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Abstract: Forecasting return and profit is a primary challenge for financial practitioners and an even
more critical issue when it comes to forecasting energy market returns. This research attempts to
propose an effective method to predict the Brent Crude Oil return, which results in remarkable perfor-
mance compared with the well-known models in the return prediction. The proposed hybrid model is
based on long short-term memory (LSTM) and convolutional neural network (CNN) networks where
the autoregressive integrated moving average (ARIMA) and generalized autoregressive conditional
heteroscedasticity (GARCH) outputs are used as features, along with return lags, price, and macroeco-
nomic variables to train the models, resulting in significant improvement in the model’s performance.
According to the obtained results, our proposed model performs better than other models, including
artificial neural network (ANN), principal component analysis (PCA)-ANN, LSTM, and CNN. We
show the efficiency of our proposed model by testing it with a simple trading strategy, indicating
that the cumulative profit obtained from trading with the prediction results of the proposed 2D
CNN-LSTM model is higher than those of the other models presented in this research. In the second
part of this study, we consider the spread of COVID-19 and its impact on the financial markets to
present a precise LSTM model that can reflect the impact of this disease on the Brent Crude Oil
return. This paper uses the significance test and correlation measures to show the similarity between
the series of Brent Crude Oil during the SARS and the COVID-19 pandemics, after which the data
during the SARS period are used along with the data during COVID-19 to train the LSTM. The results
demonstrate that the proposed LSTM model, tuned by the SARS data, can better predict the Brent
Crude Oil return during the COVID-19 pandemic.

Keywords: CNN; COVID-19; deep learning; energy market; LSTM; return prediction

1. Introduction

A major challenge in financial markets is modeling and forecasting the market’s future.
Since the future returns of financial markets influence many economic goals, forecasting the
market return is of utmost importance for making the right investment decision. Predicting
the financial market’s future direction generally requires the examination of several fore-
casting modules, risk analysis, and trading strategy. One of the major issues to be addressed
in financial markets is the trend of oil return and price in the future, which significantly
impacts the global economy. Some recent studies have demonstrated the importance of
crude oil price or return prediction [1–4]. This paper aims to use deep learning methods
to forecast the Brent Crude Oil return accurately. Given that this natural substance has
a tremendous impact on the decisions of many large financial institutions such as banks,
manufacturing companies, and refining industries, it is necessary to predict the future
trend of oil prices or their returns accurately.
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To assess financial volatilities, parametric models have been developed with the advent
of ARCH (autoregressive conditional heteroscedasticity) and GARCH (generalized ARCH)
models presented by [5,6]. Although financial time series have complex and nonlinear
structures, linearity correlation structure is presumed in the classical models. Hence, they
may not fit nonlinear structured time series, and linearity assumption can affect the model
entirely. However, their application as an input to feed models such as ANN can improve
their performance [7]. Hajizadeh, E. improved the model’s accuracy using the hybridization
of GARCH models and neural networks for the prediction of the euro/dollar exchange
rate volatility [8]. Since volatility is one of the most influential parameters on the return,
using the GARCH models’ output as a new input for the return forecasts could help train
the model better.

Non-parametric models implemented by various approaches such as machine and deep
learning can fit much better with the data set than classical linear models [9,10]. For many years,
experts have developed extended endeavors to take advantage of AI (Artificial Intelligence)
to set up a system that assists traders with decision-making. Racine, J. showed that neural
network-based optimization models, a branch of artificial intelligence, can perform far bet-
ter and maintain flexibility simultaneously [11]. Hajizadeh, E. applied a hybrid model based
on EGARCH (Exponential Generalized Autoregressive Conditional Heteroscedasticity) and
ANN to predict the stock index volatility of the S&P 500 [12]. Among other modern deep
learning methods, CNN is used mainly for automatic feature selection and market forecast-
ing. Like the ANN, CNN is based on artificial intelligence. Di Persio, L. presented a neural
network approach to the stocks’ trend forecasting [13]. Furthermore, the results of the
CNN-based models were compared with different methods, where CNN showed remark-
able performance. Since the long-term prediction of time series data is challenging, long
short-term memory (LSTM) is another approach that can be used to maintain long-term
dependencies. Wu, C.-H. used the LSTM method to forecast the price of Bitcoin [14]. In a
similar study, Karakoyun, E. and A. Cibikdiken compared this method with the ARIMA
method in predicting the price of Bitcoin [15].

This research attempts to provide a 2D CNN-LSTM that is based on a hybrid model
with LSTM and CNN to predict the future return of Brent Crude Oil, taking advantage of
each. We have also tried to illustrate the superiority of the presented models by comparing
different up-to-date models described in the coming sections. Because of the lack of data
after the outbreak of COVID-19, SARS data are added to the COVID-19 data for better train-
ing of the neural networks. It is initially assumed and then proved that the hypothesized
COVID-19 behavior would be similar to that of SARS. Therefore, SARS data are added to
compensate for the lack of data. Finally, Brent Crude Oil’s return is forecasted by applying
the LSTM model for the period after the COVID-19 pandemic regarding the concerns raised
by [16,17] and other developed studies. Moreover, after accurately forecasting the returns
of Brent Crude Oil, we sought to propose a trading strategy on the model’s outcome. In the
following, we apply some new performance measures such as deflated Sharpe ratio which
are used to evaluate the financial aspect of our model.

The remainder of this paper is organized as follows: Section 2 discusses the literature
review of the methods used in this research. Section 3 describes the methodology of the
models that have led us to present our proposed model. In Section 4, the data and their
characteristics contribute to show how our proposed model performs better compared with
benchmark models through empirical results. Finally, Section 5 discusses the results and
provides future research directions.

2. Literature Review

This section first reviews the GARCH-based models such as GARCH, fuzzy-GARCH,
and ANN-GARCH that are used to predict the volatility of financial data. Then, it puts
forth a review of the up-to-date models in the literature which have been utilized to forecast
financial markets’ return, price, and volatility.
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2.1. Classical Models

The first approach, which is based on the data from financial time series with stochastic
variance and offers volatility intervals instead of precise forecasts, is the ARCH (Autoregressive
Conditional Heteroscedasticity). This approach, first introduced by [5], has been in the
literature for a long time. Bollerslev, T. developed a generalized model called GARCH
(Generalized ARCH) and was the first who examined ARCH models in financial terms,
both empirically and theoretically [18]. Bauwens, L. employed multivariate GARCH mod-
els because the financial volatilities move along time with assets and markets, resulting in
the failure of univariate GARCH models to perform effectively under these conditions [19].
Lam, K.S. and L.H. Tam showed that classical methods such as GARCH are mean-revert
and usually built with close price data, possibly resulting in the negligence of the important
daily price changes and subsequently leading to data loss and inefficiency [20]. Hence,
the range-based autoregressive model was introduced and expanded to play off these
weaknesses. Developing on the issue, Wang, L. presented the efficient semi-parametric
GARCH model for financial volatility [21]. Maciel, L. introduced fuzzy-GARCH models
to predict and model financial volatility [22]. More recently, Sadik, Z.A. proposed the
news-augmented GARCH (NA-GARCH) model to forecast stock price volatility, which
is the combination of the GARCH model by examining the effects of quantified news
sentiment on the movement of stock prices [23]. Finally, Naimy, V. compared the accuracy
of GARCH models in assessing the volatility of cryptocurrencies [24]. Many financial time
series data show a nonlinear dependency structure, but a linear correlation structure is
generally assumed between time-series data in GARCH models; hence, these models do not
usually record the nonlinear patterns. As a result, the approximate linear models obtained
from them may not be satisfactory in complex problems.

2.2. Artificial Intelligence-Based Models

Artificial intelligence-based models have demonstrated superb performance in mod-
eling and forecasting return, price, and volatility. According to [11], neural network-
based optimization models, a type of artificial intelligence, can perform far better than
the classic GARCH models and indicate better flexibility. Artificial neural network (ANN)
can be much more applicable and flexible when the output of the GARCH and ARCH
models feeds the networks to predict the volatility and return of the financial market.
Hamid, S.A. developed a neural network-based approach to forecast the future price volatil-
ity of the S&P 500 [25]. Pérez-Rodríguez, J.V. examined the ANN and STAR (smooth
transition auto-regression) models for the prediction of the Spanish Stock Index [26]. In
another study, Wang, Y.-H. proposed a nonlinear neural network method to predict the
selected price of a stock index [27]. In the same line, [9] presented meta-modeling neu-
ral networks in forecasting financial time series. Bildirici, M. and Ö.Ö. Ersin worked
on predicting robust GARCH family models integrated with ANN and then used it
to predict Istanbul Stock Exchange’s return [28]. Roh, T.H. implemented three aggre-
gated financial time-series methods and artificial neural networks in the KOSPI 200
(Korea Composite Stock Price Index 200) [29]. In their study, ref. [12] applied a hybrid
model based on EGARCH-ANN to forecast the stock index volatility of the S&P 500.
Similarly, Adhikari, R. and R. Agrawal presented an approach that processed the linear
part of the financial data set by the Random Walk model and the lasting nonlinear part
through a set of ANN and Elman ANN (EANN) models [30]. Finally, Kristjanpoller, W. and
M.C. Minutolo investigated the combination of GARCH and ANN approaches for the predic-
tion of gold price volatility [7]. Mohammed, G.T. proposed an innovative fuzzy-EGARCH-ANN
model to forecast the stock market volatility [31]. Their model improved the leverage
effects and volatility clustering of highly nonlinear financial data compared with the
EGARCH model.

Using a support vector machine (SVM) to forecast the financial time series, ref. [32]
discovered that SVM performed better than the backpropagation neural network (BPNN).
Tang, L.-B. examined the volatility prediction by wavelet-support vector machine (W-SVM),
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which is a hybridization of SVM and discrete wavelet transform (DWT) [33]. In their study,
Chen, C.-H. investigated the SVM based on GARCH models to predict volatilities [34].
Zhiqiang, G. developed this model by predicting the financial time series through SVM
models and locality preserving projection (LPP) while also considering the particle swarm
optimization (PSO) algorithm [35]. Later, ref. [36] improved the PSO algorithm by devel-
oping the interval volatility prediction using SVM. As shown, the use of these algorithms
increased the SVM capabilities. In a study conducted by [37], a new approach to stock
price prediction was introduced based on SVM and singular spectrum analysis (SSA). Then,
Lu, C.-J. employed the support vector regression (SVR) method [38]. In a more recent work,
Sun, H. and B. Yu designed a two-step volatility prediction method from the combination
of the SVR and the GARCH model [39].

Although extracting useful features from the financial market is a challenging issue,
convolutional neural networks (CNN) have been largely effective in dealing with this
problem. This method, among other modern methods, is used mainly for automatic feature
selection and market forecasting. Like the ANN method, CNN is based on AI and was used
by [40] to identify faces. In another study, Yang, J. applied the deep convolutional neural
networks (DCNN) method to identify human activities over multi-channel time series [41].
On the other hand, [13] introduced an artificial neural network approach to forecast the
stock market indices to predict trends. As shown by [42], the CNN could use technical
indicators for each type of sample but failed to consider correlations between stock markets
as another possible source of information. Finally, Hoseinzade, E. and S. Haratizadeh
introduced a CNN-based framework for the data collection from various sources such as
different markets to extract features for the future prediction of these markets [43].

Since the long-term prediction of time series is a very challenging issue, long short-term
memory (LSTM) is another approach that can be used to maintain long-term dependencies.
The LSTM method was used by [14] to predict the price of Bitcoin. In a similar study, ref. [15]
compared LSTM with the ARIMA method in predicting the price of Bitcoin. Similarly,
Siami-Namini, S. examined the ARIMA and LSTM methods in time-series predictions [44].
Kim, H.Y. and C.H. Won predicted Korea Composite Stock Price Index 200 (KOSPI 200)
stock market price volatility using LSTM models and GARCH [45]. To predict the financial
time-series models, ref. [46] used the complete ensemble empirical mode decomposition
with adaptive noise and the LSTM method.. In the same vein, Tomar, A. and N. Gupta
predicted the spread of the COVID-19 virus in China using the LSTM method [47]. Finally,
Livieris, I.E. employed the CNN-LSTM hybrid method to forecast the gold market [48].

Classical methods have a linear nature, making their employment in complex and
non-linear situations inappropriate. Accordingly, the current study takes advantage of
AI models to address this problem. Furthermore, the output of the GARCH and ARCH
models feeds the neural networks. Since the CNN model is very efficient in extracting
valuable features from the primary data and the LSTM model helps identify short-term
and long-term dependencies [48], a combination of these two models has been used in this
study to predict Brent Crude Oil prices.

3. Materials and Methods
3.1. Methodology

This section discusses the CNN and the LSTM basic concepts separately and in detail,
after which the developed hybrid model is presented in the forthcoming section. In the
end, we demonstrate the effectiveness of our proposed model by testing it with a simple
trading strategy.

3.1.1. CNN

CNN is one of the deep learning models, the components of which include an in-
put layer, convolutional layers, nonlinear activation function, pooling layers, and a fully
connected layer. In most cases, the input layer data of this network is one-dimensional,
two-dimensional, or three-dimensional. This paper converts the features of the time series
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of Brent Oil into two-dimensional inputs to take advantage of the CNN network. The
approach taken for converting them into 2D inputs will be presented in the coming sections.

Convolutional Layers

Convolution layers work by applying filters to each sample input and passing them to
the next layer that is convoluted by filter size. These newly generated kernels, containing
valuable information obtained from the primary data, will make the input into the following
layers. Finally, they produce a matrix with high-level features as an output of convolutional
layers. The freshly obtained matrix is usually given as an input to the fully connected layer
after having completed the convolution process and passing through the max pooling layers.
According to [49], the input data should have a matrix form; therefore, data processing
continues by taking the two-dimensional image (matrices). Since convolution operations
aim to extract high-level features, more than one convolution layer is typically used. The
first layer of convolution usually extracts the low-level features and will be able to extract
the high-level features by adding the subsequent layers of the network. Hence, the network
uses two layers of convolution to extract high-level features in the proposed model. More
precisely, as discussed in the study by [48], convolution layers convolute the input data.
Thus, a convolution kernel, which has dimensions of 3× 3 or 5× 5 in most cases, is applied
to the initial matrix. The kernel of the convolution used in this model is 3 × 3, which slides
from the upper left of the image on the matrix, with a specified stride length (the stride
length is considered one in this research). Each time the multiplication occurs across the
kernels, whose entries are updated and changed after each network training, this process
continues until the kernel covers the whole input matrices. The CNN model of this research
used the padding technique, which is commonly employed to control the shrinkage of
dimension after applying filters larger than 1 × 1. Moreover, it avoids losing information
at the boundaries [50].

Max Pooling Layer

Like convolution layers, this layer is used to extract useful features from the convolved
matrix, which is accomplished by reducing the dimensions of the matrix. This layer extracts
the maximum amount of matrix elements covered each time by the kernel. It also helps
the network become more robust, the output of which will eventually be a matrix with
lower dimensions.

3.1.2. LSTM Model

LSTM is a branch of the recurrent neural network (RNN) model with the capacity of
learning long-term dependencies. Sometimes, we need past information and data trends
to make a more reliable prediction. RNNs can use long-term information in processing
current data; however, they can learn only a limited number of short-term dependencies,
and the RNN networks lose their ability to recall past information at longer distances.
LSTM can be considered an extension to RNN that can connect past information with
present ones and maintain long-term data dependencies during data processing. While
there is one processing layer in RNN, we have four processing units in LSTM. Each LSTM
block consists of a memory cell as well as input, forget, and output gates. Gates are a way
to enter information voluntarily. Gates in the LSTM network assist information processing
with the sigmoid activation function where the output is between 0 and 1. The forget gate
controls the flow of information from the previous step, which determines whether to use
the previous information and, if yes, how much of it should be affected in the next layers.
The input gate controls the new information, which examines whether we use this current
information in the process, and if so, how much of it should be used. Finally, the output
gate examines how much information from the previous and current time steps should be
combined and transferred to the next step.
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These features help LSTM with controlling the flow of information and learning long-
term dependencies [51,52]. Figure 1 shows the architecture of an LSTM network block. The
symbols used in the model and their definitions are presented in Table 1.
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Table 1. LSTM Terms.

Definition Symbol

The input gate it

The forget gate that controls the previous information ft

The second gate that controls the new information Ct
∗

The state of memory at the time t Ct

Output gate which manages the information and could
be used as the memory cell output ot

The input xt

The hidden state that constitutes the memory cell output ht

Weight matrices U∗ & W∗

The bias term vectors B∗

The sigmoid function σ

The component-wise multiplication operator
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3.1.3. Trading Strategy

The proposed model offers the closing price of the next day, and trades are executed
accordingly. Hence, if the Brent Crude Oil return of the previous day is less than the
predicted value, a long trade is taken. However, if the Brent Crude Oil return of the
previous day is greater than the predicted value, a short-sell trade will be considered. In
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addition, as long as the direction of return does not change, the buying or selling position
is opened. In other words, it will not be closed at the end of the day to prevent the increase
of transaction costs, while the transaction cost is reduced as a percentage of profit.

3.2. Comparative and Proposed Models

This section will first review the benchmark models used to compare the performance
and then dive into the details of the proposed model. In each sub-section, a brief review of
the selected model is given, and the approach of this study to take advantage of them for
forecasting the return is then discussed.

3.2.1. ANN and ANN-PCA

ANN contains a set of interconnected neurons in different layers that exchange in-
formation with each other. This network consists of three primary layers, including an
input layer, hidden layers, and an output layer. In the input layer, the information of
each neuron, which is a vector, is connected to the hidden layer neurons by a connection
(synapse). The random weights are assigned to each neuron of the input layer connecting
to the hidden layer units. The input vectors are multiplied by the corresponding weights
of each connection, and the nonlinear activation function is used. Therefore, the weights
of the hidden layer components are updated through backpropagation derivatives. Then
the output of all processing units from each layer is given as input to the next layer. If the
number of layers is large, this process is called deep neural network (DNN).

In this study, the ANN model is used in a similar way to the proposed models by [12].
The PCA is applied to reduce the size of the input dataset so that it does not omit any
variables but generates new variables with more important information achieved from
original inputs. Another advantage is that the new variables are independent and have
no correlation [53]. In the current study, we choose two principal components that can
justify 0.95 of data variability. The PCA considered in this study is similar to that used
by [54]. Consequently, the ANN is utilized to predict oil return, after which we use the
PCA technique and its output with the ANN network in the second method. The model
proposed by [55] is used to implement the hybrid PCA-ANN method.

3.2.2. CNN-ANN and LSTM

Another comparative model is the CNN-ANN hybrid model based on the model
developed by [56]. The output of the CNN network is input to the ANN part of the model
containing fully connected layers. The first fully connected layer has 200 neurons, while
the second dense layer, the third layer, and the fourth layer contain 100, 60, 10 neurons
respectively. Each layer uses the RELU activation function, after which the output of the
CNN-ANN hybrid model is obtained. Figure 2 shows the proposed CNN-ANN architecture.
The LSTM method was implemented drawing upon the studies by [51] for the data before
COVID-19 and [47] for the COVID-19 data.
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3.2.3. The Proposed 2D CNN-LSTM

In the following, the proposed 2D CNN-LSTM is explained.
At first, the inputs are converted into 2D images, as performed in the CNN-ANN

model, by considering every 18 days as the rows of the matrix and the features as the
columns. As mentioned above, each 18 × 18 is considered an image (matrix), and these
inputs feed the models. The CNN model is very efficient in extracting useful features from
the primary data, while the LSTM model is useful for detecting long-term and short-term
dependencies [48]. The current study has combined these two models taking into account
the capabilities of both in predicting Brent Crude Oil return. Our proposed model is based
on the CNN-LSTM hybrid model, in which we have used two layers of convolution and one
layer of max pooling. The first and second layers of convolution consist of 32 and 64 filters,
respectively. The CNN network outputs, which are valuable features, are connected to the
fully connected layer, whose output is given as a new input to the LSTM network. The
output of this network is then given to another fully connected layer, and finally, the 2D
CNN-LSTM output will have one dimension. Figure 3 illustrates the flowchart of the main
steps of our study. Figure 4 illustrates the hybrid model of these two networks. Table 2
shows information about the characteristics of each of these methods. Python implements
the models, and the library used in coding deep networks is PyTorch.
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Table 2. Information of Models.

Model Description

ANN

Five hidden layers in size order of 200, 150, 120, 80, and 50 neurons
Activation function RELU

Learning rate 0.01
Batch normalization
Cost function MSE

PCA-ANN

Five hidden layers in size order of 20, 30, 20, 15, and 10 neurons
Activation function RELU

Learning rate 0.01
Batch normalization
Cost function MSE

CNN-ANN

The convolutional layer including 32 filters size (3 × 3)
Max pooling layer (2 × 2)

The convolutional layer of 64 filters size (3 × 3)
Five hidden layers in size order of 200, 150, 120, 80, 50 neurons

Activation function RELU
Learning rate 0.01

Batch normalization
Cost function MSE

LSTM 100 units

2D CNN-LSTM

The convolutional layer including 32 filters of size (3 × 3), max pooling
layer (2 × 2)

The convolutional layer including 64 filters of size (3 × 3)
Fully connected layer with 200 neurons

LSTM layer with 100 units

3.3. Characteristics of the Data

In this study, we collected Brent Crude Oil’s daily prices (The data were collected from
www.finance.yahoo.com) from 17 February 2013, to 30 December 2019, before COVID-19,
and from 31 December 2019, to 24 September 2020, after the outbreak of the pandemic. We
also accumulated Severe Acute Respiratory Syndrome (SARS) data from 18 November 2002,
to 19 May 2004. All data were collected from Investing and Yahoo Finance databases. This
study uses time-series data to predict Brent Crude Oil return. The input data are normalized
according to Equation (2). Table 3 shows the statistical characteristics of the series.

xnorm =
x− xmin

xmax − xmin
(2)

Table 4 demonstrates the features used in this study before the outbreak of COVID-19.
As different markets affect each other, and there is a high correlation between them, we
used features such as exchange rates, crude oil, and natural gas prices to forecast Brent

www.finance.yahoo.com


Energies 2022, 15, 8124 10 of 23

Crude Oil return. It should be noted that the outputs of GARCH and ARIMA are used
as inputs of our models. For the selected period, the return changes have been illustrated
in Figure 5.

Table 3. Data characteristics.

Obs.
Mean

1980
−0.0002

Max 0.0828
Min −0.1215

Variance 0.0106
Skewness −1.0340
Kurtosis 21.7231
Q2(10) 6.4905

ARCH test (10) 26.7749
Q2(10): the 10th order of the Ljung–Box Q test for the squared returns. ARCH test (10): the 10th order of Engle’s ARCH
test for the squared returns, for a significance level of 5%.

Table 4. Selected features as the inputs of the models.

1 Price Normalized 10 8-day lag-return

2 Return 11 9-day lag-return

3 1-day lag-return 12 10-day lag-return

4 2-day lag-return 13 Index EURO/Dollar

5 3-day lag-return 14 Price Natural Gas

6 4-day lag-return 15 US Dollar Index

7 5-day lag-return 16 Price Crude Oil

8 6-day lag-return 17 ARIMA(4,0,3)

9 7-day lag-return 18 GARCH(4,3)
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3.3.1. Performance Evaluation

Two types of mathematical and financial tests, described in detail below, have been
used to evaluate the performance of the models in predicting the future return of Brent Oil
and the accuracy of the forecasts.

Mathematical Tests

Five computational measures, namely mean square error (MSE), root mean square
error (RMSE), mean absolute percentage error (MAPE), mean forecast error (MFE), and
mean absolute error (MAE), are applied to evaluate the efficiency of the models in forecast-
ing the future return of Brent Crude Oil. Table 5 shows the formula of each of measure,
demonstrating the error each time the neural networks are executed. When the neural
networks are run for the first time, the model assigns initial values with the random weight
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and the bias vectors. Then, the neural network calculates its error at each execution and
updates the error values, weights, and biases by minimizing the derivatives.

Table 5. The Computational Measures’ Formula.

Evaluation Criteria Formula Descriptions

MSE ∑n
v=1(Av−Fv)

2

n

n = number of total iterations each run
Av = actual value

Fv = forecast value

RMSE
(

∑n
v=1(Av−Fv)

2

n

) 1
2

MAE ∑n
v=1|Av−Fv|

n
MAPE ∑n

v=1| Av−Fv
Av |)

n
MFE ∑n

i=1(ei)
n

Financial Evaluation

The financial evaluation shows the overall performance of the proposed model by
implementing the trading strategy in the real world. Brent Crude Oil is bought and sold or
held taking into account the predicted return of crude oil according to the trading strategy.
To evaluate the financial performance of the proposed model, risk-based performance
criteria are used by calculating the spread between the actual return and the hypothetical
benchmark return [57]. There are five most widely used methods to calculate risk-adjusted
returns, which are discussed in detail Table 6 shows the evaluation criteria and Table 7
presents the formula of each measure.

Table 6. Evaluation criteria.

Evaluation Criteria Description

Sharpe Ratio
As a measure of the excess return earned per
unit of volatility over the risk-free rate, [58,59]
the Sharpe ratio can be determined.

Deflated Sharpe Ratio
The deflated Sharpe ratio is used to determine
the probability that a discovered strategy is a
false positive [60].

Sortino Ratio

In terms of the Sharpe ratio, the Sortino ratio
[61] is a variation on this. Sortino calculates the
portfolio’s return by dividing it by its
downside risk (downside risk refers to the
volatility of returns below a certain level, most
commonly the average return of the portfolio
or returns below zero). The ratio of return
generated per unit of the downside risk is
represented by Sortino.

Maximum Drawdown

A maximum drawdown (MDD) is defined as
the maximum loss that a portfolio has
experienced between a peak and trough before
a new peak is reached. During a specified
period, maximum drawdown is an indicator of
downside risk [62,63].

Information Ratio

In contrast to the volatility of returns, the
information ratio (IR) measures portfolio
returns that exceed the returns of a benchmark,
usually an index. The benchmark used is
usually an index representing the market or a
specific sector [64].
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Table 7. Risk-adjusted return criteria formula.

Evaluation Criteria Formula Description

Sharpe Ratio Rp −R f
σp

Rp = Expected Portfolio Return
R f = Risk-Free Rate

Sigma(p) = Standard Deviation of Portfolio

Deflated Sharpe Ratio ˆDSR = Z

[
(ŜR−ŜR0)

√
T−1√

1−γ̂3 ŜR+ γ̂4−1
4 ŜR

2

] ŜR0 = The expected maximum Sharpe ratio
ŜR = The estimated Sharpe ratio

T = The sample length
γ̂3 = The skewness of the return’s distribution
γ̂4 = The kurtosis of the return’s distribution

N = The number of independent trials

Sortino Ratio Rp −R f
σd

Sigma(d) = A measure of the negative asset
return’s standard deviation

Maximum Drawdown LP−PV
PV

LP = Lowest value after peak value
PV = Peak value

Information Ratio Rp−Rb
Tracking error

Rb = Return’s benchmark rate
Tracking error = Excess return standard deviation

compared to return’s benchmark rate

4. Results

This section reports the results and outputs of the ANN, PCA-ANN, CNN-ANN,
LSTM, and 2D CNN-LSTM models. The information of implementing these methods is
provided in Table 2 and has been explained in the previous sections. Given that each trader
can choose different horizons for their trades, we decided to choose the forecast horizon of
our model for the next one day and the next five days to address this issue.

4.1. Before the COVID-19 Pandemic

The pre-COVID-19 data are divided into three segments of training, cross-validation,
and testing. They included 1795 data observations, of which 1500 were used for training
and cross-validation sets and the remainder (1501–1795 observations) for the testing set.

4.1.1. Computational Performance Evaluation

Table 8 displays the results of the one-day-ahead forecast horizon, according to which
the 2D CNN-LSTM method has a far better forecasting performance than other models in
terms of evaluation measures. The 2D CNN-LSTM has the lowest values on MSE, RMSE,
MAE, MAPE, and MFE with values of 0.0001, 0.0122, 0.0039, 0.1301, and 0.0017, respectively.
According to Table 8, after the 2D CNN-LSTM model, the LSTM and CNN-ANN models
provide better performance than the others. As was mentioned earlier, we used PCA to
reduce the dimensions. The principal component is derived from the linear combination of
input data and the new space direction matrix. We set the value of the principal components
(PCs) at 18 in this study for the PCA-ANN model. Table 9 presents the explained PCs’
variance in descending order, the first PC describing the most variability. Figure 6 illustrates
that PC 1 and PC 2 could describe approximately 95% of the data’s volatility.

Table 8. The Amount of Each Measure for pre-COVID-19 with One-Day-Ahead Forecast.

ANN PCA-ANN CNN-ANN LSTM 2D CNN-LSTM

MSE 0.0004 0.0003 0.0003 0.0002 0.0001
RMSE 0.0190 0.0175 0.0173 0.0149 0.0122
MAE 0.0146 0.0135 0.0132 0.0050 0.0039

MAPE 2.3440 1.4999 2.0530 0.2070 0.1301
MFE −0.0070 −0.0078 0.0081 0.0086 0.0017
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Table 9. The Degree of Variability Explained by PCs.

PCs Explained Variance PCs Explained Variance

1 0.9453 10 0.0003
2 0.0185 11 0.0002
3 0.0104 12 0.0001
4 0.0088 13 0.0001
5 0.0074 14 0.0001
6 0.0047 15 0.0001
7 0.0015 16 0.0000
8 0.0013 17 0.0000
9 0.0013 18 0.0000
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It was also noticed that approximately 0.0084% of data was lost when using PC 1 and
PC 2 as calculated through Equation (3). The use of PCA in addition to ANN in forecasting
the oil return on a one-day-ahead forecasting greatly improved the forecasting accuracy
and brought the forecast return closer to the actual value. The observed values for each
of the five evaluation measures used in the PCA-ANN model are lower than those in the
ANN model. As Table 10 demonstrates, we considered the forecast horizon for five days.
According to the obtained results, the proposed model, namely 2D CNN-LSTM, had higher
efficiency compared with other models. Based on the observations, 2D CNN-LSTM had the
lowest values in MSE RMSE, MAE, and MAPE, which were equal to 0.0001, 0.0119, 0.0033,
and 0.1023, respectively. Like the one-day-ahead forecast horizon, in the five-day-ahead
forecast horizon, the LSTM model and then CNN-ANN had better performances after the
2D CNN-LSTM model. However, unlike the one-day-ahead forecasting horizon where
the use of PCA improved the performance of the ANN model, the use of PCA in the
five-day-ahead forecasting did not work well. In other words, the prediction using the
ANN model had a better performance without the use of PCA.

1
m ∑m

i=1 ‖ x(i) − x(i)approx ‖ 2

1
m ∑m

i=1 ‖ x(i) ‖ 2
≤ 0.01 (3)

Regarding the observed values of the models implemented in this study to predict
the return of Brent Crude Oil before the outbreak of the COVID-19 pandemic, it can be
stated that the models outperformed in the five-day-ahead forecast horizon. The values for
MSE were 0.0001 and 0.0001 for the one-day- and five-day-ahead forecasts, respectively,
0.0122 and 0.0119 for the RMSE, 0.0039 and 0.0033 for the MAE, 0.1301 and 0.1023 for the
MAPE, and finally 0.0017 and 0.0010 for the MFE.

Table 10. The Amount of Each Measure for pre-COVID-19 with Five-Day-Ahead Forecast.

ANN PCA-ANN CNN-ANN LSTM 2D CNN-LSTM

MSE 0.0003 0.0003 0.0003 0.0002 0.0001
RMSE 0.0177 0.0177 0.0165 0.0141 0.0119
MAE 0.0135 0.0145 0.0066 0.0048 0.0033

MAPE 1.5511 1.926 1.0537 0.1495 0.1023
MFE 0.0002 0.0022 0.0001 0.0017 0.0010
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In Figure 7, The Brent Crude Oil return forecast can be observed using the ANN method
with the one- and five-day-ahead forecast horizons. Figure 8 illustrates Brent Crude Oil return
forecast using PCA-ANN. Figure 9 also demonstrates the output of the CNN-ANN method.
Finally, Figure 10 displays LSTM, and Figure 11 illustrates 2D CNN-LSTM predicting the future
return of Brent Crude Oil in the one-day- and five-day-ahead forecasting horizons.
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4.1.2. Financial Performance Evaluation

After predicting the future return of Brent Crude Oil using the presented models, this
section adopts buying and selling decisions according to the trading strategy presented in
Section 3.3, after which financial trades are implemented with related sequential buying and
selling pairs. The results of the financial evaluation with the one-day- and five-day-ahead
forecast horizons are given below Table 11.

Table 11. Descriptive Statistics of Daily Brent Crude Oil Return’s with One-Day-Ahead.

Model Mean Standard Deviation SE Mean 95% CI for µ

ANN 0.0007 0.0155 0.0006 (−0.0004, 0.0019)
PCA-ANN 0.0020 0.0139 0.0006 (0.0008, 0.0031)
CNN-ANN 0.0006 0.0055 0.0006 (−0.0005, 0.0018)

LSTM 0.0021 0.0063 0.0006 (0.0009, 0.0032)
2D CNN-LSTM 0.0026 0.0130 0.0006 (0.0015, 0.0038)

Table 12 provides the descriptive statistics of daily Brent Crude Oil return prediction using
the proposed method with the one-day- and five-day-ahead forecast horizons, respectively.

Table 12. Descriptive Statistics of Daily Brent Crude Oil Return’s with Five-Day-Ahead.

Model Mean Standard Deviation SE Mean 95% CI for µ

ANN 0.0016 0.0141 0.0006 (0.0005, 0.0028)
PCA-ANN 0.0015 0.0115 0.0006 (0.0004, 0.0027)
CNN-ANN 0.0021 0.0114 0.0006 (0.0010, 0.0033)

LSTM 0.0022 0.0150 0.0006 (0.0010, 0.0033)
2D CNN-LSTM 0.0033 0.0111 0.0006 (0.0022, 0.0045)

In Table 13, we considered the forecast horizon for 1 day, confirming the higher
performance of the proposed model, namely 2D CNN-LSTM, compared with other models.
According to observations, 2D CNN-LSTM had the highest values in Sharpe ratio, Sortino
ratio, and information ratio, which were equal to 0.2582, 0.5388, and 0.2491, respectively,
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and the lowest value in the criterion of maximum drawdown. After the 2D CNN-LSTM
model, the CNN-ANN model and then LSTM performed better than the other models.
According to the results of deflated Sharpe ratio and considering the values of 0.15, 0.2 and
0.25 for the expected Sharpe ratio, 88%, 56%, and 99% of the proposed strategy had a
positive Sharpe ratio, respectively. In other words, there were 12%, 44%, and 1% chances
that this strategy would not make earnings.

Table 13. The Amount of Each Measure with One-Day-Ahead Forecast.

ANN PCA-ANN CNN-ANN LSTM 2D CNN-LSTM

Sharpe Ratio 0.0808 0.0900 0.1441 0.1110 0.2582
Deflated Sharpe Ratio (0.15) 0.0163 0.0340 0.1401 0.0600 0.8801
Deflated Sharpe Ratio (0.2) 0.0012 0.0040 0.0204 0.0076 0.5658

Deflated Sharpe Ratio (0.25) 0.8620 0.8774 0.9917 0.9439 0.9999
Maximum Drawdown 0.1059 0.1038 0.0952 0.1349 0.0764

Sortino Ratio 0.1268 0.1036 0.2762 0.1637 0.5388
Information Ratio (IR) 0.0737 0.0813 0.1353 0.1043 0.2491

Table 14 provides the five-day forecast horizon, based on which the 2D CNN-LSTM
model had the highest values in Sharpe ratio, Sortino ratio, and information ratio equal to
0.2501, 0.4005, and 0.2341, respectively, and the lowest amount in the criterion of maximum
drawdown with value of 0.0790. After the 2D CNN-LSTM model, the LSTM model per-
formed better than the other models. According to the deflated Sharpe ratio results and
considering the values of 0.15, 0.2, and 0.25 for the expected Sharpe ratio, 1.21%, 13%, and
50% of the proposed strategy had a positive Sharpe ratio, respectively.

Table 14. The Amount of Each Measure with Five-Day-Ahead Forecast.

ANN PCA-ANN CNN-ANN LSTM 2D CNN-LSTM

Sharpe Ratio 0.0158 0.1062 0.0266 0.1638 0.2501
Deflated Sharpe Ratio (0.15) 0.0119 0.2202 0.0183 0.5999 0.9879
Deflated Sharpe Ratio (0.2) 0.0010 0.0492 0.0017 0.2546 0.8704

Deflated Sharpe Ratio (0.25) 0.0000 0.0056 0.0001 0.0581 0.5012
Maximum Drawdown 0.1724 0.1424 0.0524 0.1220 0.0790

Sortino Ratio 0.0127 0.1554 0.0128 0.2513 0.4005
Information Ratio (IR) 0.0093 0.0990 0.0085 0.1561 0.2341

4.1.3. Trading Strategy Results

As shown in the diagram Figures 12 and 13, based on the presented trading strategy,
the cumulative profit obtained by considering the forecasted return of crude oil with the
one-day- and five-day-ahead forecasting horizons, respectively, was higher using the 2D
CNN-LSTM model compared with other models. According to the results, the LSTM model
and then CNN-ANN had better performances after the 2D CNN-LSTM model.
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4.2. During COVID-19 Outbreak

First, the data during the COVID-19 outbreak, with 188 observations, were divided
into training and testing sets. Using the sliding window technique, the data were converted
into a series of dependent and continuous sequences. Because this study considered the
window size of 20, the number of sets of independent series became 168.

Because of the lack of data during the outbreak of the COVID-19 pandemic, this
study used SARS data. It is demonstrated that COVID-19 behavior would be similar to
the SARS pandemic. Therefore, this study tried to select a portion of the SARS data that
behaved more like COVID-19. First, the oil returns during the SARS period were separated
into sets in which the length of each set was 188 because the number of observations
for COVID-19 was 188. Therefore, 300 SARS data were separated into 188 observation-
length data series, after which the correlation between each of the SARS-derived sets
and the 188 COVID-19 series was examined. The Pearson Correlation Coefficient test
was used to investigate the relationship between SARS and COVID-19 data series. This
research considered no correlation between the series as the null hypothesis of the test. The
alternative hypothesis was a nonzero correlation value at a confidence level of 95%. After
calculating the correlation between all SARS and COVID-19 data series, the SARS data
series that could not reject the null hypothesis at the significance level were kept, and the
rest were left out. Then, this research kept the series showing the highest correlation with
the COVID-19 data series from the remaining data series. The results obtained from this
test showed that the highest correlation coefficient was the 60th data series, leading to the
selection of set 60 according to the description. Then, this study separated the SARS data
from 60 to 300 and used it as an aid for network training. Moreover, the sliding window
was applied to convert the data into different segments.

The window size used in this study was 20 for the 188 COVID-19 data records used
in network training. Xi to Xi+19 data with i = 1, 2, . . . , 168 was utilized to predict the next
day’s return as the response variable Yi+20. For instance, when we consider i equal to 1,
data X1 to X20 is selected to predict Y21 (the return of day 21). Figure 14 shows the sliding
window process with a window size of 20.

The effect of COVID-19 on oil return is similar to that of SARS regarding the above
descriptions. Because the spread of COVID-19 is faster than that of SARS, in this paper, we
decided to use the SARS data in addition to those of COVID-19 in the network training.
Therefore, the 220 SARS data sets and 130 COVID-19 data observations were employed for
the network training and the rest for network testing.

We evaluated the performance of the model according to the previously introduced
measures. Considering the above explanations, we compared the COVID-19 and SARS data
with the forecast horizons of one and five days in network training. Given the observations
shown in Figure 15, related to the one-day-ahead forecast horizon, the results demonstrate
that the LSTM model (SARS + COVID-19) performs better than the LSTM (COVID-19)
model. The LSTM (SARS + COVID-19) and the LSTM (COVID-19) models produced the
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values of 0.0002 and 0.0005 for the MSE, 0.0153 and 0.0224 for RMSE, 0.0110 and 0.0158 for
MAE, 2.2044 and 2.7714 for MAPE, and 0.0067 and −0.0056 for MFE. Table 15 Given these
values, it can be deduced that the performance of the LSTM network (SARS + COVID-19)
in the prediction of Brent Crude Oil return has increased significantly and improved the
network performance.
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Figure 15. LSTM COVID-19 Forecasting Result After COVID-19 Pandemic with One-Day- (a) and
Five-Day-Ahead (b) Forecast.

Table 16 shows the five-day-ahead forecast horizon. The values of the LSTM (SARS + COVID-19)
and LSTM (COVID-19) models are 0.0003, 0.0003 for MSE, 0.0177 and 0.0184 for RMSE,
0.0145 and 0.0143 for MAE, 1.9260 and 2.8300 for MAPE, and 0.0022 and −0.0001 for
MFE. Given these values, the LSTM network (SARS COVID-19) has a better performance
than the other models in predicting Brent Crude Oil return concerning the three criteria
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of MSE, RMSE, and MAPE. Based on the observed values, the performance of LSTM
(SARS + COVID-19) is better in the one-day- than five-day-ahead forecast horizon.

Table 15. The Value of Each Measure for COVID-19 Period with One-Day-Ahead Forecast.

LSTM (SARS + COVID-19) LSTM (COVID-19)

MSE 0.0002 0.0005
RMSE 0.0153 0.0224
MAE 0.0110 0.0158

MAPE 2.2044 2.7714
MFE 0.0067 −0.0056

Table 16. The Value of Each Measure for the COVID-19 Period with Five-Day-Ahead Forecast.

LSTM (SARS + COVID-19) LSTM (COVID-19)

MSE 0.0003 0.0003
RMSE 0.0177 0.0184
MAE 0.0145 0.0143

MAPE 1.9260 2.8300
MFE 0.0022 −0.0001

Figure 15 shows the prediction of Brent Crude Oil return using the LSTM method
with one-day- and five-day-ahead forecast horizons during the outbreak of the COVID-19
pandemic. Figure 16 demonstrates the diagram of the return for LSTM (SARS + COVID-19).
The difference of this method with simple LSTM is the consideration of oil price return
data during the SARS outbreak, which is considered as an input in the implementation of
the network and has significantly improved the network performance of the model.
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5. Conclusions

The current study has investigated the problem of forecasting future returns of Brent
Crude Oil by proposing a new hybrid CNN-LSTM to take advantage of each. Moreover, to
enhance the performance of the proposed models, the outputs of calibrated ARIMA and
GARCH models, along with other variables such as return lags, price, and macroeconomic
variables, have been considered as explanatory features for model training. According to
the obtained results and performance measures, our proposed model performs better than
others illustrated in the literature, including ANN, PCA-ANN, LSTM, and CNN-ANN.
The tests performed on the proposed model using the trading strategy showed a higher
cumulative profit from trading with the prediction results of the proposed two-dimensional
model compared with other models presented in this research. Furthermore, we used the
SARS pandemic data that had a high correlation with COVID-19 data to tune the proposed
models to increase their efficiency during the COVID-19 pandemic. The results demonstrate
that the proposed LSTM model, tuned by the SARS data, can better predict the Brent Crude
Oil return during the COVID-19 pandemic. Using accurate forecasts of crude oil return
for various economic decision-making problems such as real options valuation, portfolio
optimization, and designing investment strategies is a promising further research area.
Our proposed ML-based method can also be combined with state-of-the-art papers in the
realm of energy delivery to predict the amount of oil product cargo and set up a sustainable
process considering [65].
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