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Abstract: Several advanced features exist in fifth‑generation (5G) correspondence than in fourth‑
generation (4G) correspondence. Centric cloud‑computing architecture achieves resource sharing
and effectively handles big data explosion. For data security problems, researchers had developed
many methods to protect data against cyber‑attacks. Only a few solutions are based on blockchain
(BC), but are affected by expensive storage costs, network latency, confidence, and capacity. Things
are represented in digital form in the virtual cyberspace which is the major responsibility of the com‑
munication model based on cybertwin. A novel cybertwin‑based UAV 6G network architecture is
proposed with new concepts such as cloud operators and cybertwin in UAV. Here, IoE applications
have to be energy aware and provide scalability with less latency. A novel Compute first network‑
ing (CFN) framework named secure blockchain‑based UAV communication (BC‑UAV) is designed
which offers network services such as computing, caching, and communication resources. The fo‑
cus of the blockchain was to improve the security in the cloud using hashing technique. Edge clouds
support core clouds to quickly respond to user requests.

Keywords: 6G; cloud‑computing; cybertwin; blockchain; UAV; IoE; CFN; BC‑UAV

1. Introduction
Efficient and effective options for developing intelligent cities can be found in un‑

manned aerial vehicles (UAVs). They are broadly employed in civil and military domains,
including data collecting, distribution of data, audio and video monitoring, aerial images,
crop surveys, and real‑timemedical services. [1]. Due to theCOVID‑19 pandemic situation,
several businesses are forced to do online. Ericsson predicted that 5Gwill be rapidly com‑
mercialized as numerous individuals embrace this change. As a result, using the Internet
has become essential for better connectivity in order to meet the demands and require‑
ments of a more stringent network. This is essential to simplify the emerging techniques
to extend the reality, tactile, related independent systems [2], telemedicine, and Industrial
Internet of Things (IIoT) [3], which has an impact on latency and data speed has to be high.
Low latency and higher data speed minimize collision rates and provide more secure au‑
tonomous vehicles.
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These applicationsmust necessarily provide smart autonomous life, multisensory vir‑
tual experience, smart agriculture, smart cities, and even more. Unfortunately, 5G net‑
works are not efficient enough to meet these emerging demands [4]. Thus, there has
aroused a necessity to develop efficient 6G wireless communication networks which can
upgrade social needs, thereby enabling Sustainable Development Goals (SDGs) [5].

Networks of the next generation may have a demand with people and devices con‑
nected. Hence, the network architecture in the future has to overcome the increasing traf‑
fic in mobile Internet along with the services and applications by the use of heterogeneous
networks. It is considered that the future Internet of Everything (IoE) can intellectually
connect humans, data, processes, and things [6]. For this, techniques related to artificial
intelligence (AI) and mobile communication are used which makes the connections in the
network more relevant, reliable, and valuable than the ones that is existing. This IoE ar‑
chitecture due to its revolutionary feature supports ubiquitous data collection, processing,
aggregation, fusion, distribution, and service. There arouse several challenges and issues
due to the disruptive change in designing IoE network architecture, providing mobility,
scalability, availability, and security.

Security, dependability, flexibility, and extensibility are a few services offered byNeb‑
ula for Internet architecture with the use of more reliable routers and extendable control
planes. Moreover, it enforces arbitrary policies using multiple paths. However, still, there
exist limitations in scalability and performance as processing ability at the network edge
is ignored. Moreover, issues related to the growing demands for resources and services
are not considered. The CloNet is in a multi‑administrative domain setup which helps net‑
work and data center domains to interact, thereby providing an elastic dynamic network
to serve the customers on the cloud. Additionally, resources utilized for computing and
storage are deployed for better end‑user experience and to reduce network dependency.

A cloud‑centric network architecture built on cybertwin is proposed to deal with
scalability, availability, mobile, and safety for future networks. As an IoE helper, data
recorder, and digital asset owner, Cybertwin operates. This architecture is designed using
blockchain technology and fog computing. For device‑devices, devices‑to‑FN, and FN‑to‑
FN components, the resource provisioning model was used [7].

The main contribution of this research is sensitive applications and applications con‑
nected to end‑users. There are several data security and data security problems, andworld‑
wide researchers haveprovidedmanymethods to protect data against cyber‑attacks. Many
of them have offered very computational cryptography solutions. Very few academics
provide solutions based on blockchain (BC); however, their solutions may be affected by
expensive storage costs, as well as problems in network latency, confidence, and capac‑
ity. This issue can be overcome by a novel cybertwin‑based 6G network. The architectural
design is proposed by introducing new concepts such as cloud operators and cybertwin.
In the cybertwin‑based UAV, IoE applications have to be energy aware and must provide
scalability with less latency. A novel CFN framework is designed securely and blockchain‑
based UAV communication (BC‑UAV).

In Section 2, the related works are presented. Section 3 shows the proposedmodel for
CFN‑based BC‑UAV. Evaluation criteria are discussed in Section 4. Finally, the conclusion
is presented in Section 5.

2. Literature Review
A peer‑to‑peer network utilized in many different types of technology was in charge

ofmanagingUAVcommunication based on the blockchain. The uses ofDLTarementioned
tomitigate multiple cyber‑threats which classifiedmajor cyber‑attacks into four categories,
namely scanning, power of root, local to remote, and denial of service [8]. The security
issues in fog‑enabled IoT applications were examined. Blockchain was considered to ad‑
dress these issues [9]. Moreover, this work failed to consider the ability of blockchain with
AI. A detailed survey on reinforcement learning applications based on blockchain used in
industrial IoT networks was presented [10]. It was revealed that the Q‑learning algorithm,
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one of the machine learning strategies, improved the network performance. A two‑way
convergence of blockchain with ML was discussed [11]. Blockchain with ML features pro‑
vided security and reliability. ML was the tool used for optimizing blockchain networks.

The present blockchain based on AI techniques was examined for energy‑cloud man‑
agement, where the security and privacy issues were listed out [12]. A comprehensive
study on blockchain‑AI applicationswas presented alongwith their relationship in the IoT‑
enabled ecosystem. However, MEC which is a key technology of evolving 5G networks
were not concentrated [13]. Blockchain techniques in 5G networks were discussed and a
short survey was presented [14]. Three major challenges were identified, namely identity
authentication, privacy, and trust management along with a few blockchain‑based solu‑
tions. A short survey on the blockchain‑enabled federated model was described [15]. In
motivation to integrate MEC with blockchain was presented [16]. Edge computing was
employed to enable mobile blockchains. Edge computing integrated with blockchain was
examined. It was found that blockchain extended the ability of edge computing [17]. With
this as the basis, the present work in this paper focuses on the blockchain‑enabled dis‑
tributed and decentralizedML approach. Anti‑phishing approacheswere used at different
levels and has tomeet a few predefined conditions. Random forest (RF) classifier was used
for classifying themails received on the basis of commonly known features set and the pos‑
sible threats made known for which phishing incomingmails were required [18]. When an
illegalmail receivedwas redirected to awebpage, the level of similarity between legitimate
and suspicious webpages was identified and classification was based on a content‑based
anti‑phishing approach.

IoT devices performed edge computation on the resource owner nodeswhen required.
A framework was developed in which in corporate blockchain technology in the applica‑
tions based on IoT [19]. A Logchain system based on oneM2M which integrated IoT and
blockchain technology was utilized which ensured block integrity. However, still, sev‑
eral security issues were not taken into account. To handle the inhibited nature of IoT,
blockchain technology was integrated with Edge Computing in [20] which minimized the
needs of the IoT device such as memory capacity. Moreover, the performance was im‑
proved and was satisfactory. The issues of this approach were addressed and one major
issue evaluated was resource optimization which was not achieved. In [21], for enabling
propitiation, techno‑economic factors and normative assumptions were considered. How‑
ever, data privacy was still low.

3. Cybertwin Based Network Architecture for 6G with Cloud‑Fog Based Network
(CFN) Block Chain Based UAV Communication (BC‑UAV)

Cybertwin offers a few functions such as communication assistance, network behav‑
ior logger, and digital asset which satisfies several new design needs of the network. In
end‑to‑end communication, an end‑to‑end connection to the server has to be established
by the end devices to provide services. As depicted in Figure 1, in this cybertwin‑based
communication model, the things available in the physical network have to be initially
connected with cybertwin which in turn obtains the necessary service from the network
and then is delivered to the end‑user. This is the most basic function termed as commu‑
nication assistance function. During the network behavior logger function, while digital
representation, cybertwin obtains and logs every data for users. In the digital asset func‑
tion, cybertwin, after the removal of sensitive information, converts the behavior data of
the user to a digital asset for sale. For obtaining improved performance with minimized
latency, the technique for distribution assists in offering services based on demand. The
standard of life for the citizens will improve as well as the residential expectations. The
data processing can be speed‑up by a pattern of fog computing which assists the elements
of IoE through minimized latency [22].
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3.1. Cybertwin Communication Model
It is already known that the recent Internet paradigmhas no ability to satisfy the needs

of the mobile network in the future. The IP address of the present Internet indicates the
identity as well as the location information of the device. Due to this reason, the Internet
faces difficulties in handling the growing needs of mobile devices as well as services thus
causal ability challenges [23]. The network to be trustworthy and secure, the present Inter‑
net depends on the securitymeasures of the end‑to‑end connection and adopts trustworthy
users. No procedure is utilized for authenticating the users; hence several security issues
are experienced. For ensuring the quality of service (QoS), the Internet considers the way
communication resources are managed alone while the other entities are responsible for
managing computing and caching resources. Thus, coordination among resources is not
easily obtained. Hence, a novel cloud‑centric Internet architecture following a cybertwin‑
based communication model is proposed which is better than using an end‑to‑end com‑
munication model [24].

3.2. Cloud‑Centric Internet Architecture
This novel cloud‑centric Internet architecture introduced here is depicted in Figure 2.

The IP layer is still used as the “thinwaist” of the stack in order to permit the developments
in other layers and the continuous updates made in the infrastructure of legacy networks.
In this architecture, there exist two new components in the network infrastructure which
is the fog cloud above the IP layer. Many fully connected core clouds are present to offer
network services such as computing, caching, and communication resources. In between
core clouds and end users, edge clouds are present which support core clouds to respond
to the requests of the end users quickly [25,26].
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In this Internet architecture, a new cloud operator is introduced to help in construct‑
ing an operating system for a cloud network, as illustrated in Figure 3. Services such as
computing, caching, and communication resources are scheduled and coordinated accord‑
ingly. Moreover, a real‑world trading environment for the end users is also established
which helps in deploying more multi‑purpose resources due to scarcity [27,28].
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According to the services provided by cloud operators in the network, the service
providers of the application offer services to core clouds and edge thereby forming a ser‑
vice network. Due to this, the operational cost is reduced and no dedicated servers are
required, thus offering the best QoS to the end users [29].
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The proposed block chain‑fog based network (BFN) connects to the Internet of Ev‑
erything (IoE) and fog nodes of UAV. The distributed technology provides on‑demand
services thereby higher performance and less latency rate are achieved. From the citizen’s
point of view, their quality of life is improved and their expectations are met. Fog comput‑
ing supports the components of IoE for quick data processing as latency is low [30]. By uti‑
lizing its unique features, such as immutability, effective cryptography, and distributed de‑
centralized storage systems, the introduction of blockchain innovation will address these
issues [31–36]. The authors [37] evaluated and organized all cryptographic ideas currently
employed in blockchain technology in‑depth. We also provide a list of cryptographic ideas
that have not been used yet but could greatly enhance state‑of‑the‑art blockchain solutions.

This BFN architecture comprises fog nodes. The fog nodes layer reduces the latency
by processing the data received by fog nodes from the traffic of IoE. Expectations of the
users are satisfied by providing faster services. In this architecture, the fog node layer
denotes the devices connected with one another and with FN. The communication among
the connected devices is secured as blockchain technology is employed.

3.3. Fog Node Layer
The users demand services that aremet with IoE devices connected using fog comput‑

ing for smart cities. Blockchain technology provides more reliability with the added new
component. Several physical servers are integrated to form FN covering certain regions.

4. Block Chain Based UAV Communication (BC‑UAV)
The physical UAVs fly in this layer to sense the data application/situation is used in the

data sensing, that is, {S1, . . . Sn, . . . SN} for which UAV is used. For various applications
with differing weights, capability of payload, elevation of the flight as well as choices to
fly which has enormous dimensions of UAV. The UAVs are supposed to fly in a three‑
dimensional space having coordinates at time τ can be [x(τ), y(τ), z(τ)], are parallel to the
ground and z(µ) are in a vertical height where UAVs can fly [23–26]. When the UAV is
projected at an angle, the equations are given from the ground at the initial speed V at the
following time as given in Equation (1):

∅ACn
MN = φMN + ξMN ∑ N f

f=1λ f (1)

where λf is the bit rate of the flow f.
Range R of UAV attained has been represented by Equation (2)

ϕACn
ABC = Ns·φABC + ξABC ∑ N f

f=1λ f (2)

where R in particular is one of the elements that determines UAV deployment. For in‑
stance, the R should be high in the event of military use. In order to secure and reliable
communication, communication of UAVs as well as data sharing between the UAVs in the
Bpublic network UAV layer. A UAV can only store data in B public when the rules and crite‑
ria of SC are fulfilled. On the other hand, UAVs can also use Bpublic network to detect data
from DSL to assure confidentiality as well as secrecy of data. Every single UAV has a com‑
mon ledger replica, thus reducing the latency of access to stored information. To reduce
latency and boost system reliability, communication between UAVs and ground stations
through a communication network of 6G. The blockchain‑based UAV can be represented
by Equations (3)–(6),

xm =
x
a

(3)

t =
xt

x
(4)

sm =
s
a

(5)
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IDS =
∑ aϵXmy

x
(6)

For exchange between UAVs, base stations, level of BC, and the x‑layer, the communi‑
cation system is a 6G system that delivers an enormously large range of information, ideal
for latency‑conscious applications. The features of the network layer of 6G communica‑
tion include highly reliable (10−9), highly minimized latency (1 TB), and in elevation spec‑
trum performance (3–10 P/M over 5G). The complete list of 6G functionalities compared
to 5G can be found in Table 1. 6G provides software‑defined networking (SDN) which
isolates the control plane (CP) and the data plane (DP), allowing a centralized entity (con‑
troller) in the CP to configure the forwarding devices in the DP, enabling programmable
and dynamic network setup, and network function virtualization (NFV) is a paradigm for
network architecture where NFs that previously utilized specialized vendor‑specific hard‑
ware [38]. SDN is a software prototype that splits the level of data from the controller to
simplify and efficiently manage the UAV network. NFV virtualizes network infrastruc‑
ture, including computer, memory as well as machinery components of the channel, in
order to create a channel of UAV with more economic, effective and resistant. Since some
of the UAV applications are crucial, even a 1 ms interval cannot be tolerated. The mili‑
tary and healthcare applications would be such. More latency of the network, the more
chances of failure. Thus, latency (l) in UAV communication is a key parameter as given in
Equation (7):

lM→D(dM,l) = PLOS
(
dM,l,hD

)
L0d−αA

M,l +
(
1 − PLOS

(
dM,l,hD

))
LNLOSL0d−αA

M,l (7)

Table 1. Network efficiency.

Number of
Internet Things CT‑CNN [10] DLT [8] BAI_ECM [14] CT‑6G_CFN

10 92 92.1 92.3 92.4
20 92.5 93 94 95
40 93.8 93.8 95.8 96
60 94.3 94.2 96 97
80 95 95.1 96.5 98
100 96.5 96.8 97.1 98.5

Therefore, the energy for communication latency of UAV is given as
Equations (8) and (9):

Etx(l, d) = Etx−elec(m) + Etx−amp(l, d) (8)

Etx(l, d) =
{

m.Eelec + m
m.Eelec + dcrossover

}
(9)

Value l changes from channel to channel (end‑to‑end delay), i.e., from LTE‑A to 6G,
as shown in Equation (10):

ℓLπE−A ≤ 20 ms
ℓ5G ≤ 5 ms

ℓBFgmd−5G ≤ 1 ms
ℓ6G ≤ 0.1 ms.

(10)

4.1. IoE Layer
This layer helps the users to deploy the application in a real‑time environmentwith no

limits. Clusters are formed based on the location and function of the IoT devices thus im‑
proving throughput and reducing energy consumption, time, and cost overheads. There
is an increase in the workload of data centers as hardware and software services require
processing by integration. Peer‑to‑peer (P2P) TCP/IP communication among IoT devices
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takes place at a shorter distance. For longer distances, these devices make use of FN and
communicate using technologies such as WIFI, ZigBee, and Bluetooth.

4.2. Blockchain for IoE
The proposed system uses blockchain for IoE due to its decentralized and tamper‑

proof nature. Thus, billions of devices in the network can be easily tracked. Moreover, the
cost of managing and deploying the server is also reduced.

4.3. Data Transfer
This proposed CFN architecture helps in improving the mobility of the users in the

applications based on IoE with fog nodes and cloud computing. Moreover, security is
achieved to a greater extent using the blockchain technique where anonymous users are
restricted to access IoE devices.

4.4. Cloud Network Layer Security
Assuming that the whole network is an R‑circular region, where the characteristics of

the network are analyzed in a huge R‑based network. The received power in the Prx(xi,
xj) main recipient, xj, should rise when increasing the primary transmitter P power and
the Íh(xi, xj)Í amplitude of the complex fade coefficient of the primary link transmitter
and the primary receptor in a quasi‑static wireless environment. In addition, if the dis‑
tance between primary transmitter xi and primary receiving xj rises, the received power
would decrease. In addition, wireless transmission has to do with the trajectory loss ex‑
ponent which, due to varying communication environments, fluctuates between 0.8 and
4. We explore situation a > 2 here to estimate the interference of primary users and eaves‑
droppers from the secondary users. The interference power on the primary recipient from
the secondary user assumes that WP is the noise power introduced by the main receivers
and IP. Now, we analyze a specific situation in the wireless environment where there is
simply path loss h(xi,xj), and that is normalized to be one for everyone and not equal to
j. Various antenna of the secondary receiver along with the eavesdropper have been pre‑
pared while the information of channel state is a channel of eavesdropper’s and it is not
available in the secondary transmitter [25]. To improve the security in the cloud the hash
function is introduced. A hashing operation H is a function that converts an input of any
size to an output of a specific size. There are some more characteristics of cryptographic
hash functions, such as: Collision resistance: It is challenging to find two inputs a and b
such that H

(
xi) = H

(
yi); preimage resistance: It is challenging to find an input a such that

H
(

xi)) = Y for a given output Y; and second preimage resistance: It is challenging to find
an additional input yi such that H

(
yi) = Y for an input xi and output = H

(
xi). The ther‑

mal power of the primary users and wafers is considered to be the same because this noise
power can be presumed to be independent of a secondary user’s location and they are both
W. The powers received by the primary users and by the eavesdroppers can all be deter‑
mined by wireless transmission propagation laws. This simplifies the secrecy capacity as
shown in Equation (11):

Cs
(

xi, xj
)
= max

 log2

(
1 + P

∥xi−xj∥T(w+tp)

)
− log2

(
1 + P

∥xi−e∗∥α(W+IE)

)
, 0

 (11)

The probability density function of IP and IE can first be derived. Then, the secrecy
capacity Cs(i,j) is the probability density function from Equation (12):

fCz(i,j)(c) =


fCP(i,j)(c) ∗ fCE(−c), c > 0,

Pr0,j · δ(c), c = 0,
0, c < 0.

(12)
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where I is the primary user’s transmitter, j is the nearest neighbor j of transmitter I, and
fCP(i,j)(c), fCE(c), d(c), and Pr0,j denotes the primary user probability density, eavesdropper
capacity probability function, and Dirac delta function and zero capability.

Depending upon the probability of secrecy, first‑order expansion of FγM|{X}(γ) on X
is represented by Equation (13),

FγM|{X}(γ) =


(

γ
γ1

)nB
, X ≤ γp

γ0(
X

γ1σ γ
)nB

, X >
γp
γ0

(13)

the binomial expansion, the cloud network outage probability of secrecy is computed from
Equation (14),

P∞
out =

−1 − e
− 7p

γ
Ω0
0

 nB
∑

i=0

(
nB
i

)(
2Rs−1

γ1

)nB−i( 2RS
γ1

)i

nE−1
∑

j=0

(
nE − 1

j

)
nE
γ2
(−1)j ∫ ∞

0 (γE)
ie−

(j+1)∼E
72 dγE

+∑ nB
i=0

(
nB
i

)(
2RS−1

γ1σ

)nB−i( 2RS
γ1σ

)
∑ inE−1

j=0

(
nE − 1

j

)
nE

γ2σ (−1)j 1
Ω0

∫ ∞
πp
γ0

e−
x

Ω0
∫ ∞

0 xnB+1(γE)
ie
− (j+1)γE

72σ
dγEdx

(14)

Employing Equation (14) given by
∫ ∞

0 xne−µxdx = 1(n+1)∗

µn+1 integrally evaluated and
the cloud network outage probability of secrecy is derived by Equation (15)

P∞
out = (Gaγ1)

−Gi + O
(

γ
−Gd
1

)
(15)

where the diversity order for secrecy is given by Equation (16):

zGd = nB (16)

and the gain of secrecy array is given by Equation (17):

Ga =

[(
1 − e−

σ
n0

)
∑nB

i=0

(
nB
i

)(
2RS − 1

)nB−i2Rsi

∑nE−1
j=0

(
nE − 1

j

)
nEγ2

i(−1)j Γ(i+1)
(j+1)i+1 + ∑nB

i=0

(
nB
i

)
(
2RS − 1

)nB−i
σ−nB2Rsi ∑nE−1

j=0

(
nE − 1

j

)
nE(γ2σ)i

(−1)j(Ω0)
nB−i Γ(i+1)

(j+1)i+1 Γ
(

nB − i + 1, σ
Ω0

)]− 1
nB

(17)

where incomplete gamma function is represented by Γ (·, ·).
The CDF and PDF of Y are written by Equations (18) and (19):

FY(y) = ∑ N
n=0

(
N
n

)
(−1)ne−

nv
nY (18)

fY(y) = ∑ N−1
n=0

(
N − 1

n

)
N

ΩY
(−1)ne−

(n+1)y
nY (19)

Let u(X) = min
(
γp
X , γ0

)
. Using the probability theory, for RVγ = u(X)Y the condi‑

tional CDF and PDF of γ can be obtained as (19) and (20), respectively.
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Hence, the cloud network layer security in Equations (20)–(23) can be calculated as:
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For 𝑋 >
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For X >
γP
γ0

, we have
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5. Performance Analysis
The performance of this proposed CFN model with its numerical simulation results

from the iFogSim simulator is relatively examined with the existing ones. The real‑time
situation of smart city fog network is involved and considers traffic of web applications.
The workload needs CPU and network resources.

The parametric analysis is given by graphs below.
The above Figures 4 and 5 show the average power consumption, and latency compar‑

ison between CFNwith fog and cloud frameworks. In Figure 4 for 1s the power consump‑
tion stays constant for time without any minimal oscillations because of small variations
vertically. Figure 5 shows fog computing architecture latency in which the event has been
notified earlier for final users of cloud computing architecture. Here, the latency extends
to second for cloud computing.

The above Tables 1 and 2 show a comparison of network efficiency, communication
delay, and average power consumption, and Figures 6–12 show their graphical represen‑
tation in comparison between existing and proposed techniques. From Figures 6–9 shows
the network efficiency as well as the cloud computing layer delay has been initiated due
to a delay in communication in cloud servers with edge servers. On one hand, this is on
the grounds that the correspondence with a significant distance from end clients to the
cloud server center may create high postponement. Then again, the limit of organization
data transfer capacity builds the transmission delay from edge devices to cloud workers
incredibly. As themeasure of information increments consistently, the correspondence de‑
fers increments quicker. Figures 10–12 show communication latency, UAV mobility, and
connectivity of UAVs. The bends turn 100% of responsibility in the cloud. This shows that
the transmission rate acts simultaneously with the mist handling rate introduced. The
dormancy at the mist will be improved as more work is moved to the cloud.
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Table 2. Communication delay.

Number of
Internet Things CT‑CNN [10] DLT [8] BAI_ECM [14] CT‑6G_CFN

20 4.2 3.9 3.5 3.2
40 6 6.3 6.5 5.7
60 7.3 7.5 7.8 6.8
80 8.2 6.7 7.9 8.2
100 12 11.5 11 10.8
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6. Conclusions
The concept of blockchain technology, cybertwins (CTs) with UAV assumes a pro‑

tuberant part in business use, convoluted security basic missions alongside numerous
other assorted scopes of uses. UAVs ought to have the option to give wide inclusion
and availability to distant regions under all conditions. Besides, conventional UAV cor‑
respondence is not satisfactory to manage the high‑versatility and dynamic highlights of
UAVs. Along these lines, there is a requirement for an effective and secure organization
of UAVs as they have been broadly utilized in antagonistic conditions. So, this paper pro‑
posed that cybertwin‑based UAVs and IoE applications have to be energy aware and must
provide scalability with less latency. A novel CFN framework is designed securely and
blockchain‑based UAV communication (BC‑UAV). The overall results reveal that the per‑
formance of this proposed CFN_BC‑UAV architecture is better for cyber‑based security in
6G techniques. Since applicationswere designed based on the fog computing environment
which provides scalability, energy efficiency aswell as security. In some currentworks, the
information privacy and trustworthiness levels additionally stay low. The examination dif‑
ficulties and open issues in joining blockchain with the 6G correspondence network are in‑
vestigated. Then, at that point, the future exploration rules toward blockchain‑empowered
IoTwith 6G correspondence are given. Security and protection issues of 5G advancements
are to be diminished contingent upon requests and prerequisites.
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