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Abstract: A roof fall hazard is still one of the major threats in the underground mining industry.
Each such type of event always brings great risk to miners and causes serious interruptions in the
process of rock excavation. In general, the possibility of roof fall hazard occurrence is directly related
to the local geology, the presence of horizontal stresses as well as the type of excavation method
and the efficacy of the utilized roof support. Due to the complexity of this process, it is important
to continuously evaluate the roof fall risk, especially in long life-time places where a mining crew
is often present. Within this article, a detailed review of the current methods of monitoring and
evaluating roof fall risk was presented. Based on the extensive literature survey, different types of
devices were described, and their advantages and disadvantages were pointed out. Furthermore,
new trends in the area of roof fall risk monitoring were described and discussed.

Keywords: ground control; roof fall hazard; monitoring systems

1. Introduction

The underground excavation of deposits located at great depths in most cases is asso-
ciated with roof fall hazard occurrence, which is one of the undesired and hazardous effects
of the loss of stability of the mine workings. Generally speaking, these phenomena depend
on uncontrolled and sudden roof failure, and the falling of rocks toward the excavated
space, which constitutes a lethal threat to mining crews. This risk is widely observed and
reported in the mining and tunnelling industry in Poland [1–4], the USA [5–7], Australia [8],
China [9–12], South Africa [12–14], and India [15]. The level of risk directly depends on the
local geological conditions, presence of tectonic disturbances and faults, type of operation,
distance from mined-out areas, and type of applied rock support [1,7–22]. Additionally,
environmental conditions such as temperature, water presence, and overall humidity may
affect the probability of roof fall occurrence [23]. In most cases, the phenomenon of roof
failure is an unwanted event that is harmful to the mining crew and equipment [24]. Still,
there are some exceptional cases in which roof fall is an occurrence that is not only desir-
able, but also forced in a deliberate way, which, paradoxically, aims at increasing the safety
of exploitation [25]. Such a situation may be observed in the example of underground
mining performed with the use of room-and-pillar mining systems with roof deflection and
room-and-pillar mining systems with forced roof fall. Both mining methods are utilized in
Polish underground copper mines and their basic assumption is that the stresses generated
by overlying rock mass reach a level that always leads to the destruction of the pillars.
Therefore, to achieve a good excavation rate, the technological pillars that are excavated in
the first stage are cut to smaller, post-critical dimensions that allow them to slowly yield
under the rock mass pressure [26]. This solution also has a second important advantage,
in the form of the minimization of risk of pillar burst, due to the lack of ability to accu-
mulate energy by pillars of remnant size (Figure 1). In such an approach, the workings
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are liquidated solely by roof deflection, or if necessary by partly filling empty space with
waste rock.
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Figure 1. The schematic presentation of the room-and-pillar mining system with roof deflection.

The exact dimensions of the pillars and workings were adjusted to the local mining and
geological conditions. At the moment, in Polish copper mines, there are over 20 variants
of room-and-pillar mining systems that are fit to the local strength of the rock, height of
the deposit, presence of tectonic disturbances, and the presence of a mined-out area in the
surrounding of the analyzed mining panel.

According to data presented in [6,24], the room-and-pillar mining system, aside from
its advantages, seems to be prone to the occurrence of instability within the direct roof
stratum, and therefore more effort has to be put into monitoring and evaluating such
phenomenon in mines utilizing this system. Still, roof falls are also often in underground
mine excavation with the use of a longwall mining system. As Prusek pointed out [1], roof
falls are also common in underground hard coal mines where longwall and board-and-pillar
mining systems are utilized.

To highlight the scale of the threat, roof fall-related accidents have to be mentioned.
As presented in [12], only in the last 5 years, as many as eight tragic roof failures causing
86 deaths have occurred in China. A similar situation may be observed in coal mines in
the U.S., where according to the report published by MSHA [27] in 2006, roof fall caused
seven fatalities, 278 non-fatal days lost injuries, and 150 no-days-lost accidents. Worrying
data in this regard were also recorded in Polish underground mining. According to the
data presented by the Polish State Mining Authority (PSMA) in the years 1994–2013, most
deaths in the Polish mining industry were caused by roof falls. For this reason, 93 people
have died in the mines during the period of 20 years [28]. Unfortunately, this statistic has
not improved in the last years, even with the utilization of more sophisticated evaluation
methods and monitoring systems. As reported in the most recent document prepared by
PSMA [29], the total accident rate observed in Polish underground copper mines in the last
few years related to roof falls varies between 168 and 204 per year (Figure 2). Taking all of
the above-mentioned into consideration, it may be stated that the development of new and
more reliable monitoring systems and risk evaluation methods is one of the key goals that
have to be achieved in the mining industry to ensure the safety, continuity, and efficiency
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of underground operations. Reducing the risk of developing hazardous situations should
always be the primary goal, especially when it comes to ensuring safety in a confined
workspace like a mine, where quick escape options are usually limited. As a result, risk
management methodologies have been developed and successfully applied in underground
mining. The complexity of interactions between people, machinery, explosives, and the
rock mass, in addition to the numerous unknowns and incomplete knowledge of the rock
mass, contributes to the need for risk assessment and management.
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Figure 2. Number of accidents caused by rock falls and rockburst in Polish underground mines in
the last 5 years.

Within this paper, the current state-of-the-art (SoTA) in the scope of roof fall hazard
monitoring and evaluation is presented. The methods and devices as well as the advan-
tages and disadvantages of each solution are described based on the authors’ experience
and an extended literature review. Additionally, new perspectives and ways of further
development are analyzed and described. The goal of this review is to make mining opera-
tors familiar with the technology that is currently used worldwide and may contribute to
increasing the efficacy of geomechanical hazard prevention.

2. Indicators of Roof Fall Risk Development

Based on past research and experiences, it may be stated that roof fall is preceded
by a number of indicators related to the disintegration of roof strata structure, changes in
working geometry, and microseismic activity [30].

Every roof fall risk evaluation method requires the determination of the factors that
contribute to the possibility of instability occurrence. As Ghasemi [31] pointed out, at the
moment, several variables affecting roof fall risk are recognized and monitored. These
variables include geology, depth of deposit, geometry of workings, horizontal and vertical
stress levels, and type of support. According to the data presented in research works [13,32],
the key factor affecting the risk of instability occurrence is the improperly chosen type of
roof support. Furthermore, any defect in the roof support causing its poor performance is
indicated (Figure 3).
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Taking into consideration the high complexity of geomechanical failure, there is a
great necessity for the development of novel monitoring and evaluation methods that
will focus on multi-parametric analysis. First, the reliability of monitoring devices should
be increased by an improvement in terms of the data resolution and implementation of
continuous monitoring and data acquisition. After that, as Małkowski and Juszyński
pointed out in [24], it is important to implement the complex and sophisticated methods of
multiparametric hazard evaluation. This goal may potentially be achieved by the utilization
of real-time based statistical analyses or the development of the so-called Internet of Things
(IoT), which will hopefully allow mine operators to provide far-reaching awareness about
the current rock mass state with respect to the presence of people, machines, and external
negative impacts such as mining-induced seismicity. In general, IoT is the implementation
of Internet connectivity into existing monitoring devices and sensors. What is crucial is
the fact that after connection, different devices may be linked and interact with others, and
data gathered simultaneously from all sensors can be remotely analyzed. In the case of the
mining industry, IoT is currently in the testing phase, but it may potentially be used as a
tool that is useful for lowering costs and optimizing the extraction process. It also may be
useful in terms of health and safety improvement and analyze the probability of natural
hazard occurrence.

3. Monitoring Systems—Current SoTA
3.1. Borehole Monitoring

Control of the state of the rock mass and ground support condition by employing
borehole cameras is one of the monitoring systems that are often used in underground
mines [34–37]. Visual inspection produces valuable information regarding the rock mass
quality in the roof layers described by parameters associated with the presence and charac-
ter of discontinues such as cracks, joints, their directions, and distributions. The appropriate
assessment of the rock mass in relation to the fracture structure, space distribution, and their
alteration in time has an important impact on the selection and maintenance of the applied
ground support [35,37,38]. It should be noted that by means of a borehole camera, apart
from the simple visual inspection of roof layers, some of the rock mass quality parameters
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such as tunnel quality index (Q), the rock quality designation index (RQD), and rock mass
rating index (RMR), etc. can also be evaluated [37,38]. The main elements of the borehole
system can be seen in Figure 4.
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It can be stated that a borehole monitoring camera is a relatively low-cost device com-
pared to other measurement systems. Unfortunately, this system also has some drawbacks.
In most cases, it is manually operated, and in some conditions, this kind of equipment
tends to get stuck in drill holes and can be lost; it is also time-consuming, therefore, can
only be used locally. Additionally, it should be mentioned that a reliable assessment of the
rock mass current state and potential behavior should be extended to the other monitoring
methods [34,36,38,39]. For instance, this type of monitoring can be easily expanded with
simple displacement indicators for roof strata-like telltales in which strings can stabilize
at two or more levels. This indicator allows for the assessment of displacements into roof
strata in time. A combination of these two simple systems can measure displacement, if
it occurs, and determine what happens in the roof (e.g., the delamination process) [35].
Nevertheless, visual inspection brings direct and valuable information about the state of
the rock mass in the immediate vicinity of the working.

3.2. Instrumented Rock Bolt

Rock stress is an inherent part of the underground environment. Generally, in the
intact rock mass, there is a state of balance that ensures the stability of the rock structure.
Underground exploitation changes this natural and stable state, which can lead to the
overload of some areas and the failure of underground man-made structures (e.g., in the
form of rock falls). Therefore, in many cases, there is a need to support rock structures
to maintain their stability. One of the most widely employed type of ground support
to reinforce underground structures to ensure their stability is rock bolt. For a better
understanding of the huge scale of using rock bolt in the worldwide mining industry,
yearly usage of this kind of support exceeds 500 million [40]. Looking into this number, it
is natural that rock bolt, equipped with special sensors, are often used to monitor stress
in the immediate vicinity of the working, notably the roof strata. Data gathered from this
kind of rock monitoring system are very meaningful to ensure workplace safety [39–42].

Depending on the type of sensor, there are different types of instrumented rock bolt.
The following sensors can be used with rock bolt [43–53]:

• electric strain gauges;
• vibrating wire;
• optical fiber;
• ultrasonic.

Instrumented rock bolt with strain gauges are based on an electric sensor that changes
its parameters with bolt deformation. Strain gauges are installed along the rock bolt’s rod
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in different configurations depending on the length of the rock bolt and the assumptions
that are made. An exemplary solution, with three measurement levels and four points
on each level attached in four positions 90◦ apart, is shown in Figure 5. In Polish under-
ground copper mines, there is also a more cost-effective version of this rock bolt with three
measuring levels.
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Figure 5. Exemplary scheme of instrumented rock bolt with strain gauges installed on the three
measurement levels.

Generally, based on the measurement axial stress, the bending moment, displacement
and shear stress can be determined. The drawbacks of this kind of solution are limitations
in the resolution along the bolt and long-term stability; additional short base-length strain
gauges can cover a small part of the rock bolt length. To avoid this shortcoming, long-base
gauges can be applied [40,44,51,52]. With the use of a strain gauge-based instrumented
rock bolt, the local roof fall risk may be determined easily by a comparison of the rock
bolt’s rod strength and axial tension force generated by the rock mass pressure. Such an
approach was tested in Polish copper mines, and the results indicated that rapid roof fall
hazard increased a few days before failure (Figure 6).
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Figure 6. Example of the axial stress measurement performed with the 5-level instrumented rock bolt.

Another type of sensor is based on the vibrating wire. In this method, the stress level
is linked to the natural vibration frequency on the wire, which changes in relation to the
tension value. This type of sensor is long-term stable, reliable, and is characterized by high
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accuracy. However, the vibrating wire gauge is fragile and can be damaged even before
reaching its capacity limit. This kind of device can only measure the axial stress [40,47,48,53].
An exemplary concept of measurement by means of vibrating wire is shown in Figure 7.
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In the last few years, strong attention has been paid to an instrumented rock bolt
equipped with optical fiber sensors. This kind of sensor measures the parameters of the
light that travels through the optical fiber. There are many different types of devices that
employ different light technologies (i.e., fiber Bragg grating (FBG), and distributed optical
strain-sensing (DOS)). There are many components that are crucial for correct working of
the system based on the optical sensors, consisting, in general, of the following elements:
source of light, receiver, modulator, processing unit, and optical fiber. This method can
measure the axial loading, share loading, and bending moment [40,44,47,54–57]. There are
some important advantages of fiber optical sensors (e.g., real-time, reliable, distributed
measurement, high sensitivity, and corrosion resistance). It is worth mentioning that this
technology can also be used with cable bolts. However, it should be stated that sensors
based on optical fibers have limited strain measurement and are fragile, therefore, they
should be properly protected from damage [40,55,56]. Depending on the sensor type,
the length of the measuring line may exceed 1000 m and the spatial resolution reaches
millimeters [55,56]

Apart from the technologies mentioned previously, another type of sensor should be
presented, namely instrumented rock bolt with ultrasound sensors, which can measure
load changes and deformation. Rock bolt are the path for ultrasonic wave transition itself,
hence the meaningful advantage of this kind of technology is that there is no need to install
any elements along the rock bolt, and the sensors are assembled at the exposed end of the
bolt, therefore, they are relatively cost-effective. There is also potential for a large-scale
monitoring system with clusters of rock bolt [40,43].

3.3. Optical Fiber-Based Monitoring Systems

Systems that use optical fiber sensors can also be employed to monitor geotechnical
parameters not only by means of instrumented rock bolt. A proper design system can also
monitor rock deformation in underground structures (e.g., workings, roadways, chambers,
etc.). Monitoring can be built on the base of separate lines of fibers or as a spatial grid
(Figure 8). This kind of system can also be used to even monitor massive structures (e.g.,
tunnels, mine still pillars, chambers, etc.) [55,58–60].
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3.4. Roof Deflection and Delamination Measurements

Displacement monitoring of the roof strata is commonly performed by means of
different types of extensometers [43,48,50,61–64]. In many cases, these are very simple
and reliable devices that allow for monitoring of the roof. The working principle is very
simple, namely, distance measurement is carried out between points where one of them is
located and stabilized in the point in the roof, and is treated as stable over time, and the
second one is moveable and is located at the collar of the borehole [47]. There can be more
than one stabilized point, hence, the spatial resolution of measurement can be improved
(multi-point extensometer) and therefore a more accurate location of roof delamination
can be determined. There are also instruments available with automatic warning systems
(e.g., auto warning tell-tale extensometer (AWTT)) [65]. A sketch of three-level mechanic
extensometer can be seen in Figure 9.
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Distance measurements can be performed by many methods (e.g., magnetic, elec-
tric, optic, mechanic, etc.) [61,62]. One example of an extensometer is a multilevel sonic
probe extensometer (magnetic), which can monitor dozens of levels with an accuracy of
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<0.5 mm [61]. Deformation of the roof layers can also be monitored by inclinometers. Some
of the laser devices are able to measure with a resolution of 0.02 mm/m [63].

In recent literature, there have also been attempts to analyze roof fall hazards with the
use of roof deflection monitoring systems. According to the very detailed research described
by Stolecki and Grzebyk [66], deflection of the roof occurs in the course of the destruction
process of the roof strata. Therefore, a relevant long-term continuous monitoring of this
process was executed by a newly developed inclinometric network. This network was
built with the use of numerous autonomous sensors for the continuous tracking of roof
deflection with a built-in module for wireless data transmission (Figure 10).

Energies 2022, 15, x FOR PEER REVIEW 9 of 24 
 

 

Distance measurements can be performed by many methods (e.g., magnetic, electric, 

optic, mechanic, etc.) [61,62]. One example of an extensometer is a multilevel sonic probe 

extensometer (magnetic), which can monitor dozens of levels with an accuracy of <0.5 mm 

[61]. Deformation of the roof layers can also be monitored by inclinometers. Some of the 

laser devices are able to measure with a resolution of 0.02 mm/m [63]. 

In recent literature, there have also been attempts to analyze roof fall hazards with 

the use of roof deflection monitoring systems. According to the very detailed research 

described by Stolecki and Grzebyk [66], deflection of the roof occurs in the course of the 

destruction process of the roof strata. Therefore, a relevant long-term continuous moni-

toring of this process was executed by a newly developed inclinometric network. This 

network was built with the use of numerous autonomous sensors for the continuous 

tracking of roof deflection with a built-in module for wireless data transmission (Figure 

10). 

 

Figure 10. Inclinometric sensor with a wireless data transmitter. 

This system allows for the recording of changes in the spatial position of the incli-

nometer rigidly attached to the grouted rock bolt installed within the roof strata. Tests 

performed by the authors proved that the phenomena of roof collapses are strictly deter-

mined by the occurrences of the roof rock destruction preceding them. A similar conclu-

sion may be drawn based on the result presented in [67,68]. 

Up until now, all preliminary test sites have been located in underground copper 

mines in the Lower Silesian Copper District in Poland. The collected database of roof de-

flection and the correlation of results with actual mining and the geological situation in 

the analyzed area allowed for the development of a so-called criterion to assess the stabil-

ity of roof layers (Figure 11). This criterion illustrates the stages of roof destabilization as 

a function of time and the size of the slope angle change. 

Figure 10. Inclinometric sensor with a wireless data transmitter.

This system allows for the recording of changes in the spatial position of the inclinome-
ter rigidly attached to the grouted rock bolt installed within the roof strata. Tests performed
by the authors proved that the phenomena of roof collapses are strictly determined by
the occurrences of the roof rock destruction preceding them. A similar conclusion may be
drawn based on the result presented in [67,68].

Up until now, all preliminary test sites have been located in underground copper
mines in the Lower Silesian Copper District in Poland. The collected database of roof
deflection and the correlation of results with actual mining and the geological situation in
the analyzed area allowed for the development of a so-called criterion to assess the stability
of roof layers (Figure 11). This criterion illustrates the stages of roof destabilization as a
function of time and the size of the slope angle change.

What is important is the fact that the criterion to assess the stability of the roof layers
was tested in underground conditions and according to the preliminary analyses, allowing
us to indicate the increase in roof strata failure occurrence a few days before the unwanted
event (Figure 12).

3.5. Geometry of Underground Workings

Apart from the above-mentioned monitoring methods of underground structures,
there are other ones that are used more and more frequently, namely geometrical mapping.
This can be achieved by means of radar, laser, or photogrammetric-based systems [69–75],
the deformation of workings, tunnels, chambers, etc. to yield meaningful data regarding
the behavior of the rock mass in time. These data can also be used to both build more
accurate 3D models and to verify the results of the numerical modeling of rock mass [71].
A laser scan, which produces a cloud of points that represents the surface of the rock, can
also be the source of data regarding the occurrence of discontinues and their parameters
such as size, orientation, and density [75].
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Figure 12. An exemplary case of ground failure prediction with the use of an inclinometric sensor.

It should be stated that scanning systems provide millimeter accuracy with centimeter
spatial resolution or even millimeters in the case of laser scanners [69,70,75]. In the case of
radar systems, it even has sub-millimeter precision and a resolution of tens of centimeters,
with the measurement in a real-time manner with data updated two times per minute [69].
Despite the advantages, there are still some important limitations of these technologies,
for instance, even though current lasers are very fast (e.g., some scanners are able to
scan hundreds of thousands of points per second), the scanning process can take a long
time [70]. It must also be kept in mind that mining conditions can be very harsh and many
of them can negatively affect the laser scanning process (e.g., poor light conditions, dust,
humidity, water, mobile mining, etc.) [76]. Nevertheless, these monitoring methods are
very promising and still under rapid development. It should be stated that radars and
laser scanners are also used with drone technology, which allows the use of these methods
remotely [70]. The exemplary 3D model of the underground workings’ deformation is
presented in Figure 13.
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4. Analytical and Numerical Risk Evaluation

In most cases, continuous monitoring with the use of the devices described in Section 3
allows the local risk of ground failure to be indicated. Due to the limitations of the recent
technology, reliable stability monitoring of spatial underground workings is currently very
challenging. However, some improvement in this matter has been recently observed due to
the rapid development of numerical and statistical methods of ground hazard evaluation
with the use of information about local geology, data from monitoring systems, and the
description of historical cases of ground failure.

4.1. Numerical Modeling

The development of numerical methods in rock engineering has progressed very
rapidly in recent years. Aside from the development of new computational methods,
more reliable solutions allowing for a better description of the factual rock mass states
are continuously being improved. The most common and currently applied numerical
methods for underground excavation design, according to Barla [77], are presented in
Figure 14.
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Figure 14. The most commonly used numerical methods in the evaluation of the stability of under-
ground workings.

The biggest advantage of numerical analyses is the possibility of determining the
stress field and deformation in the surroundings of the mining excavation [78]. Due to the
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many years of the development of computational codes, it may be stated that the finite
element method (FEM) is still the most commonly used. As pointed out by Pytel et al. [79],
3D FEM-based numerical modeling allows for roof stability to be determined in both the
static and dynamic load condition. Still, the reliability of analysis strongly depends on
the quality of the input data and has to be continuously validated with in situ monitoring
results in the form of the stress and displacement distribution within the roof strata or the
characteristics of seismic source and recorded waveforms in the case of dynamic analyses.
What is important is the fact that due to the rapid development of hardware and the
implementation of new more efficient codes into the most popular numerical software, it is
possible to determine the roof stability in large underground areas, which is of the highest
importance in the stage of planning underground excavation and periodical geomechanical
risk evaluation in existing mining panels [79–84]. An exemplary distribution of safety
factors within the immediate roof strata is presented in Figure 15.
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Figure 15. Distribution of the SF values within the immediate roof strata in the selected mining area
(size of the model 2 km × 2 km × 1.5 km).

There are also numerous analyses of underground working stability performed with
the use of the FDM method [85–87]. An example of the underground chamber stability
analysis with the use of FLAC 3D software is presented in Figure 16.

With the increase in the software and hardware capabilities in methods of underground
structure, design has evolved rapidly and more notice is being paid to discontinuum models
that theoretically allow for the evaluation of the stability of fractured and highly jointed rock
mass subjected to static and dynamic load conditions. Discontinuum methods may be used
in analyzing the complex process of rock mass fracture and the complex interaction between
seismic waves, and the roof supports rock masses during different types of load [88]. An
example of the use of the DEM method for the purpose of rock bolt support performance
in the enforcement of fractured rock mass is presented in Figure 17.

According to [77], even more advanced numerical models may be prepared by com-
bining different simulation methods. A good example of combining different methods
was presented in [89,90], where a hybrid approach FDM/DEM with the use of combined
FLAC and PFC developed by the Itasca Consulting Group, Inc., USA was used. Such an
approach allows for the prediction of rock fracturing around underground excavations
driven in the anisotropic rock mass, and finally determines its stability and effective support
methods. The hybrid approach is also suitable for the determination of rock bolt patterns
and spacing. The results are also important from the point of view of roof support loading
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capacity, which is the base information necessary to ensure the stability of the underground
excavation.
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Figure 16. The contour of the displacement magnitude excavated in the rock salt chamber.
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Figure 17. Simulated velocity distribution of the ejected rock mass along the tunnel supported by
different types of rock bolt [88].

4.2. Machine Learning and Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical tools that allow for the identi-
fication of complex relationships between variables in the form of correlation, patterns,
and clusters that exist in a collected database [91]. A neuron accepts an n input data and
processes the data to present a single output according to the scheme presented in Figure 18.
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In recent years, roadway stability based on neural networks has developed very
actively [92]. An example approach proposed by Mahdevari et al. [93], based on the devel-
opment of an artificial neural network with the use of a multilayer perceptron network,
allowed them to achieve a satisfactory level of fitting between the predicted values and
observed roof displacement, reaching R2 = 0.9109. The study included a number of parame-
ters describing the rock mass strength, which were used as an input of the model including
uniaxial compressive strength, tensile strength, cohesion, angle of internal friction, Young’s
modulus, shear strength, density, slake durability index, and rock mass rating. The output
value was roof displacement measured with a dual height telltale. As was pointed out by
Zhang et al. [92], the approach proposed in [93] seems to be one of the first reliable research
aimed at the use of AI in the stability prediction of underground workings. Still, it was
concluded that the quality of the output data strongly depends on the number and quality
of the input factors. As Małkowski and Juszyński [24] pointed out, there are numerous
recent examples of the use of an ANN in underground engineering in which the connection
between the input and output data is not clearly defined. Some approaches were based on
tracking rock mass fractures and the correlation of results with geological structure and
the rock mass parameters [94–96]. There have also been numerous works concentrated
strictly on the parameters of rock layers in the direct surrounding of the underground
space [94,97–100].

A very detailed and sophisticated study was prepared in 2021 by Małkowski and
Juszyński [24], who based on the AAN analysis developed and proposed the roof fall
hazard index for underground copper mines located in the Legnica-Głogów Copper District,
Poland. As a result of detailed analysis, four stages of rock mass propensity to failure were
determined and the correlation between the output values of the roof fall hazard index and
target reached the level of R = 0.85, which is very promising. Additionally, the evaluation
of roof fall hazards was satisfactory due to the correlation between targets and the outputs
at the level of R = 0.90 (Figure 19).
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5. Innovative Solutions under Development

With the implementation of development actions according to Industry 4.0, the digital
transformation of the mining industry may also be observed. It assumes inter alia inte-
gration of novel, more reliable technologies including the Internet of Things (IoT), cloud
computing and analytics, big data analyses, and the implementation of machine learning
and artificial intelligence (AI) into the excavation and underground working maintenance
process (Figure 20).
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However, this kind of comprehensive solution fit to the particular site are still under
development. Some preliminary conclusions are presented below.

5.1. IoT in the Mining Industry

The implementation of IIoT in the mining industry will be the base of a more complex
evaluation of the whole exploitation process. This is why there are numerous mining
projects related to the development and testing of new digitized methods in underground
sites worldwide. All of these activities are aimed at improving the extraction efficiency,
increasing the safety of the mining crew and equipment, and transforming from preventive
to predictive decisions. Some successful examples of the implementation of IIoT in mining
are presented in Table 1.
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Table 1. Successful cases of IIoT implementation in mining [101].

Mining Company Name Description Benefits

Rio Tinto—Koodaideri iron ore
project, Australia

Rio Tinto’s Kookaideri project in Australia is set to build
the world’s first “intelligent mine” where all assets are

networked together and are capable of making decisions
in microseconds

Based on continuous monitoring
the real-time decision are made

what led to optimizing of
production process

Hecla Mining Company—Casa
Berardi mine, Canada

The mine introduced Newtrax’s Mobile Equipment
Telemetry in order to better manage machine downtime.

Daily operation of machines’ time
increased

Hindustan Zinc’s Sindesar Khurd
(SK) mine, India

Newtrax MET integrated with the Sandvik OptiMine
digital platform to track and receive data from the entire
underground operation including drills, loaders, trucks,

and other equipment.

The effectiveness of production
process increased

Goldcorp—Porcupine Gold
Mine’s Borden site, Canada

With a Ventilation on Demand system, Goldcorp can
automatically adjust underground ventilation by

controlling fans remotely through a centralized digital
interface on the surface.

The operation’s electrical
consumption was reduced by 50%
what significantly reduced cost.

Glencore’s Matagami Zinc mine,
Canada

Newtrax’s Mobile Equipment Telemetry provides mine
operations with essential data from interconnected

assets and equipment.

The average tonnage of ore
hauled in each trip has risen by

about 10%.

Unfortunately, most of the successful cases of IIoT implementation in underground
mining are related to machine monitoring and an increase in production efficiency. Things
seem to be more complicated in the case of the prediction of a natural hazard, whose
nature has not been fully recognized yet. Nevertheless, some actions have been already
undertaken in this regard.

Based on an understanding of recent scientific and technological advancements, a
general direction of further development may be set. One of the promising activities related
to the improvement in roof fall monitoring and evaluation in underground conditions
is being developed within the EU co-founded project with the acronym illuMINEation.
Within the scope of this project, the innovative cost-effective roof stability monitoring
system, supported by the Industrial Internet of Things (IIoT), was developed and tested
in real underground conditions. As pointed out in [102], wherever there is a mechanical
excavation taking place, rock mass instability poses a problem. The installation of rock bolt
as well as the use of other support systems such as cable bolts, steel mesh, and shotcrete,
can solve this problem. However, because rock mass is a complex natural material, it is
challenging to generalize the solution. There are a number of methods for choosing the right
type of support [103]. The behavior of rock mass can be predicted using geological data in
conjunction with bolt deformation data and potential local or regional instabilities [104].
Joint orientation and positioning with the deformation value measured by rock bolt in the
mine area revealed potential weak spots in the rock mass as input data for evaluating rock
mass stability. In addition to value, bolt measurements can identify movement. Therefore,
extended research on the development of a cost-effective roof fall monitoring system has
been conducted. The low-cost sensors allow for significantly increased coverage of the
mine area, and instead of a few monitoring posts, almost all rock bolts can be equipped
with measuring devices at virtually no extra-costs compared to the standard bolt. What is
important is the fact that all measurements are supported by machine learning methods
and big data analysis systems, which allow for forecasting movements in the rock mass
once sufficient data are available.

Bolts with a measuring system in place have the ability to show changes and signal
sensor damage, if it is present. Therefore, it may be stated that intelligent rock bolts are
simply regular bolts with extra equipment that aids in the detection of potential instabilities
and damage within the rock mass as well as showing changes in deformation and other
additional information, depending on the type of sensor device. With the help of further
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analysis and other variables that can be calculated from the data already collected, it will be
possible for us to determine the state of the rock mass. The scheme of the newly developed
rock bolt prototype to measure roof bolt deformation is presented in Figure 21.
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Figure 21. Rock bolt with an integrated sensor developed within the scope of the IlluMINEation
project.

5.2. Novel Cost-Effective Solutions

When analyzing the innovative solutions that are still under development, cost-
effective devices should also be mentioned. The development of low-cost sensors with
reliable accuracy may bring many advantages to the quality of the obtained data, mostly
due to the increase in the coverage level. An increase in the network density may be the
basis of drawing conclusions about the potential risk not only locally, but also on a global
scale in particular mines. In the scope of ground control monitoring devices, micro-electro-
mechanical systems (MEMS) seem to be one of the most promising ones due to their great
accuracy in static and dynamic conditions, and robustness, which makes them suitable for
use in a harsh underground environment. At the moment, MEMS-based devices are widely
tested in mining seismology. As highlighted in [105], data about ground motion recorded
with MEMS-based accelerometers may be effectively applied for systematic observation of
near-field strong ground motion. In Figure 22, the comparison of PSD of the noise recorded
by a mine seismometer and cost-effective MEMS accelerometer is presented.
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There are also MEMS-based inclinometers that make it possible to significantly in-
crease the quality and resolution of data regarding roof deflection in Polish underground
copper mines.

6. Conclusions

The efficient prevention of roof fall hazards in underground mines requires the im-
plementation of the continuous learning process, which has to be developed according
to the main principles of measure, diagnosis, and treatment. Additionally, it is crucial to
implement these risk management rules into safety systems used in underground condi-
tions. This entails learning about the capabilities and limitations of the existing monitoring
systems, their combined use, and how they can be installed and run efficiently. Moreover,
one of the goals of the integrated learning process is to transfer the experience gained by
engineers and miners over the course of their careers to an objective platform that can
be contributed to and accessed by anyone. Thus, the IIoT platform plays an important
role in constructing this experience by storing, reporting, and analyzing events. The IIot
platform can be successfully implemented when every bolt is covered with a sensor, and
it is only viable if the sensors are extremely low cost. This dense network of bolts would
provide high-resolution data coverage. On this basis, new and improved algorithms for
data analysis can be developed as well as a better understanding of the response behavior
of the rock mass as a result of excavation activities (Figure 23). This concept must be robust
and simple in order for it to be applied successfully in real life. It should cover the basic
installation of the monitoring system, data transmission, data storage, data analysis, data
visualization, protocol storage for events that occurred, set measures, and its back analysis.
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Figure 23. Key aspects of successful roof fall hazard risk management.

Future development requires the integration of different types of monitoring systems
and continuous real-time evaluation of the hazard based on the collected data. An increase
in the reliability of measurement systems will undoubtedly turn into the development of
new, more reliable risk evaluation and prediction methods. It will be also the basis for the
development of a more detailed and accurate numerical model that may positively affect
periodical geomechanical risk assessment and the planning of underground excavation in
challenging geological conditions. Still, at the moment, all these actions are related to many
challenges, mostly technical. For example, the rapid evolution of numerical modeling
tools in rock engineering allows for the preparation of a very accurate representation
of the real, in situ conditions and thus forms the basis for the prediction of rock mass
behavior in different load conditions. Discontinuum and hybrid modeling seems to be
the most promising and are gaining importance every year, but due to the lack of precise
information about rock mass, the discontinuity characteristics may also lead to significant
errors, jeopardizing the safety of mining excavation.

An IIoT-based approach, aside from the visible advantages, also has to be further
developed. At the moment, one of the biggest obstacles is related to the technological
limitations of mine infrastructure. In order to properly implement large-scale IIoT, mining
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operators have to provide a sufficient data transfer capacity for simultaneous data collection
and transfer between devices. Another important challenge is the resolution of data
from mine monitoring systems. Due to the high costs of installation and maintenance,
monitoring networks such as seismological, ventilation, or piezometric network are limited
to a reasonable minimum. The implementation of low-cost devices to regular use may
bring tangible benefits in the form of an increase in mine coverage with monitoring devices
without a visible increase in costs. Summarizing the rapid development of technology and
the intensification of works related to the development of mining technologies year by
year will undoubtedly be associated with an increase in the accuracy of the monitoring
and prediction of geomechanically hazards in mines. The simultaneous application of
multi-parametric data analysis, statistical methods, and new cost-effective devices, already
at the testing stage, will bring many benefits in terms of recognizing the characteristics of
the rock mass and preparing more accurate models of the destruction of the rock mass.
Therefore, further work is needed in this area.
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z.31; Politechnika Śląska: Gliwice, Poland, 1968. (In Polish)
4. Rajwa, S.; Płonka, M.; Lubosik, Z.; Walentek, A.; Masny, W. Principles of safe use of powered supports. In Proceedings of the

School of Underground Mining, Ukraina, Jałta, 5–12 October 2008.
5. Duzgun, H.S.B.; Einstein, H.H. Assessment and Management of Roof Fall Risks in Underground Coal Mines. Saf. Sci. 2004, 42,

23–41. [CrossRef]
6. Gregory, M.; Christopher, M.; Debasis, D. Using the coal mine roof rating (CMRR) to assess roof stability in US coal mines, Mining

industry annual review. J. Mines Met. Fuels 2001, 15, 314–321.
7. Mark, C.; Pappas, D.M.; Barczak, T.M. Current trends in reducing groundfall accidents in US coal mines. Min. Eng. 2011, 63,

60–66.
8. Evans, R.; Brereton, D.; Joy, J. Risk assessment as a tool to explore sustainable development issues; lessons from the Australian

coal industry. Int. J. Risk Assess. Manag. 2007, 7, 607–619. [CrossRef]
9. Wu, W.D.; Bai, J.B.; Feng, G.R.; Wang, X.Y. Investigation on the mechanism and control methods for roof collapse caused by cable

bolt shear rupture. J. Eng. Fail. Anal. 2021, 130, 105724. [CrossRef]
10. Lyu, H.M.; Sun, W.J.; Shen, S.L.; Zhou, A. Risk assessment using a new consulting process in fuzzy AHP. J. Constr. Eng. Manag.

2020, 146, 04019112. [CrossRef]
11. Song, G.; Wang, Z.; Ding, K. Evaluation of the face advance rate on ground control in the open face area associated with mining

operations in Western China. J. Geophys. Eng. 2020, 17, 390–398. [CrossRef]
12. Wang, Y.-J.; Zhao, L.-S.; Xu, Y.-S. Analysis of Characteristics of Roof Fall Collapse of Coal Mine in Qinghai Province, China. Appl.

Sci. 2022, 12, 1184. [CrossRef]
13. Merwe, J.N.; Vuuren, J.J.; Butcher, R.; Canbulat, I. Causes of Falls of Roof in South African Collieries; Report of Safety in Mines

Research Advisory Committee; Mine Health and Safety Council: Sandton, South Africa, 2001.

http://doi.org/10.1080/17480930.2016.1200897
http://doi.org/10.1016/S0925-7535(02)00067-X
http://doi.org/10.1504/IJRAM.2007.014089
http://doi.org/10.1016/j.engfailanal.2021.105724
http://doi.org/10.1061/(ASCE)CO.1943-7862.0001757
http://doi.org/10.1093/jge/gxz124
http://doi.org/10.3390/app12031184


Energies 2022, 15, 8312 20 of 23

14. Engelbrecht, J.; Theron, A.; Haupt, S. Evidence of roof collapse detected on South African coal mines using sentinel-1 interferome-
try. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA,
23–28 July 2017; pp. 5682–5684. [CrossRef]

15. Düzgün, H.S.B. Analysis of roof fall hazards and risk assessment for Zonguldak coal basin underground mines. Int. J. Coal Geol.
2005, 64, 104–115. [CrossRef]

16. Palei, S.K.; Das, S.K. Logistic regression model for prediction of roof fall risks in bord and pillar workings in coal mines: An
approach. Saf. Sci. 2009, 47, 88–96. [CrossRef]

17. Brady, T.; Martin, L.; Pakalnis, R. Empirical Approaches for Opening Design in Weak Rock Masses. Min. Technol. 2005, 114, 13–20.
[CrossRef]

18. Iannacchione, A.; Prosser, L.; Esterhuizen, G.; Bajpayee, T. Methods for Determining Roof Fall Risk in Underground Mines. 2004.
Available online: https://www.cdc.gov (accessed on 17 October 2022).

19. Iannacchione, A.T.; Esterhuizen, G.; Schilling, S.; Goodwin, T. Field Verification of the Roof Fall Risk Index: A Method to Assess
Strata Conditions. In Proceedings of the 25th International Conference on Ground Control in Mining, Morgantown, WV, USA,
1–3 August 2006.

20. Molinda, G.; Mark, C. Ground failures in coal mines with weak roof. Electron. J. Geotech. Eng. 2010, 15, 547–588.
21. Fuławka, K.; Mertuszka, P.; Pytel, W. Monitoring of the Stability of Underground Workings in Polish Copper Mines Conditions.

E3S Web Conf. 2018, 29, 8. [CrossRef]
22. Isleyen, E.; Duzgun, S.; McKell Carter, R. Interpretable Deep Learning for Roof Fall Hazard Detection in Underground Mines. J.

Rock Mech. Geotech. Eng. 2021, 13, 1246–1255. [CrossRef]
23. Pappas, D.M.; Mark, C. Roof and rib fall incident trends: A 10-year profile. Trans. Soc. Min. Metall. Explor. 2012, 330, 462–478.
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