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Abstract: The development of electric power systems has become more complex. Consequently,
electric power systems are operating closer to their limits and are more susceptible to instability
when a disturbance occurs. Transient stability problems are especially prevalent. In addition, the
identification of transient stability is difficult to achieve in real time using the current measurement
data. This research focuses on developing a convolutional neural network—long short-term memory
(CNN-LSTM) model using historical data events to detect transient stability considering time-series
measurement data. The model was developed by considering noise, delay, and loss in measurement
data, line outage and variable renewable energy (VRE) integration scenarios. The model requires
PMU measurements to provide high sampling rate time-series information. In addition, the effects
of different numbers of PMUs were also simulated. The CNN-LSTM method was trained using a
synthetic dataset produced using the DigSILENT PowerFactory simulation to represent the PMU
measurement data. The IEEE 39 bus test system was used to simulate the model under different
loading conditions. On the basis of the research results, the proposed CNN-LSTM model is able to
detect stable and unstable conditions of transient stability only from the magnitude and angle of the
bus voltage, without considering system parameter information on the network. The accuracy of
transient stability detection reached above 99% in all scenarios. The CNN-LSTM method also required
less computation time compared to CNN and conventional LSTM with the average computation
times of 190.4, 4001.8 and 229.8 s, respectively.

Keywords: transient stability; transient stability detection; prediction accuracy; CNN-LSTM

1. Introduction

The development of electric power systems has become more complex due to system
interconnection, variable renewable energy (VRE) integration, and distributed generation.
It allows the power system utility to operate the system closer to its limits, which means
that vulnerable disturbance occurs [1]. If the disturbance is not properly cleared, it can
lead to more severe disturbances and the system may suffer blackouts. Several incidents
occurred due to failures in the electric power system, such as blackout events in Hokkaido,
Japan [2], Canada and the United States [3], South Australia [4], and Europe [5]. One aspect
of the stability of the electric power system is transient stability or rotor angle stability [6].
Rotor angle stability is the ability of a synchronous machine in an interconnected electric
power system to remain in synchrony after a disturbance occurs.

In addition, most of the power systems in the world still use the supervisory control
and data acquisition (SCADA) system, which depends on conventional measurement.
The SCADA measures the magnitude of the system variables and collects measurements
from the data center. The sampling rate and period among the variables can be different
depending on each measurement device’s capability. This condition makes it difficult for
the SCADA system to monitor transient events, as presented in [7].
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To observe a transient event, a system capable of measuring transient conditions
is needed. This feature is fulfilled by the phasor measurement unit (PMU), in which
measurement among the PMUs is synchronized. With synchronized measurement, a
wide area monitoring system (WAMS) can be built into the power system [1,8,9]. In
addition, PMU can also measure phase and magnitude quantities at a high sampling
rate; up to 60 per minute. With PMU technology, measurement data can be analyzed to
obtain information such as real-time power system network monitoring and control, early
warning systems, detection systems, real-time monitoring of voltage, frequency, phase
angle stability, and state estimation algorithm improvements [1].

The development of machine learning and deep learning technology has enabled
the power system utility to build the application based on historical data. Data collection
from protection devices, PMU, smart metering, controllable loads, and communication
networks have been mined to develop the technology, as presented in [10]. The application
of a machine learning model can be developed into the application of economic load
dispatch [11], load forecasting [12], cybersecurity [13], demand response [14], electricity
market [15], and stability detection [15]. Even though the computational burden of the
machine learning approach is high [7], the machine learning model has advantages because
the complete model of an electrical system and its parameters are not compulsory. In
addition, there are advantages of synchronized measurement technology regarding the
collection of data and information. A machine learning model can be built using a historical
event. In each historical event, the PMU measurement can be recorded so that the model
would be more precise as a result of the PMU sampling rate capabilities. To detect future
events, PMU measurement data can be used as input.

One of the main problems in power systems is transient stability, which can lead
to blackouts if not properly cleared. Previous studies have been carried out to detect
transient stability. The methods include transient stability analysis with conventional
methods, machine learning, and deep learning. Conventional methods such as time
domain simulation (TDS), as presented in [16], require complete information on system
parameters and fault conditions. Consequently, they are unsuitable for real-time detection
of transient stability.

Research in [17] performs transient stability detection by combining binary classi-
fication features for transient stability detection and multiclass classification to classify
dynamic generator responses. Research in [17] also compared the performance of several
methods such as decision tree (DT), ensemble decision tree (EDT), and support vector
machine (SVM). The development of other machine learning methods was carried out in
research [18]. Research in [18] detects frequency stability using the moving window princi-
pal component analysis (PCA) method. In addition, Stockwell’s transform (S-transform)
method has also been developed to detect stress stability, as was performed in research [19].
However, the machine learning method has several shortcomings in terms of detecting
stability. It is less flexible to different data features. This is because parameter settings
depend on the model and data type being created in machine learning modelling.

The next development is using the deep learning method. The deep learning method
is a part of the machine learning method that seeks to imitate human neural networks [20].
Deep learning methods are used to extract features in the data and improve the accuracy of
the classification process [21]. One of the previous studies has developed a recurrent neural
network (RNN)-based method called gated recurrent unit (GRU) [22]. The method was
developed to classify transient instability because of short circuit faults. This study has a
drawback: not paying attention to the occurrence of loss of synchronism in the generator
when experiencing transient instability.

A convolutional neural network (CNN) method was subsequently developed to detect
stability. One of the studies developed a continuous online monitoring system (OMS)
based on PMU measurements using the CNN method to classify transient instability [23].
Previous research also developed the detection of transient stability by paying attention
to two types of transient instability, namely, aperiodic and oscillatory instability [24]. In
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addition to using CNN for transient stability detection, CNN has also been developed
for frequency stability detection [25]. However, the CNN method has disadvantages in
detecting transient stability based on time series data because it does not consider the
relationship between data series. In addition, CNN requires a long training process because
it requires a lot of convolution flow when used to classify data based on time series [26,27].

To overcome the disadvantages of the CNN method, a hybrid method between CNN
and RNN was developed as in [28,29]. Research in [28] developed the CNN method in
combination with one of the RNN methods, namely, long short-term memory (LSTM) to
detect transient stability based on voltage phasor data, whereas research in [29] developed a
recurrent graph convolutional neural network (RGCN) method to detect transient stability.
However, previous research on the hybrid method between CNN and RNN for the detection
of transient stability has not considered the integration of VRE and has not considered
delays and topological changes after disturbances occur.

On the basis of previous studies, this research will focus on developing a convolutional
neural network—long short-term memory (CNN-LSTM) method to detect transient stability
by observing data time-series information, noise, delay, and loss in data and network
changes that occur due to disturbances such as line outages, the number of PMUs, VRE
integration, and also by paying attention to out-of-step protection on the generator when
loss of synchronism occurs. The CNN-LSTM method will be trained using a synthetic
dataset generated from the DigSILENT PowerFactory simulation to represent the PMU
measurement data. The proposed model will contribute to the detection of transient
stability with faster performance, the utilization of time-series data, and the robustness
of the power system against noise, delay, and data loss. The proposed model will also
consider topology changes due to the contingency event that often occurs after a large
disturbance in the power system.

2. Materials and Methods

The method in this study is divided into three stages, namely, data generation, model
formation, and detection of transient stability, and ends with a sensitivity test. Data
generation is performed to collect synthetic data that will be used to train, validate and
test the proposed deep learning model. In the second part, model formation and transient
stability detection are carried out. Then in the last part, a sensitivity test of several test
parameters such as noise, loss, delay, number of PMUs, and PV penetration rate will be
carried out on the proposed CNN-LSTM model.

2.1. Test Case

Transient stability detection simulation needs to be tested on a power system. In this
study, the power system used was based on the IEEE 39 Bus system test [30]. In this study,
several modifications were carried out, among others, adding a PV system and changing
the voltage setpoint values on several buses according to the OPF results. The form of the
single line diagram (SLD) used is shown in Figure 1.

The IEEE 39 Bus consists of several components of the electric power system, including
10 generators, 19 loads, 34 lines, 12 transformers, and 39 buses. The number of in the figure
denotes the bus. In this study, a 1 PV system was added to bus 2 which replaced the role of
the generator on bus 30. The total system capacity was 14.28 GW with a load of 6.13 GW [31].

The PV power capacity used was 600 MW or 10% of the load. However, this study also
compared the effect of different PV penetration levels on the transient stability detection
results. The PV model used was the standard PV model from DigSILENT PowerFactory.
The power control model used was Const. Q, in which the user can specify the active
and reactive power output. In this study, the active power was fixed with a power factor
value of 1. The dynamic model of the PV system at DigSILENT PowerFactory consists
of four main parts, including the photovoltaic block, the DC busbar and capacitor model,
the PQ controller, and the static generator model. The PV array is represented by several
PV modules that are connected in series and parallel and operate at the maximum power
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point (MPP). In this study, it is assumed that the ambient temperature and solar irradiation
values are constant because the conditions are only observed for a moment meaning the
conditions tend not to change. Therefore, intermittent conditions in PV are not considered
here. In this condition, the inertia value of the system will affect the transient stability
response of the system.
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In this research, tests were carried out for scenarios using different numbers of PMUs
on the bus, which varied as many as 39, 26, and 13 buses from a total of 39 buses in the
power system. Previous research on the number of PMUs has been carried out to ensure
that the system is observable [7,32,33]. If the system is observable, the PMU measurement
results can represent the system. When the number of PMUs is 39 and 26, systems are still
observable. However, when the number of buses is 13 units, there are several buses that
are not observable. This research will observe how the number of PMUs used affects the
performance of the resulting CNN-LSTM model.

2.2. Data Generation

In this section, the PMU data generation and labelling are simulated based on the
transient stability conditions. The data generation workflow is shown in Figure 2.

Data generation begins by determining the variation of the operating conditions to
be simulated. Variable operating conditions include: the location of the faulted line, the
relative location of the faulted line, the duration of the fault, and the load level. Meanwhile,
the PV penetration level is fixed. A comparison of the effect of PV penetration level will
be carried out in a separate simulation. The variations in operating conditions for each of
these parameters are shown in Table 1.



Energies 2022, 15, 8241 5 of 20

Energies 2022, 15, x FOR PEER REVIEW 5 of 22 
 

 

are not observable. This research will observe how the number of PMUs used affects the 
performance of the resulting CNN-LSTM model. 

2.2. Data Generation 
In this section, the PMU data generation and labelling are simulated based on the 

transient stability conditions. The data generation workflow is shown in Figure 2. 

 
Figure 2. Data generation workflow. 

Data generation begins by determining the variation of the operating conditions to 
be simulated. Variable operating conditions include: the location of the faulted line, the 
relative location of the faulted line, the duration of the fault, and the load level. Mean-
while, the PV penetration level is fixed. A comparison of the effect of PV penetration level 
will be carried out in a separate simulation. The variations in operating conditions for each 
of these parameters are shown in Table 1. 

Table 1. Scenarios of variations in electric power system operating conditions. 

Parameter Description 
Location of the faulted line Each of the 34 lines 
Relative location of the faulted line 0%, 20%, 50%, dan 80% from the end of line 
Fault duration 0.1 s; 0.15 s; 0.18 s; 0.2 s; and 0.25 s 

Load level 70%, 75%, 80%, …, 130% of the IEEE 39-bus 
standard load demand 

Furthermore, optimal power flow (OPF) is simulated with the objective function of 
minimizing network losses and simulating load flow analysis. Both simulations are used 
to determine the optimal dispatch of each generator with the lowest network losses that 
meet the operating constraints of the electric power system, as shown in Table 2, so that 
the generator output can be set automatically for each variation of load levels via OPF. If 
the OPF cannot find a solution, then the dispatch condition in the previous variation will 
be used to ensure that the load flow analysis can run or converge. 

Figure 2. Data generation workflow.

Table 1. Scenarios of variations in electric power system operating conditions.

Parameter Description

Location of the faulted line Each of the 34 lines
Relative location of the faulted line 0%, 20%, 50%, dan 80% from the end of line
Fault duration 0.1 s; 0.15 s; 0.18 s; 0.2 s; and 0.25 s

Load level 70%, 75%, 80%, . . . , 130% of the IEEE 39-bus
standard load demand

Furthermore, optimal power flow (OPF) is simulated with the objective function of
minimizing network losses and simulating load flow analysis. Both simulations are used
to determine the optimal dispatch of each generator with the lowest network losses that
meet the operating constraints of the electric power system, as shown in Table 2, so that the
generator output can be set automatically for each variation of load levels via OPF. If the
OPF cannot find a solution, then the dispatch condition in the previous variation will be
used to ensure that the load flow analysis can run or converge.

Table 2. Standard of power system operation [34,35].

Parameter Value Unit

Bus voltage 0.9–1.05 p.u.
Transformer loading 100 %
Line loading 100 %
Rotor angle −180 to +180 deg

After identifying the dispatch generator for each variation of the operating conditions,
the next step is to perform a transient simulation. Transient simulation through time-domain
simulation is carried out to simulate the transient condition of the operation of the electric
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power system in a certain time series so that how the system responds when and after a
disturbance occurs can be observed. The disturbance simulated in this study is a three-phase
short circuit in the line. To produce data labels, tests were used on the value of the rotor
angle and critical clearing time (CCT). In this method, it is possible to see whether the
value of the rotor angle is outside the range of between −1800 and 1800. If it is outside this
range, the system is unstable. In addition, to validate this, the CCT value of the rotor angle
response can also be seen. If the disturbance can be removed before the CCT or, in other
words, the trouble clearing time is smaller than the CCT, the system is stable and vice versa.

A three-phase short-circuit fault was chosen because this type of fault is the most
severe type of short-circuit fault that can occur in transmission lines where the amount
of short-circuit current that occurs is the highest compared to other types of short-circuit
faults [36]. When there is a disturbance in the line, the disturbance will be eliminated by
separating the disturbed line from the network so there is a network topology change in the
power system. The system will experience a new equilibrium state in the transient period.

The output of this simulation is the value of the rotor angle (δ), the magnitude of
the bus voltage (V), the bus voltage angle (θ), and the out-of-step generator status. The
magnitude of the bus voltage and the bus voltage angle were used as input data in deep
learning; whereas, the value of the rotor angle and the out-of-step status were used to label
the stability condition. When there is an out-of-step on the generator, the system is unstable
and vice versa. The data on the magnitude and angle of the bus voltage and the labels
generated in this section were inputted in the next section.

2.3. Model Formulation and Stability Detection

In this study, a hybrid method was used: CNN and LSTM. The CNN layer was used
to extract the features contained in the input data, and the LSTM layer was used to support
serial data prediction. The CNN method can identify several tensor features based on
classes in the network model created. The CNN method has a drawback that it requires a
long training time to classify time-series data. This is because it requires several training
streams for convolution, namely, one per input image [26,27]. Furthermore, the CNN
method cannot detect the relation between time-series connected data streams. By using
a time-distributed layer to transform each timestep of data, the same layer is applied to
several inputs producing one output per input so that the results are obtained for each time
series [37]. Then the output of each time series can be used as input for the LSTM [38]. The
architecture used is shown in Figure 3.

The input form for the method used is illustrated in Figure 4. Several parameters were
used, including batch, window, time length, channel, and timestep. Batch shows the set of
data samples that are trained at one time. The window shows the data set at each timestep.
Time length shows the total data time used in the time-series data. Channel shows the
number of channels that contain each type of data. Timestep shows the number of steps
performed in each iteration of CNN-LSTM.

The batch size used in this study was 26 units. The window size used was 25 lines
of data, and the total time length used was 6 s, which contained 600 lines of data. Then
through the window size and time length, the timestep size, which can be seen according
to Equation (1), was 24 steps. Furthermore, the size of the channel used was 2 units.
Furthermore, for the output form, the method used only consists of batch, size and timestep.

Timestep = time − length/window (1)

The input data used in this research are voltage magnitude matrix |V| ∈ Rt×b and
voltage angle matrix θ ∈ Rt×b, where t is the number of time samples and b is the
number of buses. Then the two matrices are concatenated into a voltage phasor tensor
V ∈ Rt×b×2. A time-distributed layer is used to observe the long-term and short-term
time-series features. Therefore, this layer can entirely utilize information in different time
frames. Through the time distributed layer, the input data for each time step was analyzed
with the same layer architecture as shown in Figure 3.
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A filter or convolution kernel convolutes the input tensor to generate feature map
output [39]. The convolution operation is represented in Equations (2) and (3) [40]:

C(i, j) = (I ∗ F)(i, j) (2)

C(i, j) = ∑∑I(i + m, j + n)F(m, n) (3)

where C is the output feature map of size i× j, I is the input matrix of size i× j, and F is
the convolution kernel of size m× n.
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The feature map output is then executed with the ReLU activation function, which
maps the input to 0 or maintains the value constant. If the value is negative then it is
mapped to 0; whereas, if it is positive the value will remain. The ReLU activation equation
is shown in Equation (4). The activation function is required to generate non-linearity [39]
so that deep learning classification can be done.

f (x) = max(0, x) (4)

where f (x) is the activation function and x is the matrix element input.
A batch normalization layer is used to perform normalization of the input. Batch

normalization can transform input so that the mean output µB remains near zero and the
standard deviation σB remains near to 1. Batch normalization formulations are shown in
Equations (5)–(7) as follows:

µB =
1
m

m

∑
k=1

xk (5)

σB =

√√√√√ 1
m

m

∑
k=1

(xk − µB)
2 (6)

x′k =
xk − µB

σB
(7)

where µB and σB are the mean output and standard deviation in every batch, respectively.
Then, m is the number of the sample, and x′k is the normalized input. Batch normalization
processes are different between training and testing. In the training process, the layer
normalizes the output using the mean and standard deviation from the inputted batch. On
the other hand, in the testing process, the layer uses a moving average from the average
and standard deviation to normalize the output from the batch from the testing stage.

A dropout layer would randomly adjust the input unit to 0 using a specific value of
frequency in each training process. Another nonzero input would be scaled to 1/(1 − rate)
so that the number of the input remained the same. Illustrations of the dropout layer
process are presented in Figure 5. The arrow denotes the process direction from the input,
model. and the predicted output. The dropout layer is useful to prevent overfitting
in the model [39].
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A maxpool layer was used to perform a down sampling operation, which reduces the
element number from the feature map. The element is then used as input for the pooling
layer. In this research, the down sampling of the feature map was performed based on the
maximum in the pool.



Energies 2022, 15, 8241 9 of 20

A flatten layer was used to change the tensor input in the form of (n, c, h, w) into a
vector with the dimension (n× c× h× w), where n, c, h, dan w are the number of batches,
channel, column, and row. This layer was used to produce the input that was able to be
processed by the LSTM in the next step.

The LTSM layer contains a memory block consisting of cell state and gate state for
the recurrent process. In this research, the activation function is tanh, and the recurrent
process is sigmoid. The formulation of tanh and sigmoid activation function is presented in
Equations (8) and (9).

f (x) =
ex − e−x

ex + e−x (8)

f (x) =
1

1 + e−x (9)

Dense layers/fully connected layers will operate the input based on the activation
function used. In this research, there are two dense layers. The first one is the ReLU
function after the LTSM, and the second one mapped the probability prediction form neural
network using the sigmoid. The sigmoid was chosen because the predicted target class is
binary. Finally, the deep learning output in the vector form shows the prediction output in
each timestep. The prediction has two classes: stable and unstable.

The loss function is a function that is used to measure how well the prediction or
output produced performs against the expected target. In this research, the binary cross
entropy loss function was used. This function was used because in this research the
predictions made are binary (0 and 1). Binary cross entropy is preceded by a sigmoid
activation function. The equation for binary cross entropy is shown in Equation (10):

loss = −tilog(yi)− (1− ti)log(1− yi) (10)

where ti is the target class on the i-th element and yi is the prediction output generated by
the neural network algorithm on the i-th element.

3. Simulation Results

The simulation results were analyzed and discussed by observing the data generation
process and by comparing results among the methods, parameter control and data quality.
Data generation was performed by observing the number of each class and each class
representation using a colormap. Then in the method comparison, parameter control
and data quality aspect, the simulation results of each scenario variation were observed
depending on the method used and the deep learning parameter.

3.1. Data Generation and PV Penetration Effect

In this section, the data generation for each class is compared to identify the data
number and representation. Furthermore, the network topology with different penetration
PV levels of three scenarios are also compared. The amount of simulated data for each
scenario are shown in Table 3. Data classification from Table 3 was obtained from the data
labelling process. Data labelling detects whether generating units go out of step or not. The
rotor angle has a transient stability operation limit between −180◦ and 180◦. When the
rotor angle reaches –180◦ or 180◦, the internal synchronous generator rotor angle would
go in to the out-of-step phase from the reference voltage point of view. Generator voltage
and current would oscillate following the rotor angle oscillation between −180◦ and 180◦.
When the rotor angle is unstable, the operating condition is called critical clearing time
(CCT). In the simulated power system, clearing time of the disturbances/faults would
gradually increase to find a generator in the out-of-step condition (CCT). CCT would be
compared to the clearing time in the data generation process simulation. When the fault
can be cleared before the CCT or the fault clearing time is less than the CCT, the system
is stable, otherwise, the system is unstable. The resulting normalized confusion matrix is
shown in Figure 6.
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Table 3. Generation data of PV penetration effect representation.

Scenario
Number of Data Training Validation Testing

Stable Unstable Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

Without PV 29,356 2468 99.75 99.80 99.76 0.9987
With PV 10% 29,605 2219 99.85 99.94 99.89 0.9994
With PV 15% 28,726 3098 99.95 99.99 99.93 0.9996
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As shown in Table 3, the PV penetration level in the system can affect the transient
stability of a power system [42,43]. Depending on the network topology and the system
operation, PV penetration can strengthen or weaken the system’s transient stability. When
the PV penetration is 10% of the peak load, the number of stable operating conditions rises.
However, when the penetration is 15%, the number of stable operation conditions decreases.
This is also proven in [43]. The research in [43] analyzed the transient impact of the VRES
according to the future Korean power grid scenario. The results of the research show
that transient stability increases when the RES penetration is small. However, when the
penetration level increases, the transient stability decreases. This is related to the increasing
imbalance of supply and demand load by RES penetration. The area associated with an
increase in power generation due to RES penetration is not the same as the area associated
with a decrease in power generation due to RES penetration. Another researcher in [44]
also analyzed transient stability as a result of the integration of a solar farm on the grid.
The research in [44] conducted a transient stability test using the IEEE 9 bus system by
taking into account the effect on the CCT value. This study shows that PV penetration
leads to a decrease in the CCT value. When a conventional generator is turned off, the
CCT value increases slightly. The smaller the CCT value, the more vulnerable the system
is to instability. Thus, the presence of PV penetration can make the system more unstable
or more stable depending on the operating conditions of the conventional generator in
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the system, which will affect the balance of power and load on the system and the flow of
power distribution from the generator to the load.

In this research, the operating condition for each case was randomly generated based
on possible actual operation conditions. It occurs because the PV penetration in the 15%
case violates the power system regulations due to the voltage profile and power system
component loading. Moreover, based on the accuracy and F1-score, the best ranking
conditions for detecting transient stability are with PV 15%, with PV 10% and without PV.

3.2. Model Formulation and Transient Stability Detection

In this section, the hyperparameter values in the CNN-LSTM model are compared,
analyzed and discussed. The hyperparameter values are presented in Table 4. The training,
validation and testing results are presented in Table 5.

Table 4. Hyperparameter testing scenario [30,45–48].

Scenario
Hyperparameter Value

Conv2D_1 Conv2D_2 Conv2D_1 Dense Conv2D_1

1 4 8 16 16 0.2
2 4 8 16 16 0.5
3 4 8 16 16 0.8
4 8 16 32 32 0.2
5 8 16 32 32 0.5
6 8 16 32 32 0.8

Table 5. Recapitulation of hyperparameter testing results.

Scenario
Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

1 99.70 99.81 99.79 0.999
2 99.56 99.74 99.67 0.998
3 97.37 99.53 99.35 0.996
4 99.85 99.94 99.89 0.999
5 99.70 99.63 99.55 0.998
6 99.40 98.84 98.58 0.992

Based on the accuracy and F1-score, the optimal model is the model in scenario 4. For
this reason, the hyperparameter in scenario 4 was used in the following model in this research.

3.3. Sensitivity Test

The quality of the data used to train a deep learning model can affect the resulting
performance. In this section the effect of PV penetration level, data quality such as noise,
loss, delay, and the number of PMUs used are analyzed. Noise, delay, or loss in the mea-
surement data is generated before conducting the CNN-LSTM training process. Therefore,
the characteristics of CNN-LSTM detection results when there is data that has noise, delay,
or measurement loss can be observed. Illustrations of the data in the form of a voltage
magnitude response using a colormap for data with noise, delay, or loss when conditions
are stable and when conditions are unstable are shown in Figures 7 and 8, respectively.

In addition, comparisons with similar methods were also analyzed. To avoid the
influence of other parameters in testing the sensitivity of certain parameters, the other
parameter values were maintained at the same level. Simulation results were obtained from
13 PMU, 10% PV penetration, 1% PMU measurement noise, data losses in 10 buses, and a
delay of 100 ms. The estimated optimal number of PMUs was set as 30% of the number of
buses. Moreover, the performance of the detection results using testing data can be seen.
The analysis was performed by looking at the confusion matrix generated by data testing.
The performance parameters used include accuracy and F1-score.
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3.3.1. Effect of Noise

In order to observe the noise effect on the prediction, three noises levels were generated.
The results of training, validation, and testing of some noise levels are shown in Table 6.
The resulting normalized confusion matrix is shown in Figure 9.

Table 6. Recapitulation of test results for the effect of noisy data.

Noise Level
Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

±0% 99.96 99.91 99.93 0.9996
±3% 99.91 99.94 99.84 0.9992
±5% 99.90 99.90 99.97 0.9998
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The noise is generated by randomly generating noise of a voltage magnitude and angle
different from the actual value. This makes the model process different data according
to the noise level. The presence of noise in the data used can affect the performance of
the resulting model. The accuracy of the training process decreased when the noise level
increased. However, in the validation and testing process, the resulting model did not have
a certain trend towards noise.

3.3.2. Effect of Data Loss

In order to observe the effect of data loss on the prediction, three levels of data missing
were generated. The results of training, validation, and testing are shown in Table 7. The
resulting normalized confusion matrix is shown in Figure 10. The number of data rows
used in this study was 600 data rows with a window size of 25 rows of data and a batch
size of 26 units.
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Table 7. Recapitulation of test results for the effect of data loss.

Number of Missing
Data Points

Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

0 99.96 99.91 99.93 0.9996
10 99.94 99.89 99.89 0.9994
20 99.93 99.98 99.96 0.9998
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With the missing data, the magnitude and angle of the voltage in the data used will
change the data pattern. This makes the model process different data according to the
number of missing data points so that the performance of the resulting model does not
have a certain trend toward the number of missing data. Similarly to the data noises, the
accuracy is decreased only in the training process. Generally, the number of missing data
points at this level does not affect the accuracy.

3.3.3. Effect of Delay on Data

In order to observe the effect of delayed data on the prediction, three levels of delay
were generated. The results of training, validation, and testing are shown in Table 8. The
resulting normalized confusion matrix is shown in Figure 11.

Table 8. Recapitulation of test results for the effect of delayed data.

Delay Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

0 ms 99.96 99.91 99.93 0.9996
300 ms 99.84 99.82 99.78 0.9988
500 ms 99.68 99.67 99.69 0.9983
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The greater the delay, the worse the performance of the resulting deep learning model
will be. This can happen because the amount of delay makes the value of the data in the
delay time range the same, which makes the data pattern more difficult to identify. Thus,
the delay in the data used can affect the performance of the resulting model.

3.3.4. Effect of The Number of PMU

In order to observe the influence of the number of PMU on the prediction, three levels
of the number of PMU were generated. The results of training, validation, and testing are
shown in Table 9. While the resulting normalized confusion matrix is shown in Figure 12.
The resulting normalized confusion matrix is shown in Figure 12.

Table 9. Recapitulation of test results for the effect of the number of PMUs.

Number of PMUs
Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

13 99.92 99.95 99.96 0.99978
26 99.92 99.97 99.96 0.99980
39 99.98 99.99 99.99 0.99997

Overall, although the number of PMUs is limited to 30% of the total buses on the
system, in the case of 13 buses out of 39 buses, the model still has an accuracy of above
99%. Furthermore, the number of PMUs used in the data can affect the performance of the
resulting model. The greater the number of PMUs used, the better the performance of the
resulting model.
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3.3.5. Comparison of CNN, convLSTM, and CNN-LSTM Methods

This section analyses and discusses the comparison of several methods, including
CNN, convLSTM, and CNN-LSTM. The results of training, validation, and testing are
shown in Table 10. The computational time required is shown in Table 11. The resulting
normalized confusion matrix is shown in Figure 13.

On the basis of the simulation results, the CNN-LSTM method can solve the problem
of the large time consumption of the CNN method and reduce the computational time of
the convLSTM method when implemented to predict multiple time-series data. Thus, the
CNN-LSTM method has the best performance and the fastest computation time compared
to the CNN and convLSTM methods.

Table 10. Recapitulation of test results for comparing deep learning methods.

Methods
Training Validation Testing

Accuracy (%) Accuracy (%) Accuracy (%) F1-Score

CNN 99.90 99.93 99.92 0.9995
convLSTM 99.47 99.54 99.47 0.9972
CNN-LSTM 99.96 99.91 99.93 0.9996

Table 11. Computational time for comparing deep learning methods.

Method Number of Epoch
Simulation Time (Second)

Total Minimum Maximum Average

CNN 20 80,035 3953 4531 4001.8
convLSTM 20 4595 228 236 229.8
CNN-LSTM 20 3807 189 193 190.4
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4. Discussion

The proposed method has the capability to detect transient stability conditions from
only the voltage angle and magnitude of the respected bus, without considering the network
parameters with high accuracy. The accuracy of the training process is 99.85%, validation is
99.94% and testing is 99.89%. The F1-score from the data testing is 0.999.

VRE penetration effect also affects the accuracy. In this research, the PV was simulated
in the test system. The penetration level of PV caused changes in the number of stable
and unstable conditions under similar simulated conditions. In this research, the tradeoff
between accuracy and the VRE penetration level was not observed. However, the proposed
method can produce 99% accuracy.

Data quality also affects the accuracy of the detection. In the daily power system
operation, noise and data losses often occur, which change the data pattern. Moreover,
there is also a communication delay that occurs in the operation which means that the
pattern cannot be easily recognized. The proposed method can still produce 99% accuracy
until a certain level of noise, delay, and data loss, as shown in Table 12. In this research,
5% noise, 20 nodes of data losses and 500 ms delay were still acceptable.

Table 12. Summary of sensitivity test.

Sensitivity Test
Testing

Accuracy (%) F1-Score

Noise ± 5% 99.97 0.9998
Data Loss: 20 points of 600 points 99.96 0.9998
Delay 500 ms 99.69 0.9983
Number of PMU: 13 buses of 39 buses 99.96 0.99978
PV Penetration 15% 99.93 0.9996
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The proposed method has not only high accuracy, but also faster computational
time compared to CNN and conventional LSTM. The proposed method can speed up the
computational time of CNN and improve the accuracy of LSTM, as shown in Table 11.

5. Conclusions

The proposed method was developed using CNN-LSTM that requires a tradeoff
between high prediction accuracy and faster computation time. The main procedure of the
proposed method is data generation of the simulated power system, model formulation, a
training process to formulate the model, a testing process to validate the model and the
classification of the results.

In systems with high penetration of VRE, the transient stability problem would be
different from the traditional one. High penetration of VRE would increase instability. If all
possible labelling data are available, even in the power system operation, transient stability
detection can still provide high accuracy. Consequently, the training process for higher
VRE penetration should be performed when the VRE generating unit is installed.

The effect of the data input quality on the accuracy of the proposed method should be
elaborated more. The number of PMUs in the power system would affect the quality of the
data input in the proposed method. The optimization of the PMU number in a power system
would be an interesting subject to pursue to improve accuracy. Optimization can also
include the network topology change because the system should fulfil the N-1 contingency
criteria. If the power system needs to be expanded by adding a new generating unit and
transmission line, the model should be adjusted.

Currently, this method works well under the specific test system with the accuracy above
99% for all scenarios. The CNN-LSTM method also required less computation time compared
to CNN and the conventional LSTM with the average computation time 190.4, 4001.8 and
229.8 s, respectively. If this method is applied to real power systems, the implementation
of each step would be challenging to apply. The process should start with identifying the
system, the characteristics of the generating unit, the transmission line characteristics, the
load characteristics, the disturbances record and the intermittent characteristics of VRE. After
that, each step of the proposed method can be built including data pre-processing, setting of
the hyperparameter values, data labelling, training and testing.
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