solution of
variational models. The method assumes that all components of a sequence signal are
narrowband signals concentrated around their respective center frequencies. In the process
of obtaining the decomposed components, a constrained optimization problem is estab-
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lished according to the narrowband conditions of the details. Each element’s frequency
center and bandwidth are determined by iteratively searching for the optimal solution
of the variational model so that the frequency domain dissection of the sequence signal
and the effective separation of each component can be realized adaptively. The original
electricity price sequence can be decomposed into several modal components with different
center frequencies after VMD. In this way, the complex original electricity price can be
transformed into a set of relatively stable and more regular subsequences, which provide
more apparent features of the electricity prices in different frequency domains, making it
easier for the neural network to learn.

Assuming that each modal component is a finite bandwidth with central frequency
ωk, the variational problem can be described as seeking K-modal functions uk(t) such that
the sum of the estimated bandwidths of each mode is minimized. The constraint is that the
sum of each modal is equal to the input signal f . The VMD model is constructed in the
following steps.

(1) The analytic signal of each modal function uk(t) is obtained using the Hilbert
transform to get its one-sided spectrum.

(2) The resolved signal of each modal is mixed with the corresponding center frequency,
e−jωkt, so that the spectrum of each mode is modulated to the corresponding fundamental
frequency band.

(3) The signal is demodulated according to the Gaussian smoothness and the quadratic
criterion of the gradient, and the quadratic L2 norm of the gradient is calculated to obtain
the bandwidth of each decomposed mode.

The variational constraint model is obtained as follows:{
min

{uk}{ωk}

{
∑K

k=1 ‖∂t

[(
δt +

j
πt

)
∗ uk(t)

]
e−jωkt‖2

2

}
,

s.t. ∑k uk = f
(1)

where ∂t is the partial derivative operator; δt is the Dirac distribution function; 1/(πt) is
the shock response; uk is the modal component; and f is the original sequence signal. To
solve the above model, a quadratic penalty factor α and a Lagrange multiplier operator
λ are introduced to transform the constrained variational problem into an unconstrained
variational problem with the following expressions:

L({uk}, {ωk}, λ) := α
K
∑

k=1
‖∂t[(δt +

j
πt ) ∗ uk(t)]e−jωkt‖2

2

+‖ f (t)−∑K
k=1 uk(t)‖2

2 + 〈λ(t), f (t)−∑K
k=1 uk(t)〉,

(2)

the alternate direction method of multipliers (ADMM) deals with the above unconstrained
variational problem. The variational modal optimal solution in Equation (1) is solved by
alternately updating un+1

k , ωn+1
k , and λn+1

k (n is the number of iterations). The new uk and
the central frequency ωk are:

ûn+1
k (ω) =

f̂ (ω)−∑i 6=k ûn
i (ω) + λ̂(ω)

2

1 + 2α(ω−ωk)
2 , (3)

ωn+1
k =

∫ ∞
0 ω

∣∣∣ûn+1
k (ω)

∣∣∣2dω∫ ∞
0

∣∣∣ûn+1
k (ω)

∣∣∣2dω

, (4)

where f̂ (ω), ûi(ω), λ̂(ω) are the Fourier transforms of the points f (t), ui(t), and
λ(t), respectively.

2.2. Sparrow Search Algorithm (SSA)

The sparrow search algorithm (SSA) is a population intelligence optimization algo-
rithm proposed by Jiankai Xuea et al. in 2020 [54], which has the advantages of global



Energies 2022, 15, 8445 5 of 20

foraging, few adjustable parameters, and a clear structure. The algorithm builds a math-
ematical model based on the foraging behavior of sparrows. It incorporates a detection
mechanism, where some sparrows in the population are randomly selected as scouts to
establish an anti-predation mechanism. Each sparrow is a particle in the search space
and represents a solution to the problem. Sparrows at the edge will update their position
toward the center of the population to avoid danger, whereas sparrows at the center of the
people will perform random wandering.

During foraging, a population of n sparrows in d-dimensional space can be expressed as:

X =


x1

1 x2
1 · · · xd

1

x1
2 x2

2 · · · xd
2

...
...

...
...

x1
n x2

n · · · xd
n

, (5)

the fitness values for all sparrows can be expressed as:

Fx =


f
([

x1
1 x2

1 · · · · · · xd
1

])
f
([

x1
2 x2

2 · · · · · · xd
2

])
...

...
...
...

f
([

x1
n x2

n · · · · · · xd
n

])

 (6)

Sparrow populations have producers and scroungers. The producer has a high fitness
value and can provide all scroungers with foraging directions and areas to guide the
population in their search. There is a dynamic change between the two identities of
individual sparrows, and each sparrow can become a producer if it finds a better food
source. The shift in fitness value determines whether the scrounger follows the producer.

In each iteration of the optimization search process, the producer’s position is updated
with the formula:

Xt+1
i,j =

Xt
i,j· exp

(
− i

α·Tmax

)
, if R2 < ST

Xt
i,j + Q·L , if R2 ≥ ST

, (7)

where t is the number of iterations; Tmax is the maximum number of iterations; α is a
random number uniformly distributed between (0, 1]; Q is a random number obeying a
positive-terrestrial distribution; and L is a 1 × d matrix with each element inside being 1.
When R2 < ST, there is no danger around the sparrow population. The producer can
search extensively for physical objects and lead other individuals to obtain a higher fitness
value. When R2 ≥ ST, scouts find danger approaching, and will signal danger and trigger
anti-predatory behavior. Meanwhile, the producer will lead scroungers to perform position
updates to safer areas for foraging. The position of scroungers is updated as follows:

Xt+1
i,j =


Q· exp

(
Xt

worst−Xt
i,j

i2

)
, if i > n/2

Xt+1
P +

∣∣∣Xt
i,j − Xt+1

P

∣∣∣·A+·L, otherwise
, (8)

where Xt
worst denotes the current global worst position; Xt+1

P denotes the producer occupy
the optimal position; and A is a multidimensional matrix with elements of 1 or −1 and
satisfies A+ = AT(AAT)−1. When i > n/2, it suggests that the ith sparrow has too low an
adaptation value and needs to fly to other areas to forage. When i ≤ n/2, it means that the
ith sparrow will feed randomly around the position of the current producer Xt+1

P .
The scout is responsible for monitoring the foraging area and will immediately signal

danger when it is aware of approaching danger. At the same time, it will quickly move to
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a safe area or randomly approach other individual sparrows to reduce the likelihood of
predation. The scout’s position update formula can be expressed as follow:

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣ , if fi > fg

Xt
i,j + k·

( ∣∣∣Xt
i,j−Xt

worst

∣∣∣
( fi− fω)+ε

)
, if fi = fg

(9)

where Xt
best is the current global optimal position; β is the step control parameter, which

obeys a normal distribution with mean 0 and variance 1; fi, fω , fg are the current individual
fitness value, global worst, and optimal fitness values, respectively; k ∈ [−1, 1] is used
to control the direction of sparrow movement; and ε is a minimum value that is not zero.
When fi > fg, it suggests that the sparrow is at the edge of the population and is highly
vulnerable to predators. When fi = fg, the sparrow is in the middle of the population and
aware of the danger. The sparrow will move closer to other individuals to protect itself
from predators.

2.3. Long Short-Term Memory Neural Network (LSTM)

Traditional recurrent neural networks have good performance in processing time
series style by combining the temporality of data with network design but are prone to
gradient disappearance and gradient explosion problems when dealing with long-time
span nonlinear data. LSTM improves the traditional recurrent neural network structure by
introducing memory units to control information transfer, effectively solving the long-term
temporal dependence between data [55]. The memory unit can prevent the information
from transferring based on the current input. The memory unit can determine the probabil-
ity of allowing the information to pass based on the current input and the previous hidden
state. This enables the whole network to remember and forget the data, which gives LSTM
a great advantage when dealing with long time series such as electricity price series.

The LSTM consists of multiple LSTM cells. The LSTM cells include forgetting gates,
input, and output gates, as shown in Figure 1. These three gates are used to learn the history
input, current input, and history output in a weighted manner to achieve the memory
function. The forgetting gate reads the output ht−1 of the previous cell and the current input
xt via Sigmoid nonlinear mapping to selectively remember and forget information. The
input gate determines the information stored in the recent memory cell state Ct. The output
gate then determines the output information ht based on the current new cell state Ct.
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The updated formula for Ct and ht within the LSTM cell is as follow:

ft = σ
(

W f ·[ht−1, xt] + b f

)
, (10)

it = σ(Wi·[ht−1, xt] + bi), (11)

C̃t = tanh(WC·[ht−1, xt] + bC), (12)

Ct = ft ∗ Ct−1 + it ∗ C̃t, (13)

ot = σ(Wo·[ht−1, xt] + bo), (14)

ht = ot ∗ tanh(Ct), (15)

where ft, it, ot, Ct, and ht denote the values of the forgetting gate state, input gate state,
output gate state, memory cell, and hidden state at the moment t, respectively; σ is the
Sigmoid activation function; W f , Wi, and WC are the weight matrices of the forgetting gate,
input gate, and output gate, respectively; and b f , bi, and bC are the deviation matrices of
the forgetting gate, input gate, and output gate, respectively.

2.4. Normalization and Denormalization

To make the data fit the model better to improve the model’s prediction effect, the
decomposed modal components need to be normalized. This paper uses the Min-max
normalization method to normalize the data set to the range of 0 to 1. The Min-max
normalization method is a linear transformation of the original data. Let minA and maxA be
the minimum and maximum values of the data set A. The original value x of A is normalized
to the value x′ in the interval [0, 1] by Min-max normalization. The normalization formula
is as follows:

x′ =
x−minA

maxA−minA
, (16)

After the SSA-LSTM prediction, the prediction result of each subsequence is obtained,
which needs to be inverse normalized and then cumulatively reconstructed to obtain the
final prediction result. The inverse normalization formula is as follow:

Y = y ∗ (maxA−minA) + minA, (17)

where y is the subseries predicted value and Y is the actual expected value after inverse
normalization.

3. Construction of VMD-SSA-LSTM Model
3.1. Input and Output of the Model

The proposed method in this paper uses historical electricity price data as the input to
the model. Before inputting into the model, the original prices sequence is divided into
two parts, the training set and the test set, which are decomposed by a two-layer VMD
decomposition technique and then transformed into a supervised learning form to be input
into the model for one-step-ahead prediction. After several experimental comparisons,
the data is finally fed into the model in the form of t-3, t-2, and t-1 prices to predict the
electricity price at time t. The output of the model is the predicted value of each modal
component, and the final predicted value is obtained after reconstruction.

3.2. Two-Layer VMD Decomposition Technique

In the electricity market, the electricity price is characterized by non-linearity, non-
stationarity and high volatility, and is often accompanied by some extreme electricity prices.
To cope with this problem, we propose a two-layer VMD decomposition technique based
on the single decomposition approach. Firstly, the original electricity price series are de-
composed adaptively using VMD decomposition. In this process, the complex features
contained in the original prices are decomposed into multiple relatively stable modal com-
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ponents, and the extreme prices are also included. These modal components provide clearer
temporal characteristics of the electricity prices in each frequency domain, which can be
more easily learned by the neural network. After the first layer decomposition, we find that
some high-frequency components often contain rich prices features that are not extracted.
These features are hidden in high-frequency noise and are difficult to be detected. A single
decomposition approach often performs poorly in the face of this problem. Therefore, we
evaluate each component obtained after the first decomposition, and obtain the IMF-worst
component with the worst prediction accuracy, i.e., the component that contains the most
information. Then, we use the second VMD decomposition for IMF-worst to further extract
the prices features contained in it to improve the prediction accuracy for this component,
and thus improve the prediction accuracy of the whole model.

3.3. SSA Optimize LSTM’s Hyperparameters

The model parameters of LSTM, such as the number of neurons in the hidden layer and
the number of iterations, significantly impact the accuracy of the electricity price prediction
results. Therefore, the hyperparameters of the LSTM model need to be optimized to find
the most suitable network parameters. SSA shows good convergence speed and accuracy
performance and has some advantages in dealing with nonlinear problems. Thus, this
paper uses SSA to optimize the hyperparameters, such as the number of cells in the hidden
layer and the number of iterations of the LSTM model. The optimization steps are as
follows:

(1) Determine the number of sparrow populations, the proportion of discoverers, the
finding dimension, the number of optimization iterations, and the parameter thresholds.
Sort and classify the sparrow population and initialize the SSA.

(2) Sparrow positions are updated by the producer, scrounger, and warning condition
formulas. The predicted values of the LSTM and the root mean square of the sample data
are used to determine the fitness values of the sparrow population. The optimal individual
positions and global optimal position values in the population are saved.

(3) Judge whether the sparrow best adaptation in this iteration is better than the
global best adaptation. If yes, exit the loop and return the optimal individual solution, i.e.,
determine the LSTM optimal hyperparameters. Otherwise, continue the loop iteration to
find the optimal until the number of update iterations reaches the maximum.

3.4. Forecasting Process of VMD-SSA-LSTM Model

As mentioned above, the electricity price series has complex characteristics such as
high frequency, nonlinearity, and volatility, which brings no small challenge to the accurate
prediction of electricity prices. The VMD decomposition technique can decompose the
complex electricity price signal into several standard modal components, thus significantly
improving the prediction accuracy. In addition, LSTM has an excellent ability to deal with
long-time series problems. Therefore, this paper combines the dual advantages of VMD and
LSTM. SSA is used to optimize the network structure parameters of LSTM to improve its
prediction capability further, and a two-layer VMD decomposition technique is introduced
to address the problem that a single decomposition technique cannot thoroughly extract the
complex information contained in the electricity price series. Finally, a hybrid prediction
model based on the secondary VMD decomposition technique and SSA-optimized LSTM is
proposed, and its process architecture is shown in Figure 2. The whole prediction process
of the model can be divided into the following steps.
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(1) Step 1: The original electricity price series is decomposed into multiple IMF
components with different center frequencies using VMD. Then, the sum of each IMF
component is subtracted from the original sequence to obtain the residual term.

(2) Step 2: The network structure parameters and the number of iterations of the LSTM
are optimized using SSA. Each IMF component and the residual terms are normalized and
input to the optimized LSTM model to obtain the preliminary prediction values of each
IMF component.

(3) In the Judgement module, the prediction accuracy of each IMF is evaluated us-
ing MAPE and Adjusted R-Square. Meanwhile, the IMF-worst sequence with the worst
prediction accuracy is obtained.

(4) Step 4: The prediction values obtained from the first decomposition of the predic-
tion are renormalized. The IMF-worst prediction values are not considered when the initial
reconstruction is performed.

(5) Step 5: The IMF-worst is decomposed by VMD to obtain multiple IMF components
and then input again into the LSTM model optimized by SSA to get new prediction values.

(6) Step 6: The first reconstructed value is reconstructed with the new predicted value
for the second time to obtain the final prediction result.

4. Case Study and Result
4.1. Data Collection

In this paper, we conduct experimental validation using electricity price data from
three electricity markets, Australia, France, and Spain, to comprehensively and system-
atically evaluate the forecasting performance of the proposed hybrid forecasting model
and its generalization capability. In the case of Australia, electricity price data for a total
of 100 days between 21 January and 30 April 2014, for the New South Wales continent
are used for the experiments. The data are available from the Australian Energy Market
Operator platform. The dataset is sampled for half an hour, i.e., 48 observations per day.
The first 90 days of the dataset are used as the model’s training set, and the last ten days,
with a total of 480 observations, are used as the test set. In the case of France, six weeks of
data between 9 January and 20 February in 2021 are used. The data are obtained from the
NORD POOL platform. The dataset is sampled for 1 h and 24 observations per day. The
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first five weeks of this dataset are used as the test set, and the last week with 168 comments,
is used as the test set. In the case of Spain, electricity price data between November 2019
and November 2020 are used for the experiment. The data are obtained from the website.
The data was sampled for 1 h and 24 observations per day. The data set was divided into
four different seasons, each season using ten weeks, with the first nine weeks as the model
training set and the last week as the test set.

4.2. Evaluation Metrics

To evaluate the effectiveness of the forecasting method proposed, this paper uses the
mean absolute error (MAE), mean fundamental percentage error (MAPE), and root mean
square error (RMSE) to test the forecasting results of each forecasting model. The formulas
for each indicator are as follows:

MAE =
1
n ∑n

i=1|yi − ŷi|, (18)

MAPE =
1
n ∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%, (19)

RMSE =
√

1/n ∑n
i=1(yi − ŷi)

2, (20)

R2
adj = 1− ∑i(ŷi − yi)

2(n− 1)

∑i(yi − yi)
2(n− p− 1)

, (21)

where yi is the true value; ŷi is the predicted value; yi is the mean value; n is the test
set sample size; and p is the number of input feature variables. The smaller the value of
MAE, MAPE, and RMSE, the better the prediction, and the closer R2

adj is to 1, the better the
model fit.

4.3. The Case of the Australian Electricity Market

The electricity market in South Wales, Australia, often exhibits high volatility due
to frequent external shocks to its electricity prices. In this case, electricity price data for
100 days between 21 January and 30 April 2014, for the New South Wales continent of
Australia, were used. As shown in Figure 3, there are 4800 observations, and the original
electricity price series has a large variation of ups and downs. Figure 4 illustrates the modal
components of several different center frequencies obtained from the original electricity
price series after VMD decomposition. After VMD decomposition, the original tariff
series’ fluctuating trends and complex internal fluctuation characteristics are assigned to
different components. In this way, the SSA-optimized LSTM model can more easily identify
and extract the features of all members, thus improving the prediction effect. To further
enhance the prediction accuracy, the IMF-worst component with the worst prediction
accuracy in the first decomposition is decomposed for the second time using VMD, and the
decomposition results are shown in Figure 5. After another corruption, the information
implied in IMF-worst can be further extracted, improving the model’s overall prediction.

The prediction results of the different models are shown in Figure 6. It can be seen
from the figure that the prediction zone curve of the proposed model is very similar to
the actual value curve. To further check the prediction accuracy of the models, MAPE,
RMSE, and MAE were used to evaluate the models’ prediction errors. Table 1 shows the
prediction error metrics of different models, where the proposed model has a MAPE of
0.44%, RMSE of 0.28 (AUD/MWh), and MAE of 0.21 (AUD/MWh). The proposed model
significantly improved prediction accuracy compared with BP, LSTM, and SSALSVM
models. In addition, the prediction error metrics of single-layer VMD and two-layer
VMD are compared in Table 1. The MAPE, RMSE, and MAE are reduced by 0.19%,
0.15 (AUD/MWh), and 0.1 (AUD/MWh) when using two-layer VMD compared with
single-layer VMD, indicating that the two-layer VMD decomposition technique can further
extract the implied clutter information from the electricity price series to improve the
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overall prediction effect of the model. And the electricity price series can also perform very
well in the face of high electricity price volatility.
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Table 1. Error metrics for different prediction models in NSW.

BP LSTM SSA-LSSVM VMD1-SSA-LSTM VMD2-SSA-LSTM

MAPE (%) 3.67 2.41 1.91 0.63 0.39
RMSE 2.54 1.84 1.58 0.43 0.25
MAE 1.74 1.17 0.94 0.31 0.19

VMD1 is single-layer VMD. VMD2 is tow-layer VMD.

4.4. The Case of the French Electricity Market

Electricity prices in the French electricity market are relatively stable, with the daily
trend being more or less the same. Six weeks of data from 9 January to 20 February 2021,
are used in this case. The first five weeks are used as the training set, and the last week
with 168 observations, is used as the test set. VMD and input decomposed the original
electricity price series to the LSTM model optimized by SSA for training after Min-max
normalization. The prediction results are shown in Figure 7. It can be seen from the figure
that the predicted values of the proposed model can fit the actual values well and capture
the trend and complex features of electricity prices. Figure 8, as well as Table 2, show the
prediction error metrics of different models, and it can be seen in the figure that compared
to BP, LSTM, and SSA-LSSVM, the proposed model has the smallest MAPE, RMSE, and
MAE, indicating that the proposed model has excellent prediction accuracy. In addition,
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compared with the single-layer VMD, the MAPE, RMSE, and MAE of the proposed two-
layer VMD decomposition model in this paper are reduced by 1.54%, 0.8 (EUR/MWh),
and 0.67 (EUR/MWh), respectively, indicating that the two-layer VMD decomposition
technique can further improve the decomposition effect to reduce the prediction error of
the model.
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Table 2. Error metrics for different prediction models in French.

BP LSTM SSA-LSSVM VMD1-SSA-LSTM VMD2-SSA-LSTM

MAPE (%) 15.4 9.89 8.08 3.12 1.58
RMSE 8.39 5.34 4.51 1.70 0.90
MAE 6.99 4.32 3.48 1.35 0.68

VMD1 is single-layer VMD. VMD2 is tow-layer VMD.
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4.5. The Case of the Spanish Electricity Market

The Spanish electricity market has a significant seasonal variation, so in this case,
we take this factor into account. In this case, electricity price data are used between
22 December 2019 and 29 November 2020. The data are divided into four different seasons
for separate experiments. The data sets span from 22 December 2019 to 29 March 2020
for winter, 23 March to 31 May 2020 for spring, 22 June to 30 August 2020 for summer,
and 21 September to 29 November 2020 for fall. Ten weeks of data are used for all four
seasons, for 1680 observations. The first nine weeks are used as the training set, and the
168 observations from the last week are used as the test set.

Figures 9–12 show the prediction curves of the different models for each of the four
seasons. The figures show that the proposed models are very close to the actual electricity
price curves, indicating that the proposed models can capture the overall trend of electricity
prices well and perform well when there are spikes in electricity prices. The proposed
model has very good outstanding forecasting accuracy both in the relatively smooth
autumn and in the winter and spring when electricity prices fluctuate greatly. Although
there are individual details in the summer curve with more significant errors in the tip
electricity price prediction, its overall prediction is still excellent. To further verify the
accuracy and stability of the proposed model, MAPE, RMSE, and MAE were calculated for
each test week, as shown in Figure 13 and Table 3. By comparing with BP, SSA-LSSVM,
and LSTM, we found that the prediction error of the proposed model was significantly
reduced in the four seasons. The average MAPE for the four seasons is 0.95%, the average
RMSE is 0.38 (EUR/MWh), and the average MAE is 0.31 (EUR/MWh). In addition, the
two-layer VMD has better prediction results than the single-layer VMD. The average MAPE
is reduced by 0.82%, RMSE by 0.39 (EUR/MWh), and MAE by 0.3 (EUR/MWh) in four
seasons, indicating that the two-layer VMD decomposition technique in this paper can
further improve the overall prediction accuracy of the model and can adapt well to the
changes of the input samples.
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In order to further validate the differences in prediction performance between the
proposed model and the comparison model and to ensure that the accurate prediction
results are stable, the statistical significance of the results needs to be established. We
performed Diebold and Mariano (DM) tests [56] on the prediction results of all models
based on each of the above cases. The DM test is a statistical test. Table 4 shows the p-values
of the DM test results. The null hypothesis is that there is no difference in the prediction
accuracy of the models in the rows and columns. The alternative hypothesis is that the
model’s prediction accuracy in the column is significantly better than the model in the row.
The p-value < 0.01 in Table 4 indicates that the original hypothesis is not valid and the
prediction accuracy of the model in the column is significantly better than that of the model
in the row. Therefore, we can see that the model’s prediction accuracy incorporating the
two-layer VMD decomposition technique is significantly better than several other models.
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Table 3. Error metrics for different prediction models in Spain.

Season Error
Metrics

Model

BP SSA-LSSVM LSTM VMD1-SSA-LSTM VMD2-SSA-LSTM

Winter
MAPE (%) 11.94 6.13 6.28 2.23 1.22

RMSE 4.13 2.34 2.41 0.74 0.42
MAE 3.41 1.74 1.81 0.61 0.33

Spring
MAPE (%) 7.69 5.03 4.95 1.23 1.02

RMSE 2.60 1.92 1.95 0.42 0.32
MAE 2.08 1.35 1.32 0.31 0.26

Summer
MAPE (%) 6.43 4.46 4.53 1.77 0.96

RMSE 2.37 2.28 2.33 0.87 0.43
MAE 3.02 1.67 1.70 0.67 0.35

Fall
MAPE (%) 6.83 3.68 3.83 1.83 0.61

RMSE 4.22 2.29 2.36 1.04 0.35
MAE 3.33 1.79 1.86 0.85 0.28

Average
MAPE (%) 8.22 4.83 4.90 1.77 0.95

RMSE 3.33 2.21 2.26 0.77 0.38
MAE 2.96 1.64 1.67 0.61 0.31

VMD1 is single-layer VMD. VMD2 is tow-layer VMD.

Table 4. p-values of the Diebold and Mariano test.

Market Models BP LSTM SSA-LSSVM VMD1 VMD2

Australia

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – <0.01 <0.01 <0.01

SSA-LSSVM 0.99 0.99 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

France

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – <0.01 <0.01 <0.01

SSA-LSSVM 0.99 0.99 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

Spain—
Spring

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – <0.01 <0.01 <0.01

SSA-LSSVM 0.99 0.99 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

Spain—
Summer

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – 0.05 <0.01 <0.01

SSA-LSSVM 0.99 0.95 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

Spain—
Fall

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – 0.02 <0.01 <0.01

SSA-LSSVM 0.99 0.98 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

Spain—
Winter

BP – <0.01 <0.01 <0.01 <0.01
LSTM 0.99 – <0.01 <0.01 <0.01

SSA-LSSVM 0.99 0.99 – <0.01 <0.01
VMD1 0.99 0.99 0.99 – <0.01
VMD2 0.99 0.99 0.99 0.99 –

VMD1 is single-layer VMD. VMD2 is tow-layer VMD. Null hypothesis: models in rows and columns have equal
prediction accuracy; alternative hypothesis: models in columns are more accurate than models in rows.
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5. Discussion and Conclusions

EPF is a challenging task, and accurate EPF can provide an essential basis for market
participants to develop strategies to reduce risks or maximize benefits in their market trans-
actions. Considering that data for many variables are often difficult to obtain in practical
engineering, this study attempts to investigate a prediction method that improves predic-
tion accuracy in scenarios where other variables are not considered, in view of the nonlinear,
non-stationarity, and highly volatile characteristics of electricity prices. This paper proposes
a hybrid forecasting model consisting of a two-layer VMD decomposition technique and
an SSA-optimized LSTM. The model combines the advantages of VMD in terms of data
decomposition and LSTM in processing time series. VMD allows decomposing the original
electricity price series into multiple modal components with different center frequencies
and avoids modal confounding. Optimizing the hyperparameters of the LSTM using SSA
can further improve its ability to handle time series. In addition, applying the two-layer
VMD to IMF-worst can further extract the complex features implied by the electricity
price series to improve the model’s prediction performance. Finally, to test the prediction
performance and generalization ability of the model, this paper conducts experimental
validation with electricity price data from three electricity markets in New South Wales,
Australia, France, and Spain. In addition, the experiments are divided into seasons in the
Spanish market. In the case of the New South Wales electricity market, where electricity
prices are volatile, we find that the proposed model performs very well, capturing the trend
of electricity prices accurately and performing well in the prediction of electricity price
spikes despite the large fluctuations in electricity prices. In the case of Spain, we conducted
a seasonal forecasting experiment incorporating the seasonal variation in this market. The
overall forecasting accuracy is satisfactory, although there are individual cases of large
errors in the tip tariffs in the summer forecast result curves. The overall results show that,
compared with other models, the proposed model can not only handle the complex features
contained in the electricity price series well, but also adapt to the changes of the input
samples, and has a better prediction effect and stability. In addition, the proposed two-layer
VMD decomposition technique can further deal with the nonlinearity and non-smoothness
of the electricity price series and significantly improve the model’s prediction accuracy. This
indicates that the proposed model can accurately predict stochastic and non-stationarity
electricity price series and can provide key assistance to market participants.

On the other hand, more influencing factors can be considered in future work to further
improve the overall forecasting effect and model robustness. Especially with treating spike
prices, multi-factor consideration combined with multimodal decomposition may achieve
more significant forecasting results. Therefore, in future works, we suggest collecting
more real-time data of other variables such as weather, load, and fuel price to facilitate
researchers to get better prediction results.
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