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Abstract: The integration of large‑scale wind and photovoltaic power intomodern power grids leads
to an imbalance between the supply and demand for resources of the system, where this threatens
the safety and stable operation of the grid. The traditional mode of grid dispatch and the capability
of regulation of conventional thermal power units cannot satisfy the demands of grid connection
for large‑scale renewable energy, where the system requires the compensation and coordinated dis‑
patch of flexible power sources. In light of this problem, this paper establishes amodel to quantify the
uncertainty in the forecasted outputs of wind and photovoltaic power. This is used to develop fore‑
casts of the output of wind and photovoltaic power for several groups of scenarios, and predictions
with the best complementarity are selected as a typical set of scenarios by means of their generation,
reduction, and combination. By taking full advantage of the complementarity in the rates of regu‑
lation of conventional thermal power and concentrating solar power (CSP), a coordinated model of
dispatch for wind power, photovoltaic power, CSP, and thermal power is established for a number
of typical combinations of scenarios. The influence of uncertainty in the outputs of wind and pho‑
tovoltaic power on the dispatch of the power grid is examined, and different modes of dispatch are
formulated through simulations to analyze the superiority of the dispatch strategy proposed in this
paper in terms of abandoned wind quantity, abandoned solar quantity, and the cost of dispatch.

Keywords: wind power; photovoltaic power; concentrating solar power; uncertainty in outputs of
wind and photovoltaic power; martingale model; two‑stage optimization; random scheduling

1. Introduction
Such forms of renewable energy as wind and photovoltaic power have attracted con‑

siderable research and popular interest in recent years due to their environmental friendli‑
ness. With continual developments in renewable energy, the capacity of power generation
through wind and photovoltaic power continues to increase. However, due to uncertain‑
ties in their output, wind power and photovoltaic power generation have led to a series
of problems related to the instability of the power system [1]. Concentrating solar power
(CSP) generation is a new technology of power generation for renewable energy. Because
of their large capacity for thermal energy storage (TES), CSP power stations are dispatch‑
able, which is expected to play an important role in the power system of renewable en‑
ergy [2,3].

Usingwind and photovoltaic power at a large scale has long been the focus of research
in the area, and accurately predicting their outputs is key to attaining this goal. The error
in prediction caused by uncertainty in wind and photovoltaic power introduces difficul‑
ties to power grid dispatch. This uncertainty is quantified bymodeling the relevant factors.
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For this purpose, the most commonly used methods are stochastic programming methods
and robust optimization methods [4]. Reference [5] comprehensively analyzed the tem‑
poral and spatial correlations and proposed a method generating scenarios of multiple
wind farms. A model considering temporal and spatial correlations based on multivariate
normal distribution function and Copula function was established to analyze the tempo‑
ral and spatial correlations of multiple wind farms. According to the correlation analysis
results, the conditional distribution function based on copula theory was combined with
Monte Carlo sampling to generate a large number of wind power scenarios with temporal
and spatial correlations. Reference [6] modeled the uncertainty in wind and photovoltaic
power in typical scenarios of their generation. They used the k‑means clustering algo‑
rithm to reduce the initial set of scenarios to obtain a final, tree‑like set of scenarios. To
quantify the uncertainty in outputs of wind and photovoltaic power, Reference [7] pro‑
posed an initial scenario generation method based on quantile regression theory and the
multi‑variate Gaussian distribution, and developed a method to generate sets of scenarios
of the outputs of a combination of energy sources by using t‑distributed stochastic neigh‑
bor embedding (t‑SNE) dimension reduction clustering technology. Reference [8] used
the Wasserstein distance to generate sets of scenarios when dealing with the uncertainty
of outputs of wind and photovoltaic power. Reference [9] used chance‑constrained pro‑
gramming to enable the spinning reserve to compensate for errors in the forecast of the
output of wind power with a certain probability to alleviate the effect of the randomness
of this output on the system. By focusing on uncertainty in the output of a wind farm,
reference [10] established a random units‑based combination model for wind farms based
on chance‑constrained programming, and transformed it into two layers of problems of
optimization that were separately solved. In the context of modeling the uncertainty of
renewable energy, the above literature has considered only the uncertainty in the output
in a given period but has not analyzed the relationship between the outputs of adjacent
periods. The output of wind farms and photovoltaic power plants located in the same ge‑
ographical area is somewhat correlated due to the influence of meteorological factors [11].
Reference [12] introduced the hybrid copula theory on the basis of a single copula function
to model the joint distribution between wind speeds in multi‑wind fields. Given that it is
difficult to generate multiple scenarios for the outputs of wind farms that are correlated,
reference [13] proposed amethod of scenario generation based on the copula function. Ref‑
erence [14] introduced an empirical copula function to characterize the joint distribution
of the outputs of multiple wind farms and modeled the uncertainty in it. The “ksdensity”
functionwas used to fit the fluctuations inwind power and the inverse transform sampling
method was used to generate a set of scenarios of wind power generation. Scenario anal‑
ysis based on stochastic programming can alleviate the uncertainty in the output of wind
power, but a large amount of calculation is needed to generate a large number of scenarios.
Chance‑constrained programming also relies on a model of the probability of the outputs
of wind and solar power, and thus has the disadvantage of requiring a large amount of cal‑
culation as well. In reference [15], through the joint optimization of power grid unit com‑
bination and technological transformation plan considering transmission and distribution
synergy, the joint optimization model of unit combination and technical transformation
plan of transmission network and distribution network is constructed, respectively. Refer‑
ence [16] considered the uncertainty in the outputs of wind and solar power in a variety of
generation systems for renewable energy and used robust stochastic optimization theory
to convert the constraints on the random variables into constraints that could reflect the
system manager’s attitude toward risks to the system. An optimal stochastic scheduling
model for multi‑source power generation systems with dual robustness coefficients was
then established.

Affected by environmental factors, wind power generation and photovoltaic output
in microgrid system have strong volatility and uncertainty, so on the basis of prediction
and uncertainty analysis of wind and solar output, the scheduling strategy of microgrid
can improve the economy and reliability of system operation, which is of great significance
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for the research of future energy system optimization and dispatch. The above references
have failed to consider the characteristics of evolution of the uncertainty in the outputs of
wind and photovoltaic power over timewhen forecasting them. This uncertainty increases
with the length of the period of forecast. Reference [17] used the martingale model to de‑
scribe the time‑by‑period characteristics of evolution in the uncertainty of hydrological
forecasting, and analyzed the impact of uncertainty in the forecasts on the real‑time oper‑
ation of the reservoir. However, the traditional martingale model is based on the assump‑
tions of unbiasedness, normality, and stability that reduce its accuracy. Reference [18]
proposed an improved general martingale model that jettisons these assumptions but re‑
quires the normalization of non‑normal data, which increases the requisite calculations
and errors. Reference [19] proposed a CUE model based on the copula function that can
describe the evolution of uncertainty in hydrological forecasts over time and simulated a
sequence of such uncertainties by using it. However, these studies have sought to inves‑
tigate only the characteristics of evolution of the uncertainty of hydrological predictions.
Reference [20] proposed a martingale model that captured the characteristics of evolution
of uncertainty in the predicted outputs of wind and solar power and used it to generate
a composite of scenarios involving uncertain loads. Reference [21] used the generalized
martingale model to predict the evolution of uncertainty in the output of wind and pho‑
tovoltaic power systems as well. They added the power outputs of individual systems to
obtain the combined power output of variable renewable energy sources (VREs). This was
then used to establish a stochastic model of compensation of hydropower dispatch.

The above references have established the martingale model of the outputs of wind
and solar power as well as the variance and covariancematrices based on it, and have used
this to simulate the relevant scenarios. However, the random variables generated have not
been sampled and reduced, and the influence of the complementarity of outputs of wind
and solar power on the results of scheduling has not been considered.

This paper is structured as follows: Section 2 studies the typical combined scenario
generation by considering uncertainty in forecasted outputs of wind and photovoltaic
power; Section 3 proposes a two‑stage optimal model of dispatch; Section 4 validates the
analytical results and effectiveness of the simulation results; Section 5 concludes this paper.

2. Generating Combined Scenarios by Considering Uncertainty in Forecasted Outputs
of Wind and Photovoltaic Power
2.1. Derivation of Uncertainty in Predicted Outputs of Wind and Photovoltaic Power

Reference [17] proposed amartingalemodel of forecast evolution (MMFE) to describe
the evolution of uncertainty in demand forecasting in supply chain management. Refer‑
ence [18] described this method in hydrology. In the following, authors apply the martin‑
gale model to describe the evolution process of wind and solar forecasting output uncer‑
tainty over time.

In forecasting the outputs of wind and photovoltaic power, forecasters predict the
outputs at the beginning of each period for a certain foreseeable period based on meteoro‑
logical information, such as the wind speed, temperature, and intensity of solar radiation.
The process of forecasting the outputs of wind and photovoltaic power for a foreseeable
period h is represented in Figure 1. This figure illustrates that the output of wind power
and photovoltaic at time q + 1, q + 2, . . . , q + h can be forecasted by using the data at time
q, and the output of wind power and photovoltaic at time t in the future can be forecasted
by using the data at time t − h, t − h + 1, . . . , t.
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Figure 1. The evolution of the outputs of wind and photovoltaic power over time. 
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Let fq,t be the forecast made at time q for time t(t = q + 1, q + 2, . . . , q + h) , and ft be
the observed value at time t. The forecasting error eq,t estimated at time q is obtained from
the difference between fq,t and ft:

eq,t = fq,t − ft (1)

In light of the forecasting error eq,t, a forecast update is defined as:

uq,t = eq,t − eq−1,t (2)

where uq,t represents the reduction in the forecasting error at time q in the current period
with respect to the error at time q − 1 in the previous period.

Based on the assumption that the forecast of the outputs of wind and photovoltaic
power in the current period is known, we have

ft,t = ft ⇒ et,t = 0 (3)

According to Equations (2) and (3), evolution of uncertainty in the forecast can be
derived as follows:

et−1,t = et,t − ut,t = −ut,t

et−2,t = et−1,t − ut−1,t = −ut,t − ut−1,t

et−3,t = et−2,t − ut−2,t = −ut,t − ut−1,t − ut−2,t

et−4,t = et−3,t − ut−3,t = −ut,t − ut−1,t − ut−2,t − ut−3,t

. . .

et−h,t = −
h
∑

i=1
ut−h+i,t

(4)

Equation (4) represents uncertainty in the forecast of the traditional martingalemodel.
The forecasting error in the calculation and the value of uncertainty in the forecast are
decomposed into the sum of the forecast updates in each period.

In Equation (4), the absolute error in prediction is used to quantify the uncertainty in
it. This has been replaced by the relative error of prediction in the literature to describe
the uncertainty of hydrological prediction and improve its accuracy. We also use the rela‑
tive error in prediction to analyze the uncertainty in the outputs of wind and photovoltaic
power.

We divide both sides of Equations (1) and (2) by ft to obtain the forecasting error and
the forecast update of the outputs of wind and photovoltaic power based on the relative
error:

req,t =
fq,t − ft

ft
=

eq,t

ft
(5)
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ruq,t =
uq,t

ft
=

eq,t − eq−1,t

ft
= req,t − req−1,t (6)

where req,t represents the relative forecasting error in the outputs of wind and photovoltaic
power, and ruq,t represents the forecast update of these outputs.

For the special case where q = t,ret,t is equal to zero, there is no error in the forecast
because the values of wind and photovoltaic power at time t are known.

The improved martingale model of uncertainty in the predicted outputs of wind and
photovoltaic power can be obtained by combining Equations (3)–(6):

ret−1,t = ret,t − rut,t = −rut,t

ret−2,t = ret−1,t − rut−1,t = −rut,t − rut−1,t

ret−3,t = ret−2,t − rut−2,t = −rut,t − rut−1,t − rut−2,t

ret−4,t = ret−3,t − rut−3,t = −rut,t − rut−1,t − rut−2,t − rut−3,t

. . .

rut−h,t = −
h
∑

i=1
rut−h+i,t

(7)

Equation (7) shows that if the value of the forecast update ru is known, the forecasting
error re can be derived. This can be used to obtain the value of the update in forecast in
each period to simulate the uncertainty in the forecast.

2.2. Generation of Combinations of Typical Scenarios
Combinations of typical scenarios of uncertainty in the predicted output of wind and

solar power can be generated based on the improved martingale model. The main steps
are as follows:
(1) The curve of the cumulative probability distribution of the random variables X1, X2,

X3, X4 is used to generate a plurality of improved forecasts of the outputs of wind
and photovoltaic power through Latin hypercube sampling [22].

(2) These improved values are used to calculate the relative error in the predicted outputs
of wind and photovoltaic power according to Equation (7) [23].

(3) The error along with the formula fq,t = ft + eq,t = ft(1+ req,t) is used to generate the
predicted outputs of wind and photovoltaic power to form an initial scenario set.

(4) A typical scenario set of the outputs of wind and photovoltaic power is generated by
the two‑stage scenario reduction method [24].

(5) The Cartesian product is used to varyingly combine the typical scenarios obtained
above [7].

(6) The Spearman correlation coefficient is used to determine the complementarity of
wind and solar power in the combinations of scenarios, and the scenario with the
optimal complementarity is selected.

3. Two‑Stage Optimal Model of Dispatch for a Combination of Wind Power,
Photovoltaic Power, CSP, and Thermal Power Generation under Multiple Scenarios

The two‑stage optimal scheduling model of wind power, photovoltaic power, CSP,
and thermal power generation is shown as Figure 2.
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3.1. First Stage of Optimization Model
Under a typical combination of scenarios of the forecasted outputs of wind and pho‑

tovoltaic power, a “peak clipping” model of wind power, photovoltaic power, and CSP is
established in the first stage of optimization. Its objectives are tomaximize the daily power
generation and minimize the difference between the peak and valley of the residual load.
Themodel is solved by a solver to provide the residual loads in each period under different
scenarios for the second stage of optimization. The objective function is as follows:

Objective function 1: Maximizing daily power generation:

max f s
1 =

T

∑
t=1

(Ps
w,t + Ps

pv,t + Ps
csp,t)∆t (8)

Objective function 2: Minimizing the peak‑to‑valley difference of the residual load: min f s
2 =

{
max
t∈T

(
Ps

l,t

)
−min

t∈T

(
Ps

l,t

)}
(

Ps
l,t

)
= PL,t − Ps

w,t + Ps
pv,t + Ps

csp,t)
(9)

In Equation (9), f s
1 , f s

2 respectively represent the daily power generation and the dif‑
ference between the peak and valley of the residual load of the system for the combined
generation of wind power, photovoltaic power, and CSP in different combinations of typ‑
ical scenarios s(s = 1, 2, 3, 4), T is the dispatch period, here set to 24, ∆t is the interval, set
to one, Ps

l,t is the remaining load value in scenario s, and Ps
w,t, Ps

pv,t, Ps
csp,t respectively rep‑

resent the optimal outputs of wind power, photovoltaic power, and CSP at time t under
scenario s.

The constraints are as follows:
(1) Constraint on wind power output:

0 ≤ Ps
w,t ≤ P′

s,w,t (10)

(2) Constraint on photovoltaic power output:

0 ≤ Ps
pv,t ≤ P′

s,pv,t (11)

In the above, P′
s,w,t, P′

s,pv,t are the predicted outputs of wind and photovoltaic power
under scenarios s at time t, respectively.
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(3) Constraint on instantaneous thermal power balance of CSP station:

Pt
SF,solar − Pt

CSP,curt = (Pt
TES,cha/ηTES,cha − Pt

TES,disηTES,dis) + Pt
PB,in (12)

In the above, Pt
SF,solar is the thermal power collected by the heat collector, Pt

CSP,curt is
the power needed for light curtailment, Pt

TES,cha, Pt
TES,dis are, respectively, the heat storage

and heat release of the heat storage system, ηTES,cha, ηTES,dis are, respectively, the efficien‑
cies of heat storage and heat release of the thermal storage system, and Pt

PB,in is the thermal
power entering the power generation system.
(4) The equation of the heat energy balance of the heat collection system is:{

Pt
SF,solar = ηSFSSFRt

Pt
CSP,SH = Pt

SF,solar − Pt
CSP,curt (13)

where ηSF is the efficiency of photothermic, SSF is the area of the mirror field, and Rt
is the hourly direct solar radiation index (DNI).

(5) The constraint on the functional relationship between the input thermal power and
the output electric power of the power generation system is as follows:

Pt
PB,in ≈ f (PCSP,t) = PCSP,t/ηPB + Ut

PBEPB,SU (14)

In the formula, Pt
CSP is the output of the electric power of the power generation sys‑

tem, ηPB is its efficiency of power generation, Ut
PB is the state of the CSP station, and

EPB,SU is the startup energy required for the CSP station to start generating electricity.
(6) Constraint on the heat energy balance of the heat storage system:

Et
TES = (1 − γTES)Et−1

TES + (Pt
TES,cha − Pt

TES,dis)∆t (15)

In the formula, Et
TES is the heat storage capacity of the heat storage system at time t,

Et−1
TES is the heat storage capacity of the heat storage system at time t − 1, and γTES is

the coefficient of heat dissipation.
(7) Another constraint on the heat storage capacity of the heat storage system:

ETES
min ≤ ETES

t ≤ ETES
max (16)

In the formula, ETES
max , ETES

min are the maximum and minimum heat storage capacities of
the heat storage system, respectively.
(8) The following are the constraints on the power storage and release of heat in the ther‑

mal storage system of the CSP station, where the storage and release of heat cannot
be performed at the same time, and the state of heat release is restricted only when
the unit is started: 

0 ≤ PTES,cha
t ≤ ITES,cha

t PTES,cha
max

0 ≤ PTES,dis
t ≤ ITES,dis

t PTES,dis
max

ITES,cha
t + ITES,dis

t ≤ 1, xPB
t ≥ ITES,dis

t

(17)

where PTES,cha
max , PTES,dis

max are the maximum heat storage and heat release power of the
heat storage system, respectively. ITES,cha

t , ITES,dis
t are the binary variables of heat

storage and heat release, respectively, “1” means that the system is storing heat and
“0” means that it is releasing heat, and xPB

t is the variable of the working state of the
CSP station, where “1” means that it has been turned on.

(9) Constraints on the output of the CSP station:

xPB
t PPB

min ≤ Ps
csp,t ≤ xPB

t PPB
max (18)
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where PPB
max, PPB

min are the maximum and minimum outputs of the CSP, respectively.

(10) Constraints on the minimum start and stop times of the CSP unit:
(xPB

t − xPB
t−1)T

on,csp
min +

t−1
∑

τ=t−Ton,csp
min

xPB
τ ≥ 0

(xPB
t−1 − xPB

t )To f f ,csp
min +

t−1
∑

τ=t−To f f ,csp
min

(1 − xPB
τ ) ≥ 0

(19)

where Ton,csp
min , To f f ,csp

min are the minimum start and stop times of the CSP unit, respec‑
tively.

(11) Constraints on the relationship between the variables of the state of operation of the
CSP station, and those of the start and stop times are as follows:{

xPB
t − xPB

t−1 ≤ uPB
t

xPB
t−1 − xPB

t ≤ vPB
t

(20)

where uPB
t , vPB

t are the start and stop variables of the CSP unit, respectively, and “1”
indicates that the unit is in the start or stop state.

(12) Constraints on the ramp rate of the CSP unit:{
Ps

csp,t − Ps
csp,t−1 + xPB

t−1(PPB
min − PPB

RU) + xPB
t (PPB

max − PPB
min) ≤ PPB

max
Ps

csp,t−1 − Ps
csp,t + xPB

t (PPB
min − PPB

RD) + xPB
t−1(PPB

max − PPB
min) ≤ PPB

max
(21)

where PPB
RU , PPB

RD are the upward and downward ramp rates of the solar thermal unit,
respectively.

3.2. Second Stage of the Optimization Model
The conventional thermal power unit was used to bear the remaining load in the sec‑

ond stage of optimization. The objective was to minimize the operating cost of the ther‑
mal power unit, and an economical dispatch model was established for this purpose. The
model was also solved by a solver, and the dispatched output of each thermal power unit
in different typical combinations of scenarios was obtained. The objective function is as
follows:

Objective function 3: Minimizing the operating cost of thermal power unit:
min f s

3 =
T
∑

t=1

NG
∑

i=1
[us

i,tFi(Ps
G,i,t) + us

i,t(1 − us
i,t−1)Si]

Fi(Ps
G,i,t) = ai

)
Ps

G,i,t

)2
+ biPs

G,i,t + ci

(22)

where f s
3 represents the operating costs of the thermal power unit in different typical sce‑

narios s, Ps
G,i,t is the dispatched output of the first thermal power unit in s, and us

i,t is the
state of the thermal power unit in s, where “1” means start‑up and “0” means shutdown.
Si is the cost of starting‑up the first thermal power unit, ai, bi, ci are the coefficients of its
fuel cost, and NG is the number of thermal power units.

The constraints are as follows:
(13) Constraints on the power balance of the system:

NG

∑
i=1

Ps
G,i,t = Ps

l,t (23)
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(14) Constraints on the output of the thermal power units:

us
i,tP

min
G,i ≤ Ps

G,i,t ≤ us
i,tP

max
G,i (24)

where Pmin
G,i , Pmax

G,i are the minimum and maximum outputs of each thermal power
unit, respectively.

(15) Constraints on climbing on thermal power units:

− us
i,tRid ≤ Ps

G,i,t − Ps
G,i,t−1 ≤ us

i,tRiu (25)

where Rid, Riu are the downward and upward climbing rates of each thermal power
unit, respectively.

(16) Constraints on the minimum starting and stopping times of thermal power units:{
(Tt−1

i,on − Tmin
i,on )(Ui,t−1 − Ui,t) ≥ 0

(Tt−1
i,o f f − Tmin

i,o f f )(Ui,t − Ui,t−1) ≥ 0
(26)

where Tt
i,on is the continuous start‑up time of the first thermal power unit, Tt

i,o f f is
its continuous shutdown time, Tmin

i,on is its minimum start‑up time, and Tmin
i,o f f is the

minimum shutdown time of the first thermal power unit.

4. Example for Analysis
4.1. Basic Data and Parameters

We used the IEEE 30 bus system as an example to analyze the proposed system. The
system considered here contained four conventional thermal power units, a wind farm
with an installed capacity of 90MW, a photovoltaic power stationwith an installed capacity
of 50 MW, and a CSP station with an installed power of 50 MW. The wiring diagram of the
system is shown in Figure 3. The parameters of the four thermal power units are shown
in Table 1 and the operating parameters of the CSP station are shown in Table 2. Because
the forecasted error in load was smaller than those in the wind and photovoltaic power,
the uncertainty of load was not considered. The typical daily forecasted load and DNI are
shown in Figure 4.
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Figure 3. Wiring diagram of IEEE 30 bus system. 

Table 1. Parameters of the thermal power units. 

Unit 
Output 
Upper 

Limit/MW 

Output 
Lower 

Limit/MW 

Unit Ramp 
Rate/MW·h−1 

Efficiency of Fuel Cost 
ai/

￥·MW−2 
bi/

￥·MW−1 
ci/￥ 
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Table 1. Parameters of the thermal power units.

Unit Output Upper
Limit/MW

Output Lower
Limit/MW

Unit Ramp
Rate/MW·h−1

Efficiency of Fuel Cost

ai/￥·MW−2 bi/￥·MW−1 ci/￥

1 40 10 30 0.3 0.27 13.7
2 100 25 30 1.4 0.26 14.5
3 50 25 40 6.1 0.28 6.35
4 100 20 40 0.8 0.27 14.1

Table 2. Operating parameters of optimal thermal power station.

Operational Parameters of CSP Station Value

Rated output power of CSP station/MW 50
Minimum output power of CSP station/MW 10

Climbing rate of CSP station/MW/h 40
Rate of heat release loss of TES/% 0.57

Thermal power conversion efficiency of CSP station/% 0.45
Maximum heat storage capacity/MWh 1000

Initial value of heat storage capacity of TES/MWh 400
Lower limit of TES/MWh 100
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Figure 4. Typical forecasted daily load and DNI.

4.2. Analysis of Results of Example
4.2.1. Generation of Typical Combined Scenarios

Awindfarmand aphotovoltaicpowerstation in theDunhuang area ofGansu Province
were selected as research objects. Weuseddata on the predicted and actual outputs ofwind
and photovoltaic power on a typical day that were collected every hour. Through a statisti‑
cal analysis of predictions of the outputs of wind and photovoltaic power, 1920 improved
values were randomly generated by using Latin hypercube sampling. The error in these
predictions was obtained by combining them with Equation (7). This led to 100 scenarios
of predictions of the outputs of wind and photovoltaic power. We then used the two‑stage
scenario reduction method to obtain four groups of scenarios, as shown in Figure 5.
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Figure 5. Scenario set of forecasted outputs of wind and photovoltaic power.

The Cartesian product was used to combine typical scenarios of the outputs of fore‑
casts of wind and photovoltaic power to obtain 16 combinations of scenarios [7]. The
Spearman correlation coefficient was used to analyze the complementarity among the four
typical scenarios of each group. The correlation coefficient of the outputs of wind and pho‑
tovoltaic power under different scenarios were shown in Table 3.

Table 3. The correlation coefficient of the outputs of wind and photovoltaic power under different
scenarios.

PV1 PV2 PV3 PV4

WF1 −0.9409 −0.9427 −0.9495 −0.9353
WF2 −0.9428 −0.9431 −0.9491 −0.9354
WF3 −0.9531 −0.9502 −0.9643 −0.9441
WF4 −0.9451 −0.9475 −0.9522 −0.9416

From Table 3, we can see the complementarity of wind and photovoltaic power is dif‑
ferent in different combined scenarios. Four combined scenarios with the strongest com‑
plementarity were then selected. They respectively corresponded to the typical combined
scenarios 1, 2, 3, and 4.

4.2.2. Analysis of Optimal Outputs of Wind Power, Photovoltaic Power, and CSP under
Different Typical Combinations of Scenarios in the First Stage

Based on the different outputs of wind energy and photovoltaic power generation
prediction under these typical scenario combinations, Gurobi solver is used to solve the
joint “peak shearing” model of wind power, photovoltaic, and CSP under different typical
scenario combinations. The optimal outputs of wind power, photovoltaic power, and CSP
under different typical combinations of scenarios are shown in Figure 6.
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Figure 6. Optimal outputs of wind power, photovoltaic power, and CSP under four typical combi‑
nations of scenarios.

Figure 6 showstheoptimaloutputs of the dispatch ofwind power, photovoltaic power,
and CSP in each period under each typical combination of scenarios. It shows that the
photovoltaic power station did not generate electricity when the light intensity was insuf‑
ficiently strong or when there was no light. Owing to the highwind speed at night, the out‑
put of the wind farm was higher than that in daytime. The CSP station had a heat storage
system that allowed it to transfer power generation to the periods of sunrise and sunset.
Therefore, at night, when the output of wind power generation fluctuated significantly,
the CSP station could generate electricity through the heat storage system to alleviate this
situation. In the daytime, especially when the light intensity was sufficiently strong—for
example, from 11:00 to 16:00—the output of wind power was small while those of the pho‑
tovoltaic power station and CSP station were large such that they could compensate for
the shortage of the generated wind power.

4.2.3. Analysis of the Optimal Outputs under Different Typical Combinations of
Scenarios in the Second Stage of Optimization

Calculations from the first stage of scheduling of themodelwere used to obtain the val‑
ues of the remaining load in each interval under different typical combinations of scenarios.
The residual load values of each time period under different typical scenario combinations
are introduced into the second stage, and the economic dispatch model of thermal power
in the second stage is solved by Gurobi to obtain the optimal output of each thermal power
unit in each time period under each typical scenario combination, as shown in Figure 7.
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Figure 7. Optimal output of each thermal power unit under each typical combination of scenarios.

Figure 7 shows that under different typical combinations of scenarios, the output of
each thermal power unit exhibited the same trend. The higher the cost of thermal power
unit 1was, the smaller was the output of the unit, while the lower the cost of thermal power
unit 4 was, the larger was the output. During the period of peak load from 10:00 to 14:00,
the thermal power unit needed to adjust the output to compensate for the shortage of wind
power because this was small while the photovoltaic power and CSP were large. During
the period of a valley in the load from 0:00 to 6:00, the output wind power was large and
the output of photovoltaic power was zero. At this time, the latter was compensated for by
CSP generation while the output due to thermal power was small.

4.2.4. Analysis of Influence of Complementarity of Wind and Photovoltaic Power on
Results of Dispatch

Wind and solar energy have naturally complementary characteristics. Due to the
changes in its speed, the energy generated from wind power is the largest at night and
the smallest in the daytime. Photovoltaic power can be used to generate electricity only in
the daytime. Moreover, the greater the intensity of solar radiation, the greater the output
of photovoltaic power. The optimal combination of their forecasted outputs was selected
and used in the scheduling model. The impact of the complementarity of the outputs of
wind and solar power on the results of scheduling was then analyzed through optimiza‑
tion calculations. Table 4 shows a comparison of the parameters of optimization under
different typical combinations of scenarios.
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Table 4. Comparison of optimization parameters in different typical scenarios.

Typical
Combination of

Scenarios

Residual Load
Peak–valley

Difference/MW

Abandoned
Wind

Quantity/MW

Abandoned
Photovoltaic
Quantity/MW

Thermal Power
Operation
Cost/yuan

1 132.964 78.284 36.877 103,543.898
2 136.021 81.393 38.383 104,352.931
3 138.008 81.924 38.919 184,698.118
4 138.461 96.119 40.194 184,779.507

Table 4 shows that among four typical combinations of scenarios, the peak–valley
difference in the residual load was reduced by 5.497 MW in comparison with the typical
combination of scenario 4, with weaker complementarity in other typical combination of
scenarios, because the complementarity of the outputs of wind and photovoltaic power in
the typical combination in scenarios 1 was stronger than those in the other scenarios. The
volume of wind curtailment and the quantity of its curtailment in the typical combination
of scenarios 1 were 78.284 MW and 36.877 MW, respectively, where the volume and quan‑
tity of wind curtailment were reduced by 18.56% and 8.25%, respectively. By complement‑
ing the outputs of wind and photovoltaic powers in different periods, the fluctuations in
them were reduced such that the curtailing of the volume of wind was reduced. The cost
of operation of thermal power in the typical combination of scenarios 1 was reduced by
43.96% compared with that in the typical combination of scenarios 4 because the outputs
of wind and photovoltaic power of the former had the highest complementarity. This led
in turn to improved regulation of the photo‑thermal power station and increased the on‑
grid electricity due to wind and photovoltaic powers. When the wind and photovoltaic
powers were used to satisfy the peak load, only thermal power was used to meet the base
load to reduce the power generation of the thermal power units. Their costs of operation
and power generation were thus further reduced.

4.2.5. Comparative Analysis of Different Scheduling Modes
To verify the effectiveness of the scheduling strategy proposed in this paper, we con‑

ducted a comparative analysis of different scheduling modes:
Dispatching mode 1: This involved an integrated, multi‑source method of grid con‑

nection that dispatched wind power, photovoltaic power, CSP, and thermal power. Only
wind, photovoltaic, and thermal power were assumed to participate in grid dispatching.
Therefore, the set of dispatchingmodes 1 did not consider the uncertainty of the outputs of
wind and solar power and assumed the natural output of the solar thermal power station.

Dispatching mode 2: This dispatching strategy optimized the output of each power
source in stages, but there was no grid‑connected CSP station. This was regulated by a
conventional thermal power station to alleviate the uncertainty in the outputs of wind and
photovoltaic power. This mode also did not consider the uncertainty in these outputs
when establishing the model.

Dispatching mode 3: Proposed model of scheduling
The optimized cost of operation of thermal power, the penalty cost of curtailment of

wind and solar power, the rates of such curtailments, and the cost of dispatching under
each dispatching mode were compared and analyzed. Table 5 shows a comparison of the
parameters of optimization under different scheduling modes.
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Table 5. Comparison of the optimization parameters under different scheduling modes.

Mode
Thermal Power
Operation
Cost/yuan

Abandoned
Wind and Light

Penalty
Cost/yuan

Total Wind
Curtailment and

Light Abandonment
Rate/%

Scheduling
Cost/yuan

Mode 1 218,840.185 12,000 19.971 230,840.185
Mode 2 238,231.046 16,996.924 25.849 255,227.9703
Mode 3 103,543.898 11,516.142 17.682 115,060.040

The comparison in Table 5 shows that because dispatching modes 1 and 2 both con‑
sidered the same scenario, the deterministic dispatching model was established for them,
while dispatching mode 3 was a stochastic dispatching model established in different sce‑
narios. Although the CSP of dispatching mode 1 did not participate in power grid dis‑
patching, it was a natural output. However, compared with the second dispatch, there
was no CSP output, and only thermal power units were used to smooth the uncertainty of
the outputs of wind and solar power. This increased the difficulty of operation of the ther‑
mal power unit. These units need to start and stop frequently to adjust such outputs. The
increase in the output of the thermal power unit led to an increase in the cost of coal con‑
sumed, which in turn increased the operational cost of thermal power and the cost of dis‑
patch of the system. Both dispatching modes 1 and 3 used photo‑thermal grid‑connected
power generation, but compared with dispatching mode 1, which considered only the nat‑
ural output of photo‑thermal energy, dispatching mode 3 considered the uncertainty in
the predicted outputs of wind and solar power in addition to adopting the complementary
regulation of thermal and photo‑thermal powers. Comparedwith dispatchingmode 1, the
thermal power operation cost, wind and light abandonment penalty cost, and dispatching
cost of dispatching mode 3 are reduced by 52.685%, 4.032%, and 50.156%, respectively. In
terms of the total wind and light abandonment rate, the dispatching mode 3 is 2.289% and
8.167% lower than that of the dispatching mode 1 and 2, respectively.

In order to verify the effectiveness of the proposedmethod in this paper, thewind and
photovoltaic curtailment power in the traditional scheduling and the two‑phase schedul‑
ing are shown as Figure 8.

Figure 8 is the wind and photovoltaic abandonment. (a) is the amount of wind and
light curtailment under the traditional scheduling. Thewind curtailment is mainly concen‑
trated at 03:00 to 12:00, and the light curtailment is concentrated in 08:00 to 13:00 and 15:00.
Under this traditional model, the amount of wind and light curtailment is more; (b) is for
the two‑stage scheduling, the amount of wind and light abandonment is mainly concen‑
trated in 04:00 to 07:00 and 11:00, and the curtailment of light is concentrated in 08:00 to
10:00, the amount of curtailment of wind and light under this two‑stage model is signifi‑
cantly reduced, and there is no curtailment of wind and light at other times; (c) is for the
comparison of the amount of wind and light curtailment under the traditional scheduling
and the two‑stage scheduling. It can be seen that the model proposed in this paper sig‑
nificantly improves the problem of excessive wind and light curtailment under traditional
scheduling, provides a basis for joint optimization scheduling, and has certain practical
significance.
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4.2.6. Comparison between Relative Error and Absolute Error
Figure 9 shows the comparison of relative error and absolute error, and the two errors

reached the maximum at 11:00, 30.12 MW and 7.51%, respectively. The relative error is
mainly below 8%, which further illustrates the superiority of the proposed model.
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CSP plants participate in is proposed. Conclusions are as follows:
(1) Aiming at the uncertainty problem of wind and solar prediction output, on the ba‑

sis of the traditional martingale model, this paper proposes an improved martingale
model to analyze the uncertainty of thewind and solar prediction output by replacing
the absolute error value in the traditional martingale model with the relative error of
prediction.

(2) Through Latin hypercube sampling and two‑stage scene reduction technology, a typ‑
ical wind and solar prediction output scenario is generated. Then, the Cartesian prod‑
uct idea is used to combine the typical scene of the generated wind and solar predic‑
tion output. The Spearman correlation coefficient is used as an indicator to quanti‑
tatively analyze the complementarity of the wind and solar prediction output in the
combination scenario. The combination of the wind and solar prediction output with
the best complementarity is selected to form different typical combination scenarios.
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