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Abstract: Thermal bridges may have a significant prejudicial impact on the thermal behavior and
energy efficiency of buildings. Given the high thermal conductivity of steel, in Lightweight Steel
Framed (LSF) buildings, this detrimental effect could be even greater. The use of thermal break (TB)
strips is one of the most broadly implemented thermal bridge mitigation technics. In a previous study,
the performance of TB strips in partition LSF walls was evaluated. However, a search of the literature
found no similar experimental campaigns for facade LSF walls, which are even more relevant for a
building’s overall energy efficiency since they are in direct contact with the external environmental
conditions. In this article the thermal performance of ten facade LSF wall configurations were
measured, using the heat flow meter (HFM) method. These measurements were compared to
numerical simulation predictions, exhibiting excellent similarity and, consequently, high reliability.
One reference wall, three TB strip locations in the steel stud flanges and three TB strip materials
were assessed. The outer and inner TB strips showed quite similar thermal performances, but with
slightly higher thermal resistance for outer TB strips (around +1%). Furthermore, the TB strips were
clearly less efficient in facade LSF walls when compared to their thermal performance improvement
in load-bearing partition LSF walls.

Keywords: lightweight steel frame; LSF facade walls; thermal resistance; thermal break strips;
experimental measurements; numerical simulations

1. Introduction

Overall, buildings are responsible for about 36% of global CO2 emissions, making
them a key player in the fight against global warming and climate change [1]. The European
Union spends approximately 40% of final energy consumption on heating and cooling
buildings [2]. For this reason, in recent decades European legislation has been geared
towards transforming the existing building stock into a network of nearly zero energy
buildings (NZEB) [2], promoting the use of renewable energies and developing renovation
strategies to improve the energy efficiency of existing buildings [3].

Currently, approximately 35% of the building stock in the European Union is over
50 years old and needs rehabilitation to meet current energy requirements [4]. Consequently,
the European Green Deal presented by the Commission on 11 December 2019 [5], sets
out the arrangements for achieving an efficient use of energy and building resources to
double the annual renovation rate of the building stock [6]. In line with this initiative,
it has been noted that it is important to conduct studies that allow for a reliable thermal
characterization of buildings and an exhaustive analysis of the components that make up
their envelope [7].

As an alternative for the energy rehabilitation of existing building facades, systems
such as External Thermal Insulation Composite Systems (ETICS) have been developed in
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recent decades [8,9]. These are construction systems that consist of a thermal insulation
material applied to the building facade with the help of an adhesive and/or mechanical
fastening, and then a reduced thickness rendering system that incorporates a reinforcing
mesh [10]. These construction systems make it possible to reduce thermal bridges and
moisture condensation on the inside surface of the envelopes, as well as offering the
advantage of not reducing the interior space of the rooms in the dwellings and improving
the aesthetics of the refurbished facade [11]. Moreover, there are several studies that have
found the use of this type of insulation system from the outside saves up to 8% more energy
on average than in the case of using an insulation system from the inside [12].

ETICS are also very widely used in Lightweight Steel Framed (LSF) facade walls [13],
having the advantage of mitigating the thermal bridges originated by the high thermal
conductivity of the steel studs since they are a continuous insulation. There are several types
of thermal bridges [13], which could be designated as: (1) repeating thermal bridges (e.g.,
due to the vertical steel studs inside an LSF wall), where their effect is usually considered by
reducing the R-value (increase the U-value); (2) non-repeating (or linear) thermal bridges
(e.g., along a wall corner, or along a wall–window joint perimeter [14]), quantified using the
linear thermal transmittance (Ψ); and (3) punctual thermal bridges (e.g., due to mechanical
steel fasteners crossing the ETICS insulation layer), which are taken into account using
the point thermal transmittance (χ). In this study, only the above-mentioned first type of
thermal bridges are considered.

The LSF construction system has been used in the last decades due to its multiple
advantages such as its low weight compared to its high mechanical resistance [15], a great
speed of execution and ease of transport to the building site [16], a high potential for
recycling and a high quality as very precise tolerances are achieved in the execution of
prefabricated elements [17,18].

However, the existence of thermal bridges through the steel and the lower thermal
inertia of the LSF walls can cause problems related to comfort and a higher energy de-
mand [19], with the thermal bridges issue being even more relevant in cold climates [20].
Furthermore, it is sometimes difficult to accurately evaluate the final thermal resistance
of the facade as there is a strong contrast between the high thermal conductivity of the
steel frame and the insulation materials filling the air cavity [21,22]. Additionally, the size
and shape of the stud flanges may have a relevant influence on the thermal performance
of LSF walls [23]. Furthermore, the position of the thermal insulation is very important
with regards to their effectiveness [24], and the usual fibrous cavity insulation (e.g., mineral
wool) is likewise relevant for the noise insulation performance of LSF facade walls [25].

Given the absence of a continuous insulation layer, the steel stud thermal bridges
are even more relevant in LSF partition walls [26–28]. To mitigate these thermal bridges,
the LSF partition could be split in two steel frames, having a small air gap between them,
this way breaking the heat flow across the steel studs. Moreover, since this double-pane
LSF partition has an air cavity, an efficient way to increase their thermal resistance even
more is to use a reflective foil, e.g., in aluminum [26]. Even though they are not as efficient
as in a single pane LSF wall [28], thermal break (TB) strips could also be used along the
double-pane steel stud flanges to mitigate the related thermal bridge effects [27].

In fact, in addition to ETICS, TB strips are widely disseminated as a thermal energy loss
attenuation strategy in LSF enclosures [29]. In a previous research work, the performance
of TB strips in load-bearing and non-load-bearing partition walls was evaluated [30]. The
lab measurements were performed using the heat flow meter (HFM) method under nearly
steady-state conditions. Several TB materials (recycled rubber, cork/rubber composite
and aerogel) were compared, as well as three TB locations (inner, outer and on both stud
flanges). It was concluded that outer and inner TB strips display quite analogous thermal
performances, but using two TB strips had a comparative noteworthy thermal performance
improvement. A systematic experimental campaign to measure the thermal performance
improvement of load-bearing LSF facade walls due to the use of thermal break strips was
not found in the literature.
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This research work is a continuation of the previous one [30], but, instead of partition
LSF walls, a new set of ten different facade LSF configurations were evaluated under similar
lab conditions and test procedures. The reference facade configuration, in addition to the
mineral wool batt insulation, has the usual exterior continuous thermal insulation layer
(ETICS) and does not have any TB strips. The remaining nine facade LSF configurations
correspond to the three TB strip materials and three TB strip positions. The main goal of
this research is to see if the trends and features, related to the use of TB strips, previously
measured for the partition LSF walls are similar or not to the ones exhibited now by these
facade LSF walls (e.g., will the outer and inner TB strips still have very similar thermal
performances? Are the TB strips able to fully mitigate the steel frame thermal bridges
effect? Are the TB strips less, equally or more efficient in facade LSF walls?). Notice that
the relevance of facade walls in the building’s thermal behaviour and energy efficiency is
much higher in comparison with partition walls since the temperature gradient (between
the indoor conditioned space and the exterior environment) is also considerably bigger
than between a conditioned and an unconditioned space.

This paper is organized as explained next. Following this brief introduction, the
related materials and methods are presented, including the LSF facade walls’ characteri-
zation, the experimental tests under laboratory-controlled conditions and the numerical
simulations. After, the achieved results for measured and predicted global conductive
thermal resistances, the measured R-value improvement and the infrared thermography
assessment are presented. Later, these results are discussed and compared with the ones
provided by the previously assessed partition LSF walls. To conclude, the main outcomes
from this study are listed.

2. Methods and Materials
2.1. Characterization of the LSF Facade Walls

Here, the thermal break (TB) strips, as well as the tested facade LSF walls, are charac-
terized including the geometries/dimensions, materials and thermal properties.

2.1.1. Reference Facade LSF Wall

Figure 1 displays the reference facade LSF wall cross-section. Table 1 lists the thermal
conductivities of the materials, as well as the thickness of each wall layer. This load-bearing
facade wall is supported by C-shaped vertical steel studs (C90 × 43 × 15 × 1.5 mm).
The spacing between these vertical steel studs is 400 mm. The mineral wool (MW) batt
insulation is 90 mm thick, completely filling the air cavity. On both sides of the steel
studs there is an OSB (Oriented Strand Board) structural sheathing panel (12 mm thick).
Moreover, in the inner surface there is an extra GPB (Gypsum Plaster Board) sheathing
layer (12.5 mm). In the outer surface there is an External Thermal Insulation Composite
System (ETICS), having 50 mm of expanded polystyrene (EPS) and a finishing layer (5 mm
thick). This reference facade LSF wall has a total thickness equal to 181.5 mm.
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Figure 1. Reference facade LSF wall horizontal cross-section: materials and geometry.

Table 1. Reference facade LSF wall material thickness (d) and thermal conductivities (λ).

Material
(From Outer to Innermost Layer)

d
(mm)

λ
(W/(m·K)) Ref.

ETICS 1 finishing layer 5.0 0.450 [31]
EPS 2 50.0 0.036 [32]
OSB 3 12.0 0.100 [33]
MW 4 90.0 0.035 [33]

Steel profiles (C90 × 43 × 15 × 1.5 mm) - 50.000 [34]
OSB 3 12.0 0.100 [33]
GPB 5 12.5 0.175 [33]

Global Thickness 181.5 - -
1 ETICS—External Thermal Insulation Composite System; 2 EPS—expanded polystyrene; 3 OSB—Oriented Strand
Board; 4 MW—mineral wool; 5 GPB—Gypsum Plaster Board.

2.1.2. Thermal Break Strips

All the thermal break (TB) strips evaluated have a rectangular cross-section: 50 mm
wide by 10 mm thick. The TB strips were placed along the inner, outer and on both sides
of the metallic stud flanges, as displayed in Figure 2. They were fixed by compression
between the steel studs and the OSB sheathing panels, which were attached to the steel
frame using self-drilling screws. Moreover, three materials were tested in the TB strips,
namely: recycled rubber and cork composite (R0), recycled rubber (R1) and aerogel (AG).
These materials were chosen given their decreasing thermal conductivities, extending from
122 mW/(m·K) down to 15 mW/(m·K), as illustrated in Table 2.

Table 2. Thermal break strips: material and thermal conductivity (λ).

Material λ
(W/(m·K)) Ref.

Recycled rubber (R1) 0.122 [33]
Recycled rubber and cork (R0) 0.088 [35]

CBS 1 aerogel (AG) 0.015 [33]
1 CBS—cold break strip.



Energies 2022, 15, 8169 5 of 18
Energies 2022, 15, x FOR PEER REVIEW 5 of 18 
 

 

 

Figure 2. Geometry and location of the thermal break (TB) strips. 

Notice that when one or two TBS are attached to the steel stud flanges, the total 

thickness of the LSF wall is also increased since the steel profiles were always the same. 

The wall thickness increment is equal to the thickness of the TBS used, i.e., 10 or 20 mm, 

for one or two TBS, respectively (see Figure 2). 

2.2. Experimental Lab Tests 

The laboratorial tests were performed using the same experimental setup, as well as 

the same test procedures and set-points, used in a previous research work to evaluate the 

thermal performance of partition LSF walls [30]. Therefore, to avoid unnecessary 

repetitions and for sake of brevity, only the main issues are explained next. More detailed 

info about this experimental lab test can be found in Reference [30]. 

2.2.1. Experimental Setup 

The thermal performance of the facade LSF elements were assessed making use of 

the heat flow meter (HFM) method [36]. However, as suggested by Rasooli and Itard [37], 

this method was modified, having two HF sensors. To ensure a nearly-steady-state 

difference of temperature, between both surfaces of the tested LSF facade sample, a set of 

two small climatic boxes was used: one hot (heated using an electric resistance) and 

another cold (cooled using an attached fridge), as displayed in Figure 3. 

Figure 2. Geometry and location of the thermal break (TB) strips.

Notice that when one or two TBS are attached to the steel stud flanges, the total
thickness of the LSF wall is also increased since the steel profiles were always the same.
The wall thickness increment is equal to the thickness of the TBS used, i.e., 10 or 20 mm, for
one or two TBS, respectively (see Figure 2).

2.2. Experimental Lab Tests

The laboratorial tests were performed using the same experimental setup, as well
as the same test procedures and set-points, used in a previous research work to evaluate
the thermal performance of partition LSF walls [30]. Therefore, to avoid unnecessary
repetitions and for sake of brevity, only the main issues are explained next. More detailed
info about this experimental lab test can be found in Reference [30].

2.2.1. Experimental Setup

The thermal performance of the facade LSF elements were assessed making use of the
heat flow meter (HFM) method [36]. However, as suggested by Rasooli and Itard [37], this
method was modified, having two HF sensors. To ensure a nearly-steady-state difference
of temperature, between both surfaces of the tested LSF facade sample, a set of two small
climatic boxes was used: one hot (heated using an electric resistance) and another cold
(cooled using an attached fridge), as displayed in Figure 3.
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Figure 3. Cold and hot boxes apparatus used in the experiments.

Since the moisture content of the materials, used during the experiments, can strongly
conditionate their thermal properties (e.g., thermal conductivity), a stable relative humidity
(RH) condition was ensured during and before the lab tests (storage stage).

Two small fans (one for each climatic chamber), reutilized from old computer case fans
(12 V, 0.25 A), were used inside hot and cold boxes to promote air circulation and avoid
air temperature stratification [37]. Additionally, near the wall sample (10 cm apart) a black
radiation shield was placed, one inside the cold box and another one inside the hot box
(not illustrated here). This radiation shield was made of PVC and it was placed at vertical
position, parallel to the LSF wall test specimen.

The steel frames of the LSF wall test samples (1030 mm by 1060 mm) have three
vertical steel studs, where the central one is positioned exactly in the middle, as displayed in
Figure 4a. Given the high thermal conductivity of steel, to minimize the lateral heat flow, the
LSF wall sample perimeter was covered by two layers (40 mm thick each) of polyurethane
foam insulation, ensuring an additional edge thermal resistance of 2.22 m2·K/W.
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To increase the precision of the measurement and reduce its time duration (see Ref-
erence [38]), instead of the standard use of only one heat flux meter (HFM) placed in the
inner side (hot) of the wall sample, another HFM was simultaneously placed in the outer
side (cold). Figure 4b illustrates the sensors’ position on the cold surface of the tested LSF
wall sample. As shown here, to adequately characterize the thermal resistance of the LSF
wall samples, the sensors were placed in two vertical alignments: (1) near the central steel
stud, where the heat flow is higher (HFM1); and (2) in the middle of the insulation cavity,
where the heat flow is lower (HFM2).

In addition to heat flow, the sample surface and air temperatures were also measured,
making use of certified (class one precision) type K thermocouples (TCs). To ensure the
good temperature measurement accuracy of these TCs, they were previously calibrated
for a temperature range [5 ◦C; 45 ◦C], with a 5 ◦C increment, by immersing the TCs in a
thermostatic stirring water bath.

Six TCs were used in the hot side and another six in the cold side, with their locations
symmetrical with regards to the hot and cold environments. Looking to the cold surface
of the wall sample (Figure 4b): two TCs (TC1 and TC2) were used to measure the wall
surface temperatures; another two (TC3 and TC4) were used to measure the air temperature
between the wall surface and the radiation shield; and the remaining two (TC5 and TC6)
measured the environment air temperature inside each chamber (not illustrated).

To record all the data obtained by the HFMs and the TCs during the experiments, one
datalogger (PICO TC-08) was used on each surface of the LSF facade sample (cold and
hot). Moreover, these two dataloggers were coupled to a computer (see Figure 3, over the
“Hot Chamber”), where the PicoLog® version 6.1.10 software (Pico Technology Limited, St
Neots, UK) was used to manage the recorded data.

To illustrate some recorded data, Figure 5 displays, for the reference LSF facade wall,
the measured surface temperatures and the variation in heat flux densities over time when
sensors are placed at top height location (see Figure 4b). As expected, during the first
measurement hours, there is some variation in the recorded values, but after this stabilizing
period there is clearly a convergence. Moreover, the temperature difference is slightly higher
for the thermocouples placed in position 2 (cavity, Figure 5b) and the heat flux density is
significantly smaller when compared with the sensors located at the vicinity of the steel
stud (position 1, Figure 5a). Thus, the measured local thermal resistance will be much
higher at this cavity location, in comparison with the steel studs’ location. This relevant
thermal resistance reduction was expected, being related to the high thermal conductivity
of steel and the consequent thermal bridge phenomenon occurring near this LSF wall
location (position 1), even having a 50 mm continuous insulation thickness (ETICS).
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2.2.2. Set-Points and Test Procedures

To measure the surface-to-surface R-value (or thermal resistance) of the assessed LSF
facade walls, using the heat flow meter (HFM) method, the test procedures prescribed
in some international standards were adopted, including ISO 9869-1 [36], ASTM C 1155-
95 [39] and ASTM C 1046-95 [40]. More specifically, the “summation technique” described
in the standard ASTM C 1155-95 [39] was adopted, with this methodology having some
similarities to the “average method” described in standard ISO 9869-1 [36]. According to
the so-called “summation technique” [39], the estimated measured thermal resistance for
each time interval, Re, could be computed making use of the following equation

Re =
∑n

k=1(Tsi,k − Tse,k)

∑n
k=1 qk

, (1)

where: Tsi and Tse are the interior (hot) and exterior (cold) surface temperatures (◦C),
respectively; q is the heat flux density (W/m2); k is the counter for summation of time-series
data; and n is number of time values.

As suggested by this standard [39], the duration of each test was 24 h (minimum). The
convergence factor and criterion are also defined in ASTM C 1155-95 [39] and given by the
following expression

CRn =
Re(t)− Re(t − n)

Re(t)
< 0.10, (2)

where: CRn is the convergence factor; Re(t) is the estimated measured thermal resistance
during the evaluated time interval (e.g., 1 h); and Re(t − n) is the estimated thermal resis-
tance during the previously evaluated time interval. This adopted convergence criterion
means that the variation in the estimated measured R-value, between a time interval and
the previous one, should be smaller than 10%, in relation to the actual time interval.

As already mentioned before, the improvement suggested by Rasooli and Itard [37]
was adopted to reduce test duration and increase precision, which consists of the use of two
HFMs simultaneously at both cold and hot wall surfaces, as an alternative to measuring
only one side, as given by ISO 9869-1 [36].

The adopted set-points for the cold and hot chambers were 5 ◦C and 40 ◦C, respectively.
The measurements were performed in a quasi-steady-state heat transfer state. This large
temperature difference (35 ◦C) between the cold and hot chambers allowed the reliability
and accuracy of the measured R-values to be increased [36].

As illustrated in Figure 4b, three height sensor locations were chosen, for each wall
configuration, namely: (1) top, (2) middle and (3) bottom, with one test performed for each
one. Thus, the overall surface-to-surface thermal resistance of the LSF facade was achieved
by averaging the values from the previously mentioned three tests, this way ensuring the
repeatability of the experimental measurements.

Making use of the data recorded (heat fluxes and temperatures) for each test and
applying the HFM method [36], two distinct conductive local R-values were obtained: (1) a
lower value for location 1 (Figure 4), i.e., in the vicinity of the steel studs (Rstud); and (2) a
higher value between the steel studs, i.e., in the middle of the insulation cavity (Rcav). The
overall surface-to-surface R-value of the wall (Rglobal) was obtained by computing an area
weighted of both measured conductive R-values, as indicated in the following equation

1
Rglobal

=
1

Rstud

Astud
Aglobal

+
1

Rcav

Acav

Aglobal
, (3)

where: Aglobal is the total area of the LSF wall (m2); Astud is the area of influence of the steel
stud (m2); and Acav is the remaining cavity area of the LSF wall (m2).

The steel stud influence area (Astud) was defined as prescribed by ASHRAE zone
method [41], i.e., assuming a zone factor (z f ) equal to 2.0 [22]. Therefore, the width of the
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steel stud influence zone (w) is equal to the flange length ( f l) plus two times the thickness
of the thicker sheathing layer (dthicker).

Notice that these computations to obtain an overall R-value of the tested LSF wall were
performed making use of a representative wall zone area defined by the studs’ spacing
(width) and assuming one meter high (length), i.e., 0.40 m by 1.00 m (0.40 m2).

2.2.3. Experimental Procedures’ Verification

The verification of the reliability and good working conditions of the sensors and
dataloggers, in the experimental apparatus, was performed under two different approaches:
(1) testing a homogenous extruded polystyrene (XPS) panel (60 mm thick) under the
same lab conditions, with known thermal conductivity and resistance; (2) simulating a
representative LSF wall cross-section using some finite element models, as described in
Section 2.3, and comparing the predicted R-value with the measured thermal resistance.

Regarding the first verification, both measured and manufacturer surface-to-surface
thermal resistances were the same (1.784 m2·K/W). Concerning the second verifications,
as displayed later in Section 3.1 (Table 3), there was a very good agreement between the
measured and the predicted R-values, the differences ranging between 0% and −3%.

Table 3. Thermal resistances (surface-to-surface) predicted (THERM) and measured.

Wall Code Wall Description
R-Value (m2·K/W)

THERM Measured

Ref
Reference LSF Facade Wall 3.200 3.200

Difference: Absolute (m2·K/W) and
Percentage (%)

0.000 0%

R1in
Inner Recycled Rubber TB Strip 3.404 3.320

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.084 −2%

R0in
Inner Rubber-Cork TB Strip 3.441 3.396

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.045 −1%

AGin
Inner Aerogel TB Strip 3.764 3.661

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.103 −3%

R1out
Outer Recycled Rubber TB Strip 3.384 3.344

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.040 −1%

R0out
Outer Rubber-Cork TB Strip 3.416 3.427

Difference: Absolute (m2·K/W) and
Percentage (%)

0.011 0%

AGout
Outer Aerogel TB Strip 3.707 3.695

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.012 0%

R1 × 2
Inner and Outer Recycled Rubber TB Strip 3.587 3.547

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.040 −1%

R0 × 2
Inner and Outer Rubber-Cork TB Strip 3.658 3.588

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.070 −2%

AG × 2
Inner and Outer Aerogel TB Strip 4.224 4.093

Difference: Absolute (m2·K/W) and
Percentage (%)

−0.131 −3%

TB—thermal break.
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Moreover, Figure 6 displays the estimated measured R-values’ variation over time, at
three different sensor height positions, as well as the predicted THERM R-value for the
reference LSF facade wall. As expected, during the first hours of measurements, there is a
convergence phenomenon until the quasi-stationary state is reached (around seven hours).
After this period, the convergence criterion is reached (see Equation (2)) and the averaged
measured R-values become very similar to the predicted THERM value. In fact, using
the average of the measured R-values during the convergence period, the predicted and
measured thermal resistances are the same (3.200 m2·K/W).
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All these verifications allowed the good working conditions of the experimental
apparatus to be evidenced, to ensure the reliability of the measurements, as well as the
THERM models.

2.3. Numerical Simulations

The bidimensional simulations of the LSF facades’ thermal performance were achieved
using the Finite Element Method (FEM) commercial software THERM® (version 7.6.1,
Lawrence Berkeley National Laboratory, United States Department of Energy: Berkeley,
CA, USA). The corresponding model details are briefly explained next.

This algorithm makes use of 2D steady-state conservation of energy equation for
isotropic materials

ρCp

(
vx

∂T
∂x

+ vy
∂T
∂y

)
=

(
∂2T
∂x2 +

∂2T
∂y2

)
+ Qs, (4)

where: ρ is the density (kg/m3); Cp is the specific heat capacity (J/(kg·K); v is the velocity
(m/s); T is the temperature (◦C or K); λ is the thermal conductivity (W/(m·K)); and Qs
represents the volumetric heat source (W/m3).

Given the repetitive features of this LSF facade structure, as previously illustrated
in Figure 1, only a typical 2D portion of the facade cross-sections (with 400 mm length)
was implemented in the THERM models. The predicted R-values were computed in these
models along the inner wall surface (Figure 1). In Section 2.1 (Tables 1 and 2) the materials’
thermal properties used in the simulations were presented earlier. Additionally, for all
models built in this work, a maximum error of 2% on the FEM computations was set.

For each THERM model, two sets of boundary conditions were defined, namely the
air temperatures and the surface R-values. The colder external (5 ◦C) and warmer internal
(40 ◦C) air temperatures were defined equal to the set-points defined for the cold and hot
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climatic chambers during the laboratory measurements, respectively (see Section 2.2.2).
Nevertheless, as is well known, since the R-values are computed for a unitary temperature
difference, they do not rely on the chosen temperature difference between interior and
exterior environments.

The surface thermal resistances used in the THERM models were set equal to the
average values measured for each LSF wall surface and for each test, considering the air and
surface temperature differences, as well as the recorded heat fluxes in the wall surfaces. The
measured surface R-values, ranging between 0.10 and 0.15 m2·K/W, were near the value
defined in ISO 6946 [42] for the internal surface resistance (Rsi) when there is a horizontal
heat flow, i.e., 0.13 m2·K/W. These measured values were not even smaller because the
fans used were not powerful, having reduced dimensions (only 10 by 10 cm) and oriented
to the opposite side of the test-sample wall. Moreover, the black radiation shields provide
some protection, uniformizing the air flux near the wall test-sample outer surface.

Several verifications were made to ensure a good accuracy of the THERM models,
explicitly: (i) 2D test cases’ verification prescribed in ISO 10211 [43]; (ii) computations
assuming simplified homogeneous wall layers; and (iii) validation using experimental
laboratory measurements.

The two ISO 10211 [43] 2D test cases were modelled with success and the THERM
software FEM algorithm for steady-state heat transfer simulations was classified as a high
precision algorithm. Furthermore, the authors have a large amount of experience of using
this software, as can be seen in these references [21,22,30,33].

Regarding the homogeneous wall layers’ verification, the reference LSF facade wall
(illustrated in Figure 1), was modelled without the steel studs, and it was assumed the
other wall layers were homogenous and continuous. Using this simplified wall model,
the analytical solution could be applied since it is well known, being prescribed in ISO
6946 [42]. In this case, the total thermal resistance is calculated as the summation of the
layer’s thermal resistances. Figure 7b illustrates the obtained results, where, as expected,
both analytic and THERM R-values are the same when it is assumed there are homogeneous
layers within the facade wall (4.283 m2·K/W).
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Concerning the lab measurements’ verification, Figure 6a also illustrates the measured
overall surface-to-surface R-values of the reference facade LSF wall. The measured R-value
is equal to the predicted THERM value (3.200 m2·K/W), ensuring an excellent agreement
among simulated and predicted surface-to-surface R-values, even with all the related
uncertainties.

Moreover, even with a continuous exterior thermal insulation, it is very clear that,
in the foreseen temperature color distribution (Figure 7), the consequence of the steel
stud thermal bridge was originated by the higher heat transfer. This higher heat transfer
meaningfully decreases the R-value of the facade when related with the simplified model,
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having homogeneous layers, i.e., without steel studs. This thermal resistance decrease was
1.083 m2·K/W (−25%).

3. Results

The achieved results are structured here into three subsections. First, the measured
and the predicted thermal resistance values are displayed. Next, the measured thermal
resistance improvements due to the use of thermal break (TB) strips are graphically exhib-
ited. Finally, the infrared thermography technic is used to better visualize the steel studs’
thermal bridges effect.

3.1. Measured and Predicted R-Values

The obtained measured and predicted results for the evaluated load-bearing LSF
facade walls are displayed in Table 3, with these results being organized by the position
and material of the TB strips, but starting with the reference LSF facade wall (without any
TB strips). As displayed here, the agreement between the predicted and the measured
R-values is very good. These differences range between −3% and 0%.

In Table 3, the thermal resistance increase that originated from using TB strips along
the metallic profile flanges is well visible. This increase is bigger for materials with smaller
thermal conductivities (e.g., AG—aerogel), as well as when two TB strips are used.

3.2. Measured Thermal Resistance Improvement

To better visualize these features in a graphical way, Figure 8a shows the thermal
performance improvement originated by the TB strips’ use on the LSF facades, with the
thermal resistance increase ranging from +4% (for the inner recycled rubber, R1in) up to
+28% (for the double aerogel TB strips, AG × 2). As expected, the outer and inner TB strips’
performances are quite analogous, being a little better when placed in the outer stud flange
(+1%).

The major R-value increase occurred when two TB strips were used (×2) and for lower
thermal conductivity of the TB strip material, i.e., aerogel, AG. Indeed, the aerogel TB
strips displayed a considerable increase in the obtained thermal resistances: +15% and
+14% for outer and inner strips, respectively, as well as +28% when using two TB strips.
However, it was not possible to reach the thermal resistance provided by a homogeneous
wall without steel studs (4.283 m2·K/W), as previously presented in Figure 7b, not even
with the greatest thermal performance configuration, i.e., when having two aerogel TB
strips (4.093 m2·K/W).

To compare these facade LSF wall measurements with previous load-bearing partition
LSF wall measured R-values (see Reference [30]), Figure 8b also exhibits these former
values. Starting this comparison by using the reference R-values without TB strips, the
facade LSF wall has a significantly higher thermal resistance (3.200 m2·K/W) due to the
use of ETICS, when compared with the partition LSF wall (1.558 m2·K/W), corresponding
to a reference R-value increase of 1.642 m2·K/W (+105%).

Comparing now these measurement results using TB strips for the facade (Figure 8a)
with the partition LSF walls (Figure 8b), both plots show a similar tendency, with the
thermal resistances being higher for the facade LSF walls, as already justified and previously
noticed. However, the thermal performance improvement due to the use of TB strips is
now very reduced in the facade LSF walls (Figure 8a), both in absolute values (m2·K/W)
and even more evident in percentage values.
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3.3. Infrared Thermography Assessment

To better visualize the differences regarding the steel studs’ thermal bridge effect
between the facade and the partition LSF walls, with and without TB strips, some infrared
images are displayed in Figure 9. In the partition LSF walls (Figure 9b) the presence of the
middle vertical steel stud when there is no TB strip (left image) is well visible, as is the
reduction in the thermal bridge effect when two aerogel TB strips are used (right image).
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Figure 9. IR images of the LSF walls: cold surface. (a) Facade LSF walls. (b) Partition LSF walls
(adapted from [30]).

However, in the facade LSF walls (Figure 9a), the presence of the vertical central
steel stud is not clearly visible, even when there are no TB strips (left image). To see this
singularity in more detail, Figure 10 exhibits the surface temperatures along the horizontal
lines previously displayed in Figure 9. In this plot the significant peak temperature rises
near the central steel stud in the partition LSF wall are even more perceptible (Line 3),
as well as the corresponding attenuation due to the use of two aerogel TB strips (Line 4).
Again, in the facade wall, with a continuous thermal insulation (ETICS), this steel stud
thermal bridge-related temperature increase in the middle of the LSF wall is extremely
limited when there are no TB strips (Line 1), and almost negligible when there are two TB
strips (Line 2).
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4. Discussion of Results

To provide an easier comparison of their overall performances, the charts in Figure 11
exhibit the thermal resistance improvements due to the use of TB strips, for both facade
(in red color) and partition (in black color) LSF walls.

Energies 2022, 15, x FOR PEER REVIEW 15 of 18 
 

 

 

Figure 10. Cold surface temperatures along horizontal lines obtained from thermographic images 

of the measured facade and partition LSF walls, with and without thermal break (TB) strips made 

from aerogel. 

4. Discussion of Results 

To provide an easier comparison of their overall performances, the charts in Figure 

11 exhibit the thermal resistance improvements due to the use of TB strips, for both facade 

(in red color) and partition (in black color) LSF walls. 

 

Figure 11. The increase in thermal resistances due to thermal break (TB) strips’ use in load-bearing 

LSF walls: facade vs partition [30]. 

From the previous plots (Figure 11), it can be concluded that the TB strips are clearly 

less efficient in facade LSF walls when compared to partition LSF walls. This feature is 

related with the use of a continuous external thermal insulation layer (ETICS) in facade 

walls (in this case 50 mm of EPS), decreasing in this way the relevance of the thermal 

bridges originated by the steel studs. Additionally, the thermal resistance increases due 

to aerogel (AG) TB strips remain very relevant. In fact, this thermal performance 

improvement is about three times bigger when compared to recycled rubber (R1). 

Moreover, the thermal resistance rises due to the TB strips made from rubber/cork 

composite (R0) are only a little bigger when compared to recycled rubber (R1), i.e., about 

+0.08 m2·K/W for single TB strips and even lower for double TB strips (+0.04 m2·K/W). 

Figure 11. The increase in thermal resistances due to thermal break (TB) strips’ use in load-bearing
LSF walls: facade vs partition [30].

From the previous plots (Figure 11), it can be concluded that the TB strips are clearly
less efficient in facade LSF walls when compared to partition LSF walls. This feature is
related with the use of a continuous external thermal insulation layer (ETICS) in facade
walls (in this case 50 mm of EPS), decreasing in this way the relevance of the thermal
bridges originated by the steel studs. Additionally, the thermal resistance increases due to
aerogel (AG) TB strips remain very relevant. In fact, this thermal performance improvement
is about three times bigger when compared to recycled rubber (R1). Moreover, the thermal
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resistance rises due to the TB strips made from rubber/cork composite (R0) are only a little
bigger when compared to recycled rubber (R1), i.e., about +0.08 m2·K/W for single TB
strips and even lower for double TB strips (+0.04 m2·K/W).

Notice that, in all evaluated LSF walls, the use of TB strips allowed their thermal
performance to be improved, by increasing the overall R-value of the wall. Obviously,
with the higher thermal resistance and the lower thermal transmittance (or U-value) and,
therefore, less thermal energy being lost or transferred across the wall, the energy efficiency
is increased.

5. Conclusions

In this paper, a new set of experimental lab measurements was performed to evaluate
the thermal performance improvement in Lightweight Steel Frame (LSF) facade walls due
to the use of thermal break (TB) strips. Three different materials were evaluated as TB
strips, namely: recycled rubber (R1); recycled rubber/cork composite (R0); and aerogel
(AG), for three different TB strip positions along the steel stud flanges: inner, outer and on
both sides (double).

Notice that all the measured R-values were related with the simulation results achieved
using implemented numerical bidimensional finite element models. These comparisons
provided excellent thermal resistance agreements, within an error range of ±3%, for the
ten evaluated facade LSF walls, ensuring good reliability, as well as a high robustness of
the test procedures and implemented measurement apparatus.

This research work has provided new developments of a previous study regarding the
experimental assessment of TB strips’ performance in non-load-bearing and load-bearing
LSF walls [30]. In this case, instead of partition walls, load-bearing facade LSF walls were
evaluated, usually with a continuous external thermal insulation composite system (ETICS).

Taking the previous study for load-bearing partition LSF walls as a reference also [30],
the main conclusions are summarized as follows:

• The outer and inner TB strips still have very similar thermal performances. However,
as happened before for partition walls, the TB strips positioned in the outer steel flange
of the facade LSF walls appear to have slightly better performance (around +1% in the
measured R-value).

• Again, as expected, the best performances were found for double TB strips and for
aerogel TB strips.

• However, neither the former load-bearing partition LSF wall, neither this new facade
LSF wall, were able to fully mitigate the steel frame thermal bridges’ effect, not even
for the best thermal performance configuration (two aerogel TB strips).

• Quite similar thermal performances were measured for the other two materials: recy-
cled rubber (R1), and rubber/cork composite (R0).

• Comparing the thermal resistance improvement for these facade LSF walls and the
previously assessed partition LSF walls, it was observed that the TB strips were clearly
less efficient in facade LSF walls.

This last conclusion can be justified by the existence of a continuous external thermal
insulation layer (ETICS) in the facade walls (in this case 50 mm of EPS), decreasing the
relevance of the thermal bridges originated by the steel studs. Consequently, the efficiency
of the TB strips becomes reduced.

Notice that the improved thermal resistances due to the use of TBS were caused not
only to the TB strips themselves, but also provided by the increased total thickness of
the LSF wall, particularly the increased thickness of the expansible mineral wool thermal
insulation, placed inside the wall cavity.

This research allowed the effectiveness of TB strips for the R-values’ increase in
partition and facade load-bearing LSF walls to be better comprehended, quantified and
compared, information that was not available in the literature, particularly for facade
LSF walls. Additionally, the measured conductive thermal resistances can be used, for the
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validation of numerical simulations in LSF walls with identical arrangements, as benchmark
values.
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