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Abstract: This research focuses its efforts on the prediction of medium-term electricity consumption
for scenarios of highly variable electricity demand. Numerous approaches are used to predict
electricity demand, among which the use of time series (ARMA, ARIMA) and the use of machine
learning techniques, such as artificial neural networks, are the most covered in the literature review.
All these approaches evaluate the prediction error when comparing the generated models with the
data that fed the model, but they do not compare these values with the actual data of electricity
demand once these are obtained, in addition, these techniques present high error values when there
are unexpected changes in the trend of electricity consumption. This work proposes a methodology
to generate an adaptive model for unexpected changes in electricity demand through the use of
optimization in conjunction with SARIMA time series. The proposed case study is the electricity
consumption in Quito, Ecuador to predict the electricity demand in the years 2019 and 2020, which are
particularly challenging due to atypical electricity consumption attributed to COVID-19. The results
show that the proposed model is capable of following the trend of electricity demand, adapting itself
to sudden changes and obtaining an average error of 2.5% which is lower than the average error of
5.43% when using a non-adaptive approach (more than 50% or error improvement).

Keywords: load forecasting; demand forecasting; medium term forecasting; time series analysis;
power demand; optimization techniques; adaptive models

1. Introduction

Operation and planing of the Electrical Power System (EPS) is key for the economic
development and progress of a country. Correct planning of the expansion of the EPS
allows electricity generating companies and the state, through energy policies, to supply
the energy that the population will need at certain moments. A fundamental tool in this
planning is electricity forecasting demand for the short, medium, and long term, this
forecasting allows new users of the electrical network to meet their energy needs [1],
and this is reflected in the social and economic development of the sector, allowing large
consumers of electricity, such as industries to generate new jobs for the sector. Among the
different types of electricity demand forecasting, the most important and used for planning
is medium-term forecasting, which provides tools for the expansion of the transmission
system and strategies for intelligent electricity consumption policies for the user (rate plans
and incentive policies for energy savings) [2].

Among the different techniques used to predict electricity demand, the use of time
series stands among other methodologies. Time series proposes the use of various math-
ematical models that are capable of describing a set of data with certain precision and
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subsequently generating predictions about them [3]. Among these mathematical mod-
els based on time series, the most common and used are auto-regressive (AR) models,
moving average (MA) models, auto-regressive and moving average (ARMA) models, auto-
regressive and moving average integral models (ARIMA), and the ARIMA models that
consider a component of repetition in time or seasonal component [4].

In the research cited in [5], an ARIMA model is used for long-term energy consumption
forecasting (electricity, natural gas, oil, coal, and LPG) in Pakistan, for this study energy
consumption data from 1992 to 2014 were considered and, as a result, prediction data were
generated up to the year 2035. The work determined that the greatest increase for the year
2035 will be in oil with a growth of 38.16% followed by natural gas with a growth of 36.57%
and electricity with 16.22%.

Authors in [6] show a comparison between an ARIMA and Holt-Winter model for
electricity consumption in Pakistan between 1980 and 2011, thus, generating predictions
and an error comparison between both models. This work determined that although
both models provided acceptable results, the Holt–Winter model is the one that best suits
Pakistani electricity consumption.

In the research cited in [7], a Seasonal ARIMA or SARIMA model is used in which
the models are modified to minimize the values of residuals. The case study of this
work took monthly electricity consumption data from February 2006 to March 2010 in the
Northwest electricity grid in China. Using this modified SARIMA model, it was possible
to verify that the accuracy of data prediction increases when using a seasonal model with
residual reduction.

In the last couple of years, machine learning techniques, such as neural networks and
deep neural networks, have been used to analyse and solve problems related to electrical
power systems, among which data prediction and systems behaviour modelling can be
mentioned [8]. With the rise of machine learning and artificial intelligence techniques,
new techniques applicable to the prediction of time series have been applied for electricity
demand forecasting [4].

Research cited in [9] shows an ARMA model which is used in combination with
Neural Networks and Neuro-Fuzzy systems. The study scenario used was the electricity
demand in South Africa from 1985 to 2011. The results of this work generated error values
of up to 13.5%.

Research in [10] showed that there are other time series techniques, such as Gray and
Grey–Markov, for the prediction of electricity demand. In this work, the case study was
the energy consumption in India between the years 2005 and 2015. This work generated
results for the prediction of electricity demand with an error of 3.4%.

Authors of [11], propose an artificial neural network (ANN) and regression models
which are applied for the prediction of long-term electricity demand in Thailand. As a
result, it is determined that ANN provides more accurate results compared to the regression
models. The study proposed as a validation metric of the model, the real results of the
years 2010, 2015, and 2020. For this, the neural network was trained with data from 1989 to
2008. As a result, the annual prediction presented an error of 1.82%.

In the research cited in [12], a hybrid self-adaptive Particle Swarm Optimization–Genetic
Algorithm function model is used to predict electricity demand in Wuhan, China. This
study takes as known data the electricity consumption in the said region between the years
1990 and 2013, after which the electricity demand for the years 2014–2020 is predicted.
Error is not estimated in this study.

In the work developed by Authors in [13], the annual prediction of electricity con-
sumption in Turkey is made based on historical data between 1975 and 2013, obtaining
electricity demand forecasting values for the years 2014–2028. This work uses linear regres-
sion models in conjunction with artificial neural networks. In this work, the error of the
model before the prediction (error less than 5%) is evaluated; however, it does not evaluate
an error of the predicted values in comparison with real results.
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In the research cited in [14], a seasonal ANN is proposed for the monthly forecast of
electricity demand between the years 2015 and 2018 in Turkey. The results of this work
are contrasted with the implementation of an ARIMA model and it is determined that the
seasonal ANN has a lower prediction error of 3% (error based on known data).

As detailed in the review of previous works, most of the research articles use two
approaches for electricity demand forecasting, time series, and machine learning tech-
niques (such as ANN artificial neural networks), also in some cases a combination of both
techniques are used. In the case of investigations with time series, the work consists of
determining the coefficients and degree of these that make up the temporal series (AR,
MA, ARMA, ARIMA, or SARIMA), after this step, it is possible to generate the forecasting
data on the established model (forecasted data are generated either for short, medium, or
long term). A disadvantage of this approach is that once the coefficients of the model are
selected, they are not modified regardless of the number of periods in the future that the
model will forecast, thus at some point the model that has been previously defined can
become irrelevant and the prediction error might to be too high.

On the other hand, the use of machine learning techniques, such as artificial neural
networks, genetic algorithms, and optimization techniques, are limited to executing a
prediction of electricity demand, ignoring the mathematical behaviour of these data, which,
by definition, are time series. Although this approach indeed allows predictions to be made,
it ignores important parameters of the data that must necessarily be considered in real
scenarios [15,16] (temporary periodicity, auto-regression, variance, mean, etc.).

To solve the previously detailed problems, this research proposes a methodology in
which monthly electricity demand prediction will be performed for a medium-term through
ARMA, ARIMA, and SARIMA time series. To determine the coefficients of the model, a
PSO optimization technique will be used and the model will be periodically updated month
by month so that each month a new mathematical model is obtained that represents the
electricity demand and its current behaviour. With this methodology, unexpected changes
in electricity demand will be considered and the proposed model will offer adaptability to
these, thus providing the ability to make electricity demand predictions with a minimum
margin of error with a self-adaptive model over time.

Organization

The organization of the paper is as follows: Section 1 discusses an introduction
of methodologies applied for electricity demand forecasting, also this section shows the
previous research completed in the area involving time series analysis and machine learning
techniques, how they evaluated their results and the different errors those techniques were
able to obtain.

Section 2 shows the statistical analyses for seasonal, regressive and moving average
behaviour of the electricity demand for Quito, Ecuador. This section also fully explains the
implementation of particle swarm optimization used to find the optimal SARIMA models
for the data and how the iterative adaptive model is implemented.

Section 3 shows the resulting models for the adaptive methodology implemented in
this research, this section also analyses model errors and compared them with errors of a
traditional technique employed for forecasting. Finally, this section provides a detailed
discussion and analysis of the results.

Finally, Section 4 summarizes the conclusions from the research performed in this work.

2. Methodology
2.1. Case Study

The hybrid methodology proposed in this work for medium-term electricity demand
forecasting consists of Seasonal ARIMA and Particle Swarm Optimization, and is applied
to a specific case study for the city of Quito in Ecuador.

For this purpose, historical information has been collected on the monthly electricity
consumption of Quito starting in January 1999 until December 2020. In this way, 264 data
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corresponding to historical records of electricity demand for 22 years have been collected.
This information is freely accessible and is made known to the public by the Ministry of
Energy of Ecuador on its web-page, subsection Ecuadorian electric sector statistics [17].

It is also proposed to carry out the study with a database that contains information up
to the year 2020 because the years 2019 and 2020 present a particularly high challenge in
terms of data prediction, and that is that they are the years in which there were worldwide
Unexpected fluctuations in electricity consumption due to the COVID-19 pandemic.

Figure 1 shows the behaviour of electricity demand in the city of Quito until 2018,
being visually evident that the trend of this demand until December 2018 is upward.
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Figure 1. Monthly power consumption in Quito, Ecuador between January 1999 and December 2018.

On the other hand, Figure 2 shows the electricity demand from 2013 to 2020, consider-
ing the atypical years 2019 and 2020, in this figure, it can be seen that the trend in electricity
demand until 2018 is upward (black dotted line), however this is not true for data from
2018 onwards (red dotted line).
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Figure 2. Monthly power consumption in Quito, Ecuador between January 2013 and December 2020.
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Therefore, this work will start with the analysis of the monthly electricity demand
in the city of Quito until December 2018. Once the behaviour of this time series has
been studied, this will serve as a starting point for the proposed methodology to make
predictions about the years 2019 and 2020 that represent a challenge of adaptability.

2.2. Time Series Analysis
2.2.1. Auto-Regressive Moving Average Time Series (ARMA)

In time series analysis one of the most fundamental models for real case scenarios is the
ARMA model. The ARMA model combines the auto-regressive AR and moving average
MA models and can only be applied to stationary data. This type of model expresses the
current value of the series in terms of a linear combination of its previous values until reaching
a maximum value of p previous values {X(t− 1), X(t− 2), X(t− 3), . . . X(t− p)}. On the
other hand, the moving average (ma) component is expressed as a function of a linear combination
of q previous white noise values {Z(t− 1), Z(t− 2), Z(t− 3), . . . Z(t− q)} [18–20].

By combining the regression and moving average components, an ARMA series is
described by the Equation (1), where φ and β are constants that are applied to each of the
time terms for each previous component of the series itself and the white noise.

Xt = φ1Xt−1 + φ2Xt−2 + . . . + φpXt−p + Zt + β1Zt−1 + β2Zt−2 + . . . + βqZt−q (1)

In addition, operator B (Backward shift operator) can be considered as BXt = Xt−1,
and this, in turn, allows Equation (1) to be summarized in Equation (2), also it should be
considered that φ(B) and β(B) are described in Equations (3) and (4), respectively.

φ(B)Xt = β(B)Zt (2)

φ(B) = 1− φ1B− φ2B2 − . . . .− φpBp (3)

β(B) = 1− β1B− β2B2 − . . . .− βpBq (4)

2.2.2. Integrated Auto-Regressive Moving Average Time Series (ARIMA)

In some cases, the analysed data increase their mean over time. As it can be seen in
Figure 1, the electricity demand for Quito, Ecuador until 2018 shows a tendency to increase
year after year, for this reason, it is not possible to apply an ARMA model because said
model requires the data to be stationary (constant average).

If the data in Figure 1 are differentiated one after the other, that is, subtraction of
data n is performed concerning its previous data and so on until reaching the first value,
the electricity demand data can be transformed into a new set of data that represent a
stationary series as can be seen in Figure 3.

Mathematically this data differentiation is represented as Di f f (Xt) = (1− B)dXt,
where d is the number of times the differentiation is performed [21]. Finally, by applying
this concept in Equation (2), the ARMA model becomes the ARIMA model which is detailed
in Equation (5).

φ(B)(1− B)dXt = β(B)Zt (5)
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Figure 3. Diff Data for Monthly power consumption in Quito, Ecuador between January 1999 and
December 2018.

2.2.3. Seasonal Auto-Regressive Integrated Moving Average Time Series (SARIMA)

Electricity demand is a time series with time characteristics that are repeated annually,
that is, every 12 months. This characteristic means that ARIMA models cannot describe
the behaviour of electricity demand with absolute certainty, which is why the seasonality
of the analysed data must be considered [4,22]. These additional components are applied
to both the auto-regressive part

{
(1−Φ1B12 −Φ2B24 . . .)Xt

}
and the moving average

part
{
(1−Θ1B12 −Θ2B24 . . .)Zt

}
. Thus, a SARIMA model is defined as described by

Equation (6).
Φ(BS)φ(B)(1− BS)D(1− B)dXt = Θ(BS)β(B)Zt (6)

With the aforementioned, a SARIMA model has a total of 6 coefficients of interest,
three for the non-periodic part (p, d, q) and three for the periodic part (P, D, Q). A SARIMA
model can be written with the following notation SARIMA(p, d, q, P, D, Q)S, which details
the degree of each component and this, in turn, can be also represented in Equation (7).

ΦP(BS)φp(B)(1− BS)D(1− B)dXt = ΘQ(BS)βq(B)Zt (7)

2.2.4. Based Model Analysis for SARIMA Coefficients

Based on the analysis described in Figures 1 and 3, it can be determined that the
electricity demand in Quito, Ecuador has a differentiation order of 1, d = 1. Additionally,
it is determined that the model presents periodicity every 12 months, which establishes a
hierarchy of seasonality S = 12.

The following analysis is based on establishing an approximate order for the auto-
regression and moving average coefficients. As for the moving average coefficients, once
the data have been differentiated, as shown in Figure 3, the next step is to analyse the
auto-correlation of this dataset. Figure 4 shows the behaviour of the auto-correlation of the
differentiated data in a total of 35 lags. Auto-correlation analyses the correlation between time
series that are k lags intervals apart from each other. Because the time series is compared with
itself this function has a maximum value of one (strongest auto-correlation) and any lag that
is above some limits called confidence bounds (typically±0.12 which is 12% of the maximum
value) are degrees that should be considered for the moving average degree coefficients.
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Figure 4. Auto-correlation for Diff Data for Monthly power consumption in Quito, Ecuador between
January 1999 and December 2018.

As it can be seen in Figure 4, there are significant lags that exceed the confidence
bounds around lags 1, 6, and 12 and lags that are very close to the confidence bounds
around lags 4 and 9. For this reason, the order of the moving average component MA
can reach a value of 5. Additionally, Figure 4 shows that this trend repeats periodically
every 12 lags, so the order of the seasonal moving average SMA component also takes a
maximum value of 5.

The next analysis consists of studying the partial auto-correlation PACF of the dif-
ferentiated electricity demand dataset. Figure 5 shows the behaviour of the PACF of the
differentiated data in a total of 35 lags. Partial auto-correlation analyses the correlation
between time series that are k lags intervals apart from each other by considering the
intervals in between. This function also has a maximum value of one (strongest partial
auto-correlation) and any lag that is above some limits called confidence bounds (typi-
cally ±0.12 which is 12% of the maximum value) are degrees that should be considered for
the auto-regressive degree coefficients.

 

Figure 5. Partial auto-correlation PACF for Diff Data for monthly power consumption in Quito,
Ecuador between January 1999 and December 2018.

As it can be seen in Figure 5, there are significant lags that exceed the confidence
bounds around lags 1, 3, 4, 5, 8, 9, 11, and 12. However, after lag 12 there are not significant
points outside the confidence bounds, for this reason, the order of the auto-regressive
component AR can reach a value of 5. Additionally, Figure 5 shows that this trend repeats
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periodically every 12 lags, so the order of the seasonal auto-regressive component AR also
takes a maximum value of 5.

Finally, the analysis of the electricity demand for Quito, Ecuador between 1999 and
2018 yields the following results that will serve as the basis for the methodology proposed
in this work, SARIMA(p, d, q, P, D, Q)S = SARIMA(p, 1, q, P, 1, Q)12.

1. Seasonal coefficient, S = 12.
2. Differentiated coefficient, d = 1.
3. Seasonal differentiated coefficient, D = 1.
4. Auto-regressive coefficients, 0 ≤ p ≤ 5.
5. Moving average coefficient, 0 ≤ q ≤ 5.
6. Seasonal auto-regressive coefficients, 0 ≤ P ≤ 5.
7. Seasonal moving average coefficient, 0 ≤ Q ≤ 5.

Thus, the range of variation for p, q, P, Q is from 0 to 5, each one having six possible
values, therefore, the total number of possible models (TNM) can be calculated following
Equation (8), having, as a result, TNM = 1296 (TNM = 6 ∗ 6 ∗ 6 ∗ 6). Later it will be detailed
that the process of finding the best coefficients is iterative and due to the high number of
possible combinations (1296) the processing time of a computer will be very high. Every
time a SARIMA model is generated, the forecasted values needed to be calculated and
errors should be evaluated as well, for this paper a core i7 computer with 16 GB RAM
running Matlab 2021b Software took around 80 s for this process, therefore, the analysis of
all the scenarios would need around 103,680 s which is not at all an optimal procedure. For
this reason, optimization will be used to find the best model in a relatively short time.

TNM = Rangep ∗ Rangeq ∗ RangeP ∗ RangeQ (8)

2.3. Optimization Process: Particle Swarm Optimization

PSO is a global optimization meta-heuristic technique with great popularity in various
research fields due to its easy adaptability to the process to be analysed. It is of special
importance when solving multi-variable and multidimensional problems in which the
use of traditional deterministic algorithms is not possible [23]. Traditionally, deterministic
optimization methods are designed to find a local solution, in other words for these
algorithms it is only important to find a solution which is better than the closest neighbours,
for this reason, these algorithms are fast when there is no need to find a global optimum
value or the problem has multiple variables. As an example, conjugate gradient methods
can be listed as a deterministic algorithms [24].

PSO uses probabilistic transition rules in its internal search processes, which allow
parallel searches to be carried out in the hyperspace of solutions without having any
type of assumption or prior knowledge of either local or global optimal solutions. This
optimization technique bases its selection criteria on the physical process by which groups
of fish and birds search for food [25,26].

This optimization algorithm uses search agents called particles, each particle is denoted
with the subscript i, each particle having, in turn, two fundamental characteristics, position
(xi) and speed (vi), these two characteristics are what determine how the operations will
be carried out for subsequent iterations of searches as the algorithm progresses [23,25].

In each iteration, each particle finds two “best” values and stores them for subsequent
iterations, these values are the best of each particle (Pbest) and the best of the entire swarm
(Gbest). The solution to the whole problem is the position stored in Gbest [27,28].

Equations (9) and (10) describe how to calculate velocity and position, where c1 is
known as the personal acceleration coefficient and c2 as the social acceleration coefficient,
additionally w is a coefficient of inertia.

Additionally, PSO considers for each iteration the generation of a random value for
local and global positions which, in turn, will be the new values for the algorithm’s new
iterations, this process is repeated subsequently until the optimal global is found. Functions
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rand1 and rand2 are in charge of the generation of random values for the position which
will depend on the variables to optimize and typically can take decimal values.

vi(t + 1) = w ∗ vi + c1 ∗ rand1 ∗ [pibest(t)− xi(t)] + c2 ∗ rand2 ∗ [gbest(t)− xi(t)] (9)

xi(t + 1) = xi(t) + vi(t + 1) (10)

PSO generates initial random values for position and velocity and, in turn, in each
iteration velocity is updated with random data as shown in Equation (9), however, this
approach defines the variables of interest as decimal values within a set range. This
research proposes the use of PSO to determine the values of the variables (p, d, P, Q) which
are integer values, reason why it is necessary to modify the speed update expression to
Equation (11) where the random values generated are restricted as integers.

Equation (11), indicates the formulation that will be used for the optimization of
variables (p, d, P, Q) which in Section 2.2.4 were established to have a range between 0
and 5. For this reason in Equation (11), the functions randInt1 and randInt2 generate
randomized positions (coefficient values for (p, d, P, Q)) that area integers and vary from 0
to 5 each one. In addition, variables of c1 and c2 take the value of 2 and w the value of 1
(most common values for fast convergence [27]).

vi(t + 1) = vi + 2 ∗ randInt1 ∗ [pibest(t)− xi(t)] + 2 ∗ randInt2 ∗ [gbest(t)− xi(t)] (11)

2.3.1. Cost Function

Every optimization technique needs a cost function to be minimized or maximized in
order to find the best possible value of the set of solutions.

In this work, when using PSO, a cost function must be defined that indicates when the
global minimum has been reached [29], that is, when the coefficients p, q, P, Q that best fit
the data have been found.

When modelling a dataset using a SARIMA time series, the better the fit provided by
the model, the smaller the difference between the actual values of the measured data when
compared to values generated by the model. As an example, a SARIMA(1, 1, 0, 1, 1, 0)12
model has been created for the electricity demand data between 1999 and 2018, and it can
be seen in Figure 6 how the model data differs from the real data, in Figure 6b this can be
seen in greater detail.

The final objective of this work is to perform electricity consumption forecasting
for which it must be guaranteed that the best model that represents the real data with a
minimum deviation is always obtained. For this reason, the decision parameter for the cost
function was chosen to be the residual sum of squares RSS, which is shown in Equation (12).
In this equation, EDi is the original electricity demand data and SARIMAi is the data
generated with de SARIMA model. The smaller the RSS the smaller the forecasting error,
therefore this paper proposes a minimization problem for the RSS.

RSS =
n

∑
i=1

(EDi − SARIMAi)
2 (12)

2.3.2. Number of Particles and Iterations for the Optimization Algorithm

The optimization problem needs to define two variables, the number of agents or
particles with which the agents will be in charge of finding the optimal solution and the
number of iterations necessary for these agents to find the global optimum.

According to the electricity demand data and the characteristics established for the
SARIMA model in the previous sections, several tests were carried out on the optimization
function to find the best model that adapts to the electricity demand data in Quito, Ecuador
from 1999 to 2018. This process was performed with a particle range of 1 to 18, and a
maximum number of iterations of 30.
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(b)
Figure 6. Power consumption for Quito, Ecuador vs. SARIMA(1, 1, 0, 1, 1, 0)12 model, years 1999–2018.
(a) Power consumption vs. SARIMA modelled data, Period 1999–2018. (b) Power consumption vs.
SARIMA modelled data, Period 2014–2018.

This process can be visualized in Figure 7 and a summary of the results is shown
in Table 1. By analysing both Figure 7 and Table 1, it is possible to conclude that for the
lowest RSS the population should be greater than 5 and to avoid excessive processing time
it should be lower than 12. Therefore, a population of 6 particles is selected which will
guarantee an optimal result in no more than five iterations with a processing time iteration
of 23.07 s and a RSS of 17715.129.
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(b)
Figure 7. Analysis of iterations and populations of particles for minimization of RSS. (a) Population
number vs. RSS and iteration time. (b) Number of iterations vs. RSS.

Table 1. Convergence times of optimization algorithm based on number of particles and iterations.

Number of Particles Best RSS (Lowest) Iteration Time [s] Number of Iterations
for Best RSS

Total Time until Best
RSS [s]

1 21,710 1.363 30 40.9
2 21,939.908 2.475 5 12.375
4 17,981.312 18.94 4 75.76
6 17,715.129 23.071 5 115.356
8 17,745.318 25.807 5 129.035
10 17,715.129 31.36 5 156.8
12 17,715.129 41.58 3 124.74
14 17,745.318 52.89 1 52.89
16 17,715.129 54.75 2 109.5
18 17,721.443 58.68 5 293.4

2.4. Methodology for Adaptive Forecasting of Electricity Consumption

This research proposes to find the best SARIMA(p, d, q, P, D, Q)S model, through
optimization for the coefficients p, d, P, and Q, once the optimal model (the one with the
lowest RSS) is found, the electricity forecast is performed for the power consumption in
the following 6 months. Subsequent to this, each month new information is reloaded to
the general data and a new SARIMA model is generated, thus repeating the optimization
process and guaranteeing that the model is adaptable to any variation that occurs monthly.
This process can be observed in Figure 8.
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Figure 8. Methodology for adaptative forecasting of power consumption: Quito, Ecuador.

Most of the models and investigations found in the state of the art do not measure the
error that they generate and if they do, they only make measurements of the model against
itself (RSS), in this work the data that are predicted are compared with the known values
that were given during 2019 and 2020 (particularly atypical years due to the pandemic) and
in this way a prediction error can be calculated, something that other research works have
not done.

3. Analysis of Results
3.1. Traditional Approach for Forecasting

In this section, the traditional approach used for the prediction of electricity demand
and its disadvantages before unexpected changes in the behaviour of the data will be anal-
ysed. For this purpose, a SARIMA model is used that is within the limits and conditions
established in Section 2.2.4.

When applying a SARIMA(1, 1, 0, 1, 1, 0)12 model to the electricity demand data of
Quito, Ecuador from 1999 to 2018, an RSS of 25701.92 is obtained, which represents an
acceptable value but could be reduced as will be seen later. Once this model is generated, it
is proposed to generate power consumption forecast for the years 2019 and 2020, that is,
24 months.

The 24-month forecast is performed because it is the period of time in which the
electricity demand underwent unpredictable changes that did not obey previous trends
and today, by having these values, a prediction error can be evaluated. The forecasting
results are displayed in Figure 9.
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Figure 9. Traditional forecasting for electrical with SARIMA(1, 1, 0, 1, 1, 0)12 model. (a) Traditional
forecasting for years 2019–2020. (b) Forecasting for years 2019–2020 (zoomed since 2016).

The forecasting data results shown in Figure 9 (red dotted line) present a significant
difference from the actual values of electricity demand for the years 2019 and 2020 (solid
blue line). By analysing these 24 values of electricity demand and compared with the
real ones, it was determined that the technique presented an average error of 5.42%, a
maximum error of 21.45%, a minimum error of 0.8%, and the model itself presented an RSS
of 25,701.92.

3.2. Adaptive Forecasting Approach for Power Consumption
3.2.1. Results Achieved for Every Forecast Session

The adaptive forecast of electricity demand starts from the same scenario, considering
as base data for the model the electricity demand in Quito, Ecuador from 1999 to 2018.

The methodology that this work proposes and that was explained in Section 2.4,
Figure 8, offers to generate a SARIMA model whose coefficients are obtained using PSO
optimization, thus guaranteeing that the model that is found presents the lowest possible
value of RSS, later a forecast for electrical demand will be performed for 6 months.

The optimization process and how it can minimize the value of RSS in each iteration
with each particle is shown in Figure 10, where the larger the size of the particle, the closer its



Energies 2022, 15, 8380 14 of 19

value is to the optimal RSS. As it can be seen in this figure, all the particles find the optimal
value of RSS equal to 17715.13, which is equivalent to a SARIMA(2, 1, 4, 4, 1, 4)12 model.

 

Figure 10. Process of optimization performed for each particle.

Subsequently, each month the new known electricity demand data is fed back to the
database and a new SARIMA model is generated, which adapts to the new conditions
imposed by the last month. Once this is done, a prediction is made again for the next
six months. This process has been repeated a total of 19 times, which makes it possible to
predict the 24 months corresponding to 2019 and 2020. This process can be seen in Figure 11.
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Figure 11. Adaptive forecast process generated for 24 months.

The results with the different RSS values for each prediction session, the different
types of models and the mean error in each case are shown in Table 2. For this analysis, in
each session, the six forecasted values have been compared with the real electricity demand
(values known from historical data) and errors have been calculated value by value (the
error shown in Table 2 is the mean from these six values), this approach is different from
other works in the literature review because, the error of the model itself is not evaluated
but the error of the forecasted data against real data.
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Table 2. Results achieved for each forecasting session.

Forecast Session Best RSS Achieved SARIMA Model Average Error [%]

1 17,715.129 (2, 1, 4, 4, 1, 4)12 0.4676
2 18,017.779 (3, 1, 4, 3, 1, 4)12 1.8975
3 18,027.888 (3, 1, 3, 2, 1, 4)12 2.0242
4 19,271.434 (0, 1, 4, 4, 1, 4)12 1.7797
5 18,228.642 (2, 1, 4, 4, 1, 4)12 2.3764
6 18,248.905 (4, 1, 3, 3, 1, 4)12 2.0697
7 18,286.459 (2, 1, 4, 4, 1, 4)12 1.0980
8 18,372.007 (2, 1, 4, 2, 1, 4)12 0.9826
9 18,529.698 (4, 1, 3, 4, 1, 3)12 1.5770

10 18,893.479 (2, 1, 4, 4, 1, 4)12 0.9214
11 18,929.334 (3, 1, 4, 3, 1, 4)12 2.2272
12 18,957.999 (3, 1, 4, 4, 1, 4)12 1.9012
13 17,715.129 (2, 1, 4, 4, 1, 4)12 3.6585
14 19,253.160 (4, 1, 3, 3, 1, 4)12 4.7415
15 17,745.318 (4, 1, 3, 3, 1, 4)12 4.0424
16 17,981.312 (4, 1, 3, 4, 1, 4)12 3.3610
17 26,061.050 (2, 1, 4, 4, 1, 4)12 9.3543
18 17,745.318 (4, 1, 3, 3, 1, 4)12 9.8121
19 17,715.129 (2, 1, 4, 4, 1, 4)12 7.1956

In these results, it is also important to indicate that as it was analysed in Table 1 the
best RSS that the methodology was able to achieve is 17,715.129 which was achieved three
times and the other scenarios had values close to it.

A more detailed analysis of the different errors that were reached in each electricity
demand prediction session can be seen in Figure 12. In this figure, for each forecasting ses-
sion, six values of error are generated and the box plot analysis for each case is represented,
by doing these is possible to observe the minimum, maximum and median of the errors.

 

Figure 12. Error analysis for each forecasting session.

3.2.2. Global Results Achieved for 24 Months

Once the different electricity demand prediction sessions have been carried out, it is
possible to evaluate the global performance of the data obtained in comparison with the
prediction made with a traditional approach, as indicated in Section 3.1 in Figure 9.

Figure 13 shows the global results of the adaptive approach of this work in comparison
with the traditional technique and the real electricity demand data that occurred during
the years 2019 and 2020. As can be seen in the green-coloured line, the forecast data
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generated in this work follow much more accurately the actual electricity demand data, thus
demonstrating the adaptability of the model to unexpected changes in electricity demand.
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Figure 13. Adaptive and traditional models against actual power consumption.

In addition, Figure 14 presents the percentage error results for each electricity demand
data that were generated with the adaptive model and the traditional approach. By
analysing this graph, it can be determined that the error is lower in the adaptive model and
also in April 2020, which is the most critical month for the prediction (because there was a
considerable drop in electricity consumption due to the beginning of country home-office
in Ecuador) the error of the adaptive model is less than the traditional model, proving once
again the adaptability of the model that this work proposes.

Finally, a statistical analysis of the global error values of the adaptive and traditional
models was carried out, as can be seen in Figure 15. From this figure, it can be determined
that the mean error in the adaptive model is significantly lower than in the traditional
model, approaching a value of 2%. Additionally, the maximum value of error in the
traditional model is greater than 20% while in comparison in the adaptive model this value
is 15%. These results prove once again the validity of the implemented methodology.
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Figure 14. Monthly forecast error for adaptive and traditional models.
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Figure 15. Box plot analysis for errors of adaptive and traditional forecast models.

4. Conclusions

The prediction of electricity demand is an area of study and research that has been
widely covered, however, most of the works related to this topic validate their results only
by comparing the errors of the model or models that are generated with respect to the
data that were the root of the model itself, which does not guarantee that the prediction
data generated from the model is reliable and close to reality. In contrast, in addition
to validating the model error (RSS in the optimization function) in this work, an error
calculation of the prediction values is also performed.

Through the methodology proposed in this work, it was shown that by performing
constant feedback of electricity demand data and generating new SARIMA models for
electricity demand, the time series models change and do not remain constant over time.
This phenomenon shows that when there are unexpected changes in the electricity demand,
a model will depend more or less on previous data for the subsequent prediction and this
changes the order of the auto-regression and moving average coefficients.

When comparing the results of this work with a traditional approach to electricity
demand prediction, it is determined that the mean prediction error is reduced from 5.42%
(traditional model) to 2.5% (adaptive model), in addition, the maximum error is reduced
from 21% to 15.5%. Finally, it can also be mentioned that the minimum error was reduced
from 0.77% to 0.21%. All these results show that the adaptive model is perfectly capable of
maintaining a minimum value of error in the prediction even with unexpected changes in
the behaviour of electricity demand.
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Abbreviations
The following abbreviations are used in this manuscript:

AR Auto-regressive time series model
MA Moving average time series model
ARMA Auto-regressive moving average time series model
ARIMA Auto-regressive integrated moving average time series model
SARIMA Seasonal Auto-regressive integrated moving average time series model
ANN Artificial neural network
PSO Particle swarm optimization algorithm
Di f f Differentiated time series
ACF Auto-correlation function
PACF Partial auto-correlation function
TNM Total number of models
PACF Partial auto-correlation function
Xt Time series component at time t
Zt White noise component at time t
φp Coefficients for auto-regressive components
βq Coefficients for moving average components
ΦP Coefficients for seasonal auto-regressive components
ΘQ Coefficients for seasonal moving average components
B Back shift operator for time series
vi(t) PSO algorithm speed at time t
xi(t) PSO algorithm position at time t
w PSO algorithm inertia coefficient
c1 PSO algorithm personal acceleration coefficient
c2 PSO algorithm social acceleration coefficient
pibest(t) Particle i best position at time t in PSO
gbest(t) Global best position at time t in PSO
rand1 Decimal random value for updated local position in PSO algorithm
rand2 Decimal random value for updated global position in PSO algorithm
randInt1 Integer random value for updated local position in PSO algorithm
randInt2 Integer random value for updated global position in PSO algorithm
RSS Residual sum of squares
EDi Original electricity demand at position i
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