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Abstract: The equilibrium concentration space of the Ag–In–Te system in the part AgInTe2–Te–In2Te3 was
studied through the modified solid-state electromotive force (EMF) method by dividing
In2Te3–In2Te5–Ag3In97Te147 (I), In2Te5–Te–Ag3In97Te147 (II), Ag3In97Te147–Te–AgIn5Te8 (III),
AgIn5Te8–Te–AgIn3Te5 (IV), and AgIn3Te5–Te–AgInTe2 (V), into separate phase regions at T ≤ 500 K.
The formation of a thermodynamically stable combination of the binary and ternary phases in the (I)–
(V) phase regions from a metastable phase mixture of substances was carried out at T ≤ 500 K in the
R(Ag+) part of the positive electrode (PE) of the galvanic cells (GCs) of the structure:
(−) C |·| Ag |·| SE |·| R(Ag+) |·| PE |·| C (+), where C is the graphite (inert electrode), SE
is the solid-state electrolyte (Ag3GeS3Br glass), and Ag is the left (negative) electrode. The Ag+

ions in the R(Ag+) region functioned as small nucleation centers for the formation of the stable
phases. The spatial position of the (I)–(V) phase regions in the concentration space of the Ag–In–Te
system relative to the position of silver was used to express the overall potential-forming reac-
tions with the participation of the substances Ag, Te, In2Te5, Ag3In97Te147, AgIn5Te8, AgIn3Te5,
and AgInTe2. The subsequent EMF measurements were carried out by applying the same GCs.
The temperature dependences of the EMF of GCs with PE of the (I)–(V) phase regions were here
used to determine, for the first time, the values of standard thermodynamic functions of the bi-
nary and ternary compounds. The determined values of the Gibbs energies of the formation
of compounds are equal: G#

In2Te5
= (182.7 ± 1.9) kJ·mol−1, G#

AgInTe2
= (115.0 ± 3.1) kJ·mol−1,

G#
AgIn3Te5

= (301.5 ± 6.5) kJ·mol−1, G#
AgIn5Te8

= (487.6 ± 11.3) kJ·mol−1, and G#
Ag3In97Te147

=

(8594 ± 189) kJ·mol−1 The correctness of the division of the equilibrium phase space of the Ag–In–Te
system in the part AgInTe2–Te–In2Te3 involving the AgInTe2, AgIn3Te5, AgIn5Te8, and Ag3In97Te147

compounds was confirmed by the agreement of the calculated and literature-based thermodynamic
data for In2Te5 compound. Compositions of pairs of the ternary compounds for their subsequent
practical application were proposed.

Keywords: phase equilibria; thermodynamic properties; EMF method; Gibbs free energy; Ag-based
compounds; thermoelectric materials
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1. Introduction

The move towards a decarbonized energy future demands the discovery of new energy
materials with unique properties, such as wider chemical and thermal stability ranges.
Recent attempts in the search for advanced energy materials have shown progress in
identifying promising materials for high-performance energy applications [1,2]. The search
for new energy materials involves the determination of phase transformations, melting,
phase equilibria with coexisting phases, and other application-based thermodynamic
properties [3]. Recently, a novel approach for discovering new energy materials, called
phase boundary mapping, has also been applied [4]. The latest thermal performance
investigation of nanofluids for thermal management applications has also shown promising
results for medium-temperature waste-heat recovery applications [5]. The availability of
these data helps to optimize materials processing and the selection of high-performance
and cost-effective materials [6]. The roles of materials design, experimental techniques, and
computational tools in the discovery of new inorganic materials with unique properties are
illustrated in Figure 1 [7].
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Figure 1. A diagram showing the relationship between materials design, experimentation, and
modeling in a framework for the discovery of new inorganic materials.

The semiconductor compounds of the systems A I–B III–C VI (A I–Ag, Cu; B III–In, Al,
Ga; C VI–Te, Se, S) with the chalcopyrite A IB IIIC VI

2 and defect-containing chalcopyrite
A IB III

2n+1C VI
3n+2 (n = 1, 2) crystal structures are considered to be promising materials

for various practical applications in non-linear optical devices, power generation, and
converters of light and waste heat energy into electricity at moderate temperatures [8–11].
For example, the thermoelectric (TE) process, the conversion of waste heat energy into
electricity by exploiting the temperature gradient, produces clean energy and reduces fossil
fuel consumption [12–14]. Some, TE materials, such as these Ag–Se–Te-based materials,
have the best TE performance, even at low temperatures [3].

A TE system is considered to be one of the preferred clean energy techniques because
of its qualities, such as being small in size, having no moving parts, and having temperature
control capacities [15]. TE technology provides the possibility to overcome the ever-growing
energy demand and environmental crisis [16].
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One of the most effective ways of using a temperature gradient for TE generation is to
assemble numerous pairs of p/n elements made in the form of contact of two compounds
from the same family. For this purpose, Fujii et al. [17] investigated and compared the electri-
cal properties and electronic structure of the AgInTe2 and AgIn5Te8 compounds separated in
the T–x space of the Ag2Te–In2Te3 cross-section at T < 680 K by a two-phase region [18–21].
Calculations of the electronic structure by applying Korringa–Kohn–Rostoker–Green’s
method showed that these compounds have valence bands of the same shape and conduc-
tion bands of different shapes. It has been noted that the defect-containing chalcopyrite
AgIn5Te8 can be a functioning n-type TE material due to its band structure [17].

The choice of the p-AgInTe2 and n-AgIn5Te8 compounds for the creation of numerous
pairs of the p/n components to obtain the high voltage may not be realized in practice due to
thermodynamic reasons. The reason for this may be the intermediate compound AgIn3Te5,
which is predicted for the equilibrium T–x space of the Ag2Te–In2Te3 cross-section at
moderate temperatures [22,23]. The lack of information about the AgIn3Te5 compound
in [18–21] is probably related to the metastable state (for kinetic reasons) of the mixture
of the AgInTe2 and AgIn5Te8 compounds below 680 K. The possibility of overcoming
kinetic obstacles to the formation of a thermodynamically stable set of chalcogenide and
chalcohalide phases from a metastable phase mixture of compounds in the galvanic cells
(GCs) with the participation of the Ag+ ions was reported in [24–27]. Nevertheless, there
is a lack of information on the thermal stabilities and thermodynamic properties of the
ternary compounds in the Ag–In–Te system.

The purpose of this work was to establish the phase composition of the equilibrium
T–x space of the Ag–In–Te system in the AgInTe2–Te–In2Te3 phase region below 500 K and
to determine the standard thermodynamic quantities of the compounds. The established
thermodynamic properties of the equilibrium phases in the Ag–In–Te system have a great
fundamental and practical interest in materials science. For example, the obtained results
can be applied for the scientifically based strategy of selected pairs of the p/n elements of
the Ag–In–Te system for the TE applications.

2. Materials and Methods

The high-purity substances Ag, In, and Te (>99.99 wt.%, Alfa Aesar, Karlsruhe, Ger-
many) were used for the synthesis of the binary and ternary compounds. The appropriately
weighed and mixed pure substances were melted in an inert atmosphere. Melts of the
mixtures were homogenized for 20 min, followed by cooling to room temperature at a rate
of 5 K·min−1. Polycrystalline powder samples from the crystallized melt were crushed
to a particle size of ~5 µm and analyzed with the XRD technique before the preparation
of the positive electrodes of the GCs. A diffractometer STOE STADI P, equipped with a
linear position-sensitive detector PSD in a geometry of Guinier (transmission mode, CuKα1
radiation, a bent Ge(111) monochromator, and a scan mode of 2θ/ω), was applied for the
phase composition characterization of the samples. The following program modules, STOE
WinXPOW [28], PowderCell [29], and FullProf [30], as well as databases [31,32], were used
for the X-ray powder diffraction (XRPD) analysis.

Synthesis of the thermodynamically stable set of phases below 500 K from the metastable
mixtures of silver, tellurium, and multicomponent compounds, and the subsequent electro-
motive force (EMF, E) measurements were performed with GCs of type (A):
(−) C |·| Ag |·| SE |·| R(Ag+) |·| PE |·| C (+), where C is the graphite (inert elec-
trode), SE is the solid-state electrolyte (Ag3GeS3Br glass [33]), Ag is the left (negative)
electrode, R(Ag+) is the buffer region of PE that contacts with the SE, and PE is the right
(positive) electrode. The ratios of the initial components of the PE of GCs were determined
from the potential-forming reactions in the phase region of the respective reactions. The
components of the GCs were pressed through a 2 mm diameter hole, at 108 Pa, which was
arranged in a fluoroplastic matrix, up to a density of ρ = (0.93 ± 0.02)·ρ0, where ρ0 is the
density of the cast samples determined experimentally [34,35]. The process of forming
the thermodynamically stable set of phases from the metastable phase mixture of finely
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dispersed substances was conducted in the R(Ag+) region. The Ag+ ions served as the
small nucleation centers of formation of the stable phases [25–27]. After completion of the
synthesis process, the GCs (A) were used for E vs. T measurements.

The experiments were conducted in a resistance furnace oriented horizontally, which
is similar to those described in our previous work [36]. A flow of (10–5 m3·min–1) highly pu-
rified (99.99 vol.%) Ar (g) at P = 1.2·105 Pa was utilized as a protective atmosphere, flowing
from the left to the right electrodes of GCs. The uncertainty for the temperature was ± 0.5 K.
The EMF values of the cells were measured using the high-resistance (input impedance of
more than 1012 Ω) Picotest M3500A universal digital multimeter. The equilibrium in GCs
at each temperature was attained in <2 h. At equilibrium, the EMF records were stable,
with negligible variations not exceeding ±0.2 mV [37]. The EMF vs. T dependences of GCs
were analyzed by the methodology described in [38–40].

3. Results and Discussion

The phase equilibria of the Ag–In–Te system in the part AgInTe2–Te–In2Te3 are shown
in Figure 2.
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Figure 2. Division of the concentration space in the Ag–In–Te system, in the part AgInTe2–Te–In2Te3,
below 500 K, according to data of [18–20] (left) and the present study (right). Red dots indicate EMF
values (mV) of the GCs and compositions of the positive electrodes at 460 K.

The presence of five phase regions in this area was established using the EMF method.
These five phase regions are: In2Te3–In2Te5–Ag3In97Te147 (I), In2Te5–Te–Ag3In97Te147 (II),
Ag3In97Te147–Te–AgIn5Te8 (III), AgIn5Te8–Te–AgIn3Te5 (IV), and AgIn3Te5–Te–AgInTe2
(V). The following principles confirmed the validity of the presented division of the concen-
tration space:

1. the GCs with PE of the mentioned phase regions are characterized by different EMF
values at the same temperature, Figure 2 (right);

2. as the phase region approaches the position of silver composition, the EMF values of
cells decrease [41]; and

3. subsequent determination of thermodynamic data of the In2Te5 compound.

Following Figure 2, the phase regions (I)–(V) position relative to silver can be applied
to determine the thermodynamic properties of the constituent compounds by the EMF
method [42–44]. The formation reaction of the compound Ag3In97Te147 from pure element
Ag and binary compounds In2Te3 and In2Te5 in the phase region (I) can be expressed as:

12Ag = 12Ag + + 12e − - left electrode,

12Ag + + 12e − + 191In2Te3 + 3In2Te5 = 4Ag3In97Te147 − right electrode,

12Ag + 191In2Te3 + 3In2Te5 = 4Ag3In97Te147 - overall cell reaction. (R1)
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The overall potential-forming cell reactions in the PE of GCs for the phase regions
(II)–(V) can be written as:

12Ag + 194In2Te5 = 4Ag3In97Te147 + 382Te, (R2)

82Ag + 5Ag3In97Te147 + 41Te = 97AgIn5Te8, (R3)

2Ag + 3AgIn5Te8 + Te = 5AgIn3Te5, (R4)

2Ag + AgIn3Te5 + Te = 3AgInTe2. (R5)

Based on the reactions (R1)–(R5), compositions of powder mixtures of silver, tellurium
along with binary and ternary compounds in the PE of GCs of the phase regions (I)–(V)
were determined.

Part of the cooled melts of the compounds specified in reactions (R1)–(R5) is metastable.
According to the X-ray diffraction results (Figure 3), the cooled melt of the formula compo-
sition Ag3In97Te147 consists of characteristic peaks for the AgxIn0.67Te (space group F-43m)
and InTe (space group I4/mcm) phases. The diffraction pattern (Figure 4) of an aliquot of the
as-synthesized compound AgIn5Te8 mainly identifies AgIn5Te8 as the primary phase and
In2Te5 as a minor impurity. Solid-state vacuum annealing at 600 K for homogenization did
not modify the phase composition of the specified cooled melts. Samples of the formula
compositions In2Te3, In2Te5, and AgInTe2 were crystallized as single-phase compounds.
The process of forming the thermodynamically stable set of phases from the metastable
mixture of components in the PE of GCs for the participation of Ag+ ions ended within 48
h at 500 K. The criterion for phase equilibria attainment in the PE’s R(Ag+) region is the
reproducibility of the E vs. T dependencies of GCs during the thermal cycles.
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Figure 4. XRPD pattern of the sample with the nominal composition AgIn5Te8. Compositions of the
sample and identified phase (with space group indicated) are shown in the upper-right corner.

The measured E vs. T values are compiled in Table 1 and plotted in Figure 5.

Table 1. A summary of the measured EMF values and temperatures of the GCs in different phase
regions of the Ag–In–Te system.

T/K

Phase Region

(I) (II) (III) (IV) (V)

E/mV E/mV E/mV E/mV E/mV

420.3 335.1 330.3 329.0 255.6 245.2
425.3 335.8 330.9 329.4 256.6 246.0
430.3 336.5 331.5 329.8 257.5 246.7
435.2 337.1 332.1 330.2 258.5 247.5
440.2 337.8 332.8 330.6 259.4 248.3
445.2 338.4 333.2 331.1 260.4 249.1
450.1 339.1 333.9 331.6 261.4 249.9
455.1 339.7 334.5 331.9 262.4 250.7
460.0 340.4 335.2 332.3 263.3 251.5
465.2 341.0 335.6 332.8 264.3 252.3
469.9 341.9 336.2 333.3 265.2 253.0
474.8 342.4 336.8 333.7 266.2 253.8
479.7 343.1 337.3 334.0 267.1 254.6
484.7 343.9 338.2 334.5 268.1 255.4
489.6 344.4 338.6 334.9 269.1 256.2
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Figure 5. The E vs. T dependences of the GCs with positive electrodes of different phase assemblages.
Sets of symbols numbered from 1 to 5 correspond to the phase regions In2Te3–In2Te5–Ag3In97Te147

(I), In2Te5–Te–Ag3In97Te147 (II), Ag3In97Te147–Te–AgIn5Te8 (III), AgIn5Te8–Te–AgIn3Te5 (IV), and
AgIn3Te5–Te–AgInTe2 (V), respectively.

The analysis of the E vs. T dependences for the reactions (R1)–(R5) between 420 and
489 K was performed by the least-squares method [41,45] using Equation (1):

E = a + bT ≡ E + b
(
T − T

)
, (1)

where E = ∑ Ei
n , T = ∑ Ti

n (Ei is the EMF of the GC at temperature Ti, and n is the number
of experimental pairs Ti and Ei).

The a and b coefficients were calculated by applying Equations (2) and (3):

a = E − bT, (2)

b =
∑
[(

Ei − E
)(

Ti − T
)]

∑
(
Ti − T

)2 . (3)

The statistical dispersions of the uncertainties in the measurement consisted of the
calculation variances in values of the EMF E (u2

E), coefficients b (u2
b) and a (u2

a), and the
dispersions of the EMF values Ẽ (u2

Ẽ
) calculated with Equation (1) are equal:

u2
E =

∑
(

Ei − Ẽi

)2

n − 2
, (4)

u2
b(T) =

u2
E

∑
(
Ti − T

)2 , (5)

u2
a(T) =

u2
E

n
+

u2
ET2

∑
(
Ti − T

)2 , (6)

u2
Ẽ(T) =

u2
E

n
+ u2

b
(
T − T

)2. (7)

Uncertainties (∆i) of the relative quantities can be calculated by the Equation (8):

∆i = kStui (8)
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where kSt is the Student’s coefficient, and ui is the standard deviation. At a confidence level
of 95% and n = 15, the Student’s coefficient is kSt = 2.131 [45].

The final equation of the E vs. T dependences together with the statistical dispersions
can be express as [43,44]:

E = a + bT ± kSt

√√√√(u2
E

n
+ u2

b
(
T − T

)2
)

. (9)

As listed in Table 1, the values of the temperature and EMF were used to calculate the
dispersions and coefficients of Equation (9) for the phase regions (I)–(V). The results of the
calculations are presented in Table 2.

The Gibbs energies (∆rG), enthalpies (∆rH), and entropies (∆rS) of the reactions (R1)–
(R5) can be calculated by the thermodynamic Equations (10)–(12):

∆rG = −z·F·E, (10)

∆rH = −z·F·[E − (dE/dT)T], (11)

∆rS = z·F·(dE/dT), (12)

where z is the number of electrons involved in the reactions (R1)–(R5), F is the Faraday
constant, and E is the EMF of the GC.

Table 2. The E vs. T dependences for the type (A) GCs in the (I)–(V) phase regions of the Ag–In–Te
system in the range between 420 and 489 K.

Phase region E = a + bT ± kSt

√(
u2

E
n + u2

b
(
T − T

)2
)

(I)
E =

278.46 + 134.75·10−3T ± 2.131
√(

4.93·10−3

15 + 7.19·10−7(T − 455.03)2
)

(II)
E =

279.96 + 119.81·10−3T ± 2.131
√(

7.24·10−3

15 + 1.05·10−6(T − 455.03)2
)

(III)
E =

292.83 + 85.96·10−3T ± 2.131
√(

2.79·10−3

15 + 4.06·10−7(T − 455.03)2
)

(IV)
E =

173.86 + 194.44·10−3T ± 2.131
√(

1.12·10−3

15 + 1.63·10−7(T − 455.03)2
)

(V)
E =

178.36 + 158.93·10−3T ± 2.131
√(

1.01·10−3

15 + 1.47·10−7(T − 455.03)2
)

The thermodynamic equations of the reactions (R1)–(R5) at 298 K were calculated
using Equations (10)–(12) in the approximation

(
∂∆r H

∂T

)
p
= 0 and

(
∂∆rS
∂T

)
p
= 0 [46,47]. The

results of the calculations are presented in Table 3.

Table 3. The values of standard thermodynamic functions of the reactions (R1)–(R5).

Reaction
−∆rG# −∆rH# ∆rS#

kJ·mol –1 J·(mol·K) −1

(R1) 368.9 ± 0.3 322.4 ± 1.0 156.0 ± 2.1
(R2) 365.5 ± 0.4 324.1 ± 1.2 138.7 ± 2.5
(R3) 2519.5 ± 1.7 2316.8 ± 4.9 680.1 ± 10.7
(R4) 44.73 ± 0.03 33.55 ± 0.08 37.52 ± 0.17
(R5) 43.56 ± 0.02 34.42 ± 0.07 30.67 ± 0.16
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The standard Gibbs energies of the reactions (R1) and (R2) are related to the Gibbs
energies of the compounds by Equations (13) and (14):

∆r(R1)G
# = 4∆fG

#
Ag3In97Se147

− 191∆fG
#
In2Te3

− 3∆fG
#
In2Te5

, (13)

∆r(R2)G
# = 4∆fG

#
Ag3In97Se147

− 194∆fG
#
In2Te5

. (14)

Subtracting term-by-term, the left and right parts of Equations (13) and (14) can be
written as follows:

∆fG
#
In2Te5

=
1

191

(
∆r(R1)G

# − ∆r(R2)G
#
)
+ ∆fG

#
In2Te3

. (15)

In an analogous way, the equations to calculate the formation enthalpy and entropy of
the In2Te5 compound can be expressed:

∆fH
#
In2Te5

=
1

191

(
∆r(R1)H# − ∆r(R2)H#

)
+ ∆fH

#
In2Te3

, (16)

S#
In2Te5

=
1

191

(
∆r(R1)S

# − ∆r(R2)S
#
)
+ 2S#

Te + S#
In2Te3

. (17)

The corresponding reactions to determine standard thermodynamic properties ∆fG#,
∆fH#, and S# of the Ag3In97Te147, AgIn5Te8, AgIn3Te5, and AgInTe2 compounds can be
written in a similar way using reactions (R2)–(R5) with their appropriate
stoichiometric numbers.

For the first time, the standard thermodynamic quantities for selected compounds of
the Ag–In–Te system were calculated using Equations (15)–(17) and the thermodynamic
data of the pure substances Ag, In, Te, and In2Te3 [48]. A comparative list of the determined
quantities and the literature data is included in Table 4.

Table 4. The standard thermodynamic quantities of elements and compounds in the Ag–In–Te system.

Phases
−∆fG# −∆fH# S#

Reference
kJ·mol −1 J·(mol·K) −1

Ag 0 0 42.677 [48]
In 0 0 57.823 [48]
Te 0 0 49.497 [48]

In2Te3 182.733 191.627 234.304 [48]
In2Te5 – 191.6 ± 2.1 – [49]
In2Te5 – 188.0 ± 1.3 – [50]
In2Te5 182.7 ± 1.9 191.6 ± 3.4 333.4 ± 4.7 Present study

Ag3In97Te147 8954 ± 189 9374 ± 327 11,605 ± 425 Present study
AgIn5Te8 487.6 ± 11.3 507.1 ± 19.3 662.2 ± 20.5 Present study
AgIn3Te5 301.5 ± 6.5 311.0 ± 10.2 431.8 ± 18.2 Present study
AgInTe2 115.0 ± 3.1 115.1 ± 4.3 199.1 ± 6.6 Present study

The temperature-reliant formations of the Gibbs energies of the selected compounds
of the Ag–In–Te system are described by Equations (18)–(22):

∆fGIn2Te5 /
(

kJ·mol−1
)
= −(191.6 ± 3.4) + (29.8 ± 0.4) · 10−3T/K, (18)

∆fGAg3In97Te147 /
(

kJ·mol−1
)
= −(9374 ± 327) + (1408 ± 52) · 10−3T/K, (19)

∆fGAgIn5Te8 /
(

kJ·mol−1
)
= −(507.1 ± 19.3) + (65.6 ± 2.0) · 10−3T/K, (20)

∆fGAgIn3Te5 /
(

kJ·mol−1
)
= −(311.0 ± 10.2) + (31.8 ± 1.4) · 10−3T/K, (21)

∆fGAgInTe2
/
(

kJ·mol−1
)
= −(115.1 ± 4.3) + (0.4 ± 0.01) · 10−3T/K. (22)
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The agreement between the enthalpy of the formation of In2Te5 determined in the
present study and those reported in [49,50] confirms the correctness of the division of the
concentration space of the Ag–In–Te system in the part AgInTe2–Te–In2Te3 and validates
the accuracy of the determined thermodynamic values of the ternary compounds.

4. Conclusions

The following thermodynamically stable compounds of the AgInTe2–Te–In2Te3 phase
region were proven to exist below 500 K by means of the modified EMF method: In2Te5,
Ag3In97Te147, AgIn5Te8, AgIn3Te5, and AgInTe2. It has been shown that the literature data
on the phase equilibrium of AgInTe2 and AgIn5Te8 compounds of the Ag2Te–In2Te3 system
below 500 K are unreliable for kinetic reasons. The equilibrium state of the phases in the
AgInTe2–AgIn5Te8 section was achieved by the reaction AgInTe2 + AgIn5Te8 = 2AgIn3Te5,
carried out with the participation of the Ag+ catalyst, as a small center for the nucleation of
the AgIn3Te5 equilibrium phase. The Gibbs energy equations as a function of temperature,
as well as the standard thermodynamic quantities of the binary and ternary compounds,
were determined for the first time. From the thermodynamic perspective, the effective
use of the temperature gradient for thermoelectric generation can be realized by using
numerous pairs of the p/n components made in the form of contact of the following
compounds: AgInTe2/AgIn3Te5, AgIn3Te5/AgIn5Te8, and AgIn5Te8/Ag3In97Te147.
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