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Abstract: Spatially separated locations may differ greatly with respect to their electricity demand,
available space, and local weather conditions. Thus, the regions that are best suited to operating wind
turbines are often not those where electricity is demanded the most. Optimally, renewable generation
facilities are constructed where the maximum generation can be expected. With transmission lines
limited in capacity though, it might be economically rational to install renewable power sources in
geographically less favourable locations. In this paper, a stochastic bilevel optimisation is developed
as a mixed-integer linear programme to find the socially optimal investment decisions for generation
expansion in a multi-node system with transmission constraints under an emissions reduction policy.
The geographic heterogeneity is captured by using differently skewed distributions as a basis for
scenario generation for wind speeds as well as different opportunities to install generation facilities
at each node. The results reinforce that binding transmission constraints can greatly decrease total
economic and emissions efficiency, implying additional incentives to enhance transmission capacity
between the optimal supplier locations and large demand centres.

Keywords: renewable expansion planning; emission policy; transmission constraints; constrained
optimisation; stochastic optimisation; bilevel programming

1. Introduction
1.1. Motivation

Electricity generation constitutes a considerable driver of total greenhouse gas (GHG)
emissions. Between 2012 (27.4%) and 2019 (26.5%), its share in global carbon dioxide
(CO2) emissions remained relatively unchanged while total emissions from electricity
generation even increased by about 2% [1]. The power sector’s relevance with respect
to decarbonisation is much stronger still in some regions. In Africa and Asia-Oceania in
2019, carbon emissions from electricity generation accounted for 37.3% and 41.9% of each
region’s emissions, respectively. Thus, with global GHG emissions remaining at levels far
beyond their climatically sustainable degree [2], it is evident that the decarbonisation of the
power sector is one of the most pressing issues of today’s energy policy.

The electrification of processes which have previously been fuelled by fossil energy
carriers, such as mobility and certain industrial operations, will put additional stress on
power systems. This makes quickly ramping up renewable energy sources (RES) all the
more important. However, making the switch to an RES-dominated power sector entails
strategical and operational challenges. The central difficulty in dealing with wind- and
solar power, which are likely to overtake hydro as the most prevalent RES [3], is that the
decision when and where to produce electricity is beyond the control of the RES operators.
These sources fully depend on uncertain weather conditions. Even more so, weather
conditions are geographically heterogeneous. This means that the ideal sites for generation
units are often not located where the relevant load accrues, placing additional burdens on
transmission grids.
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Additionally, wind- and solar power, while coming at practically zero marginal cost
and with several other benefits (for an overview, see [4] p. 20 et seq.), in the short run, greatly
increase the system cost of power generation when compared to fossil fuels due to their
initial investment cost. Moreover, while the causal relationship between energy usage and
economic growth is still surprisingly unclear, energy usage per capita is highly positively
correlated with per capita GDP [5]. Thus, political entities nowadays face the difficult
trade-off between (short-term) economic performance and reducing GHG emissions. In
order to support this demanding decision-making process, we aim to answer the following
research question:

Research Question: Taking generation stochasticity and optimal operational
decisions in a geographically heterogeneous landscape into account, how can
policy-makers make optimal decisions about the trade-off between system cost
and GHG emissions with respect to their preferences?

To inform deciders on questions revolving around multiple goals, multi-objective
optimisations are a frequently used approach (for an overview of used techniques of
multi-objective optimisations in the context of energy systems, see [6]). To more accurately
handle the uncertainty associated with the generation of renewable energy sources and
the consequent operational decisions, we develop a multi-objective bilevel stochastic
mathematical programme. Our results emphasise the efficiency gains in combined planning
efforts of environmental and economic goals and the importance of sufficient transmission
capacity. Moreover, they imply that, even at elevated factor prices, natural gas is likely to
stay relevant in electricity generation, particularly with a stricter GHG emissions regime.

1.2. Related Literature

Our work is situated within the broader field of energy systems planning and operation
optimisation. In particular, it belongs to the research on generation (and transmission)
expansion planning (G&TEP) and is closely related to three streams in this field.

It firstly relates to the multi-objective optimisation literature. Energy systems optimi-
sation has increasingly applied multi-objective functions to explicitly model the associated
trade-offs. Traditionally, the problem was regarded either from the perspective of a social
planner who wants to minimise costs or from the perspective of a market actor who wants
to maximise profits (for an overview, see [7]). This cost-based view has been comple-
mented with other objectives. The most prevalent additions are the control of emissions
of noxae like CO2 or CH4 [8–10] and the reliability of the power supply [11–13]. Within
multi-objective optimisation literature concerned with the emissions of noxae, different
problem setup- and solution techniques are used. A relatively new approach is using bilevel
models with one objective on the first level and the other on the second to find optimal
outcomes. These models are solved using methods such as joint probabilistic programming
and fuzzy optimisation [14]) or convergent mathematical optimisation (after applying a
decomposition like [15]. Another approach to solving multi-objective problems is searching
for non-dominated solutions, that is, those that are not strictly mathematically inferior to
other solutions. The identified points lie on the so-called Pareto-frontier. Since there are
typically infinitely many Pareto-optimal solutions [16], evolutionary algorithms are often
employed to find a representative set [17]. Commonly used techniques are particle swarm
optimisation and the non-dominated sorting genetic algorithm II (NSGAII) [6]. The advan-
tage of this approach is that no preference- and size relations have to be known a priori.
On the downside, the optimisation is non-convergent. If one wishes to obtain converging
solutions, the multi-objective problem has to be reformulated as a single-level function
to then solve it using mathematical optimisation. The common methods to transform the
optimisation problem this way are weighted sum [16], ε-constraint [18], goal attainment
[19] and goal programming [20]. The disadvantages using this approach are that it is
computationally quite taxing to find the Pareto-frontier and that profound knowledge of
the relation of both objectives is required to make them comparable in a single equation [6].
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Furthermore, we draw on the literature of stochastic optimisation in power systems.
Deterministic models in G&TEP assume that the expansion planner has perfect foresight
and are thus able to greatly reduce the computational burden associated with solving them.
This disregard for the manyfold uncertainties in energy markets constitutes an oversim-
plification though that could induce far from optimal decisions [21]. In reality, uncertain
weather conditions lead to stochastic RES generation [22–24], future prices are unfore-
seeable [25], the behaviour of market competitors is unknown [26], and generation costs,
demand fluctuations and demand growth are uncertain [23,24]. Moreover, actors often
can neither control future network performance nor regulatory risk [17]. Some researchers
address this uncertainty with either scenario analyses [27] or sensitivity analyses [17]. The
most commonly used method in stochastic optimisation, though, is stochastic program-
ming, in which scenario generation (like Monte Carlo simulation) and scenario reduction
(using clustering algorithms) are employed to discretise probability density functions into
scenarios with respective probabilities [9,23,24,28,29].

In addition, our research relates to the literature on bilevel optimisation. Bilevel
optimisation is used to solve the actions of players in hierarchical games. Those consist of
one or more leaders who take their turn first, as well as one or more followers who perform
their action(s) after observing the leader’s actions. The leader(s) moreover anticipate the
followers’ reaction(s) to their own decision(s). One example of these sequential games
are the well-known Stackelberg games [30]. In energy systems optimisation, this is used
to model competitive markets and auctions [31,32], the interplay between transmission
system operators and generation companies [29], and the relations between upper- and
lower level political entities [14].

Another application in the context of G&TEP problems is using the upper level to
decide on optimal investment, while using the lower level to explicitly model optimal
market clearing dependent on the upper level decisions from a pure social welfare per-
spective. Using this approach in a stochastic bilevel optimisation, this can lead to quite
taxing computations, since a multitude of scenarios has to be considered on both levels.
Opting for explicitly modelling market clearing in a bilevel stochastic G&TEP problem
results in a more exact technical representation of generation and transmission operations
in each considered scenario. Valle et al. [11], for instance, have modelled a gas infrastruc-
ture investment with explicit market clearing and [33] used this approach for an energy
storage system planning problem. On the other hand, this usually entails choosing a
limited number of nodes, generation technologies, and scenarios to avoid encountering
computational infeasibility. Many studies regarding policy in G&TEP problems opt for not
explicitly optimising market clearing due to this reason [14,15,23,34].

Table 1 shows the literature most closely related to our work and how it fits into it.
As can be seen, the G&TEP literature is thus far mostly concerned with the policy level
on a larger scale on the one hand, in which a deterministic bilevel optimisation is used
to determine optimal levels of investment and operation under perfect foresight. This is
sometimes combined with a multi-objective approach to account for distinct policy goals.
While being more easily scalable, this only insufficiently addresses the stochastic nature of
RES that are essential to decarbonising the power system. When making policy decisions
for a smaller area, one can expect more efficient decisions on policy and investment plans
when the stochasticity of e.g., wind speeds is also taken into account.

On the other hand, the part of the G&TEP literature that is concerned with the uncer-
tainty of RES usually does not deal with explicit operational decisions, and, if so, seldom
taking a policy perspective, particularly not under consideration of the social detriment
of GHG emissions. Thus far, the only studies considering emissions and system cost in
stochastic bilevel models are [14,15]. Still, these authors also do not use the lower level to
model optimal market clearing, but rather to coordinate between different policy levels.
Therefore, to the best of our knowledge, there is not yet a study analysing the optimal
decisions of a social planner conjointly considering both emissions and expected generation
cost, taking the relevant uncertainty of RES into account. By making this decision conjointly,
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with the operational realities of realistic scenarios in mind, one could achieve substantial
gains in efficiency.

Table 1. Classification of the closest related literature

Source Multiobjective Stochastic Bilevel

[9] Emissions, Cost, Revenue RES Generation
[13] Emissions, Cost, Reliability Peak Load Surplus
[22] Infrastructure Cost, Operation Cost, Emissions Wind
[12] Cost, Voltage Stability Load, Wind
[8] Emissions, GDP, Energy Consumption National/Regional Level
[11] Demand Utility, Cost Investment, Operation
[33] Cost load Shaving, Volatility, Reserve Capability Investment, Operation
[34] Investment, Operation
[18] Wind Area-Coordination
[29] Wind
[27] Multiple
[23] Load, Wind
[24] Load, Wind
[28] Load, Wind
[10] Emissions, Cost, Generation
[14] Emissions, Cost Load Emissions-Cost-trade-off
[15] Emissions, Cost Load Cost-Emissions-trade-off
This Study Emissions, Cost Wind Investment, Operation

On a broader level, our research is related to the literature on renewable energy
sources and how they can be employed to reach GHG neutrality. Researchers from the
economics profession have put a focus on innovation and how a policy mix of hard
emission reduction policy and innovation subsidies can foster the transition to a carbon-
neutral economy [35,36]. Researchers from the field of social- and environmental studies
moreover emphasise the need for a concerted global policy action, including considerable
GHG emission prices on all sources, major subsidies to innovation in more efficient use,
generation, and mitigation technologies, investment in natural sinks as well as GHG-neutral
or net negative infrastructure construction as well as an overhaul of the electricity market
design [37,38]. Besides investment, innovation, and regulation, it is also important to take
public sentiment into account. Reviewing literature on renewable energies, Qazi et al. [39],
for instance, find that public reservations against the installation are often a hindrance in
the rollout of RES.

1.3. Contribution and Organisation

We aim to fill the gap in research elaborated in Section 1.2 by developing a multi-
objective GEP-model that uses its bilevel structure to explicitly analyse the optimal op-
erational decisions under a high degree of uncertainty of wind power generation under
heterogeneous weather conditions. Therein, we take the perspective of a social planner in
charge of the introduction an emission reduction policy and the development of an invest-
ment plan. Our approach allows decision-making based on the conjoint optimisation of
system cost and GHG emissions, informed by more realistic situational operation decisions
and constraints. We differ from the existing literature as we decide to focus on the decision
level of a smaller scale political entity to be able to incorporate more realistic operational
responses to uncertain wind power realisations.

By properly accounting for market clearing in each considered scenario, our model can
point out optimal generation expansions given any particular a priori preference relation
between costs and emissions. When compared to other research dealing with similar issues,
we contribute to the literature by simultaneously:
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• developing a stochastic bilevel optimisation model for a multi-nodal GEP problem,
taking into account the heterogeneity in the suitability for the generation of renewable
energy of different locations;

• conjointly optimising the policy decision on the introduction of an emissions-reduction
regulation and the investment decisions into different generation assets to increase
societal efficiency;

• explicitly accounting for operational decisions in a heterogeneous stochastic landscape
with a (potentially) high penetration of RES;

• recasting the multi-objective problem into a single objective to be able to find conver-
gent optima instead of using heuristic search, given the social planner’s preferences
on GHG emissions;

• applying our model to a realistic use case, relying on real world data combined with a
Monte Carlo scenario generation and -reduction approach to draw conclusions on its
implications for the real world.

The rest of this paper is structured as follows: In Section 2, we develop our bilevel
stochastic programme and discuss our solution strategy. We elaborate the setup for the
experiment we test our model on as well its results in Section 3. We then discuss our
findings in Section 4 and conclude in Section 5.

2. Methods

In this section, we develop a static stochastic programme to solve the multi-objective
GEP problem. To this end, we thoroughly discuss our approach in Section 2.1. We then
present the mathematical problem formulation in Section 2.2 and elaborate our strategy to
solving the bilevel formulation in Section 2.3.

2.1. Problem Statement

We optimise both the strategical long-term planning decision as well as short-term
operational decisions in every possible considered situation in a GEP-model. On the one
hand, we consider the perspective of a social planner who has to trade off the total cost of
generation and expansion against the social detriment associated with GHG emissions. This
social planner is in charge of simultaneously deciding upon investing in new generation
facilities and a policy limiting the annual emissions of GHG. At the same time, she will take
the ramifications that her decisions have on possible operational choices into account. We
moreover optimise the operational decisions in every considered stochastic wind power
scenario by minimising total operational cost. The total system cost is then given by
investments in candidate generation units as well as total variable cost of generation.

Here, a static case is considered. This means that the investment decisions made “here-
and-now” have to suffice for all situations which may be encountered, when “wait-and-see”
dispatch decisions have to be made, since there is no additional opportunity within the
planning horizon to adjust the decisions made at the first stage. We moreover consider
a long-term planning horizon (for instance, the lifespan of a wind turbine is taken to be
approximately 25 years [40]). Furthermore, we analyse an operational period of one year,
using annualised cost of investment and maintenance, as is a standard procedure (see,
e.g., [7]). Thus, the objective function is expressed in annualised cost as well.

As an example, we assume that the territorial unit that the social planner is in charge
of has an installed base of coal power plants and that she can consider investing in wind-
and/or natural gas turbines. Because of the international commitment towards limiting
global warming, we do not allow for constructing additional coal power plants in our
specification. However, this could easily be added.

In order to tackle this problem structure, a bi-level approach is taken. Each level
represents the different stage of decision-making, as well as different costs accruing. On the
upper level, the amount of investment in each asset at each node is decided upon, taking
into account the cost ensuing at the generation phase, depending on these investment
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decisions. Moreover, the social planner decides on an emissions’ reduction policy, taking
into account the GHG emissions accruing at the dispatch level.

On the lower level, we also take a social planner perspective, in the sense that it is
the objective of the lower level optimisation to minimise the total operational cost in every
single scenario and load demand level, given the decisions made on the upper level. As
opposed to the upper level decision-making, here, GHG emissions from generation are not
considered, but total emissions are constrained by the upper level policy decision. More
precisely, given each realisation of wind power at every node and the level of load demand,
the social planner decides upon dispatching electricity generated through wind- or natural
gas turbines or coal power plants. She can also choose not to dispatch the entirety of the
demanded electricity, thereby suffering a considerable loss of load penalty. Since part of
our target is finding an optimal emissions’ policy, given the policymakers valuation of the
societal detriments of GHG emissions, they do not enter the lower level’s objective function.
Instead, overall emissions are constrained by a general policy parameter decided upon
on the upper level. A schematic overview over the proposed model structure is shown in
Figure 1.

Upper-level - Investment decision & GHG cap

Lower-level - Dispatch decisions & Loss of load

pcω,o,n, pgω,o,n,
pwω,o,n, Lω,o,n

Expected total costs of dispatching
over all scenarios w, demand
levels o and nodes n

Costs associated to GHG emissions

Min

Min
Generation costs for each wind scenario w
demand level o and nodes n

G, pgn , pwn

Investment costs

Figure 1. Schematic overview of the proposed model structure.

Moreover, the territorial unit in question is assumed to have a heterogeneous landscape.
Therefore, the weather conditions governing renewable electricity generation are also much
different between the distinct locations. In our example, we consider a multi-node system
with diverse characteristics of weather conditions, load demand, and spatial capacity in
each location as is described in Section 3.1.

Additionally, the power flow between nodes is restricted by the capacity of the installed
transmission lines. This is particularly relevant in the examined case with heterogeneous
weather conditions. Since some areas are better suited than others for renewable energy
production, a limited transmission capacity could severely hinder the efficient adoption of
zero emission energy sources throughout the policy area. We also assume that wind power
generation can be curtailed at any time without any cost or reimbursement.

2.2. Problem Formulation
2.2.1. Multi-Objective Formulation

On the upper level of the analysed problem setup, the social planner is considering
two objectives—total cost and total GHG emissions. This presents a challenge, since both
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objectives are difficult to compare and measured in different units of account. Below, we
explicate the used representation of both and how we implement the trade-off. The total
system cost is given by the overall cost of investment in additional generation capacity as
well as the expected cost of operation, as shown in (1):

N

∑
n=1

(Iw pw
n + Ig pg

n) +
O

∑
o=1

ρo

Ω

∑
ω=1

Φω

N

∑
n=1

(cc pc
ω,o,n + cg pg

ω,o,n + cLLω,o,n) (1)

The term on the left-hand-side of (1) represents the expected total investment cost over
all assets at all nodes n. Variables pw

n and pg
n denote the additional capacity installation at

each node for wind- and gas turbines, respectively, while Iw and Ig denote their respective
annualised investment cost per MW installed. The right-hand-sided term of (1) is the
expected total cost of dispatching over all demand levels o, all scenarios ω, and all nodes
n. The parameters ρo and Φω are the hours per year in operating condition o, and the
probability of wind power scenarios ω, respectively. The amount of power supplied by
coal (gas) and their respective unit costs are denoted by pc

ω,o,n (pg
ω,o,n) and cc (cg). Lω,o,n is

the loss of load, i.e., the amount of demanded load that can’t be supplied, and cL is the
associated cost incurred per unit of lost load. Wind power dispatch does not enter the
objective function, since it has a marginal production cost of zero.

Besides the total system cost, the social planner is also concerned with lowering GHG
emissions. These are determined by multiplying the expected amount of MWh produced
by each means of generation with their associated per unit emissions. In the considered
scenario, total emissions are thus given by:

O

∑
o=1

ρo

Ω

∑
ω=1

Φω

N

∑
n=1

[pc
ω,o,nGc + pg

ω,o,nGg], (2)

where Gc and Gg are the amount of CO2-equivalent (CO2eq) GHG emissions associated
with one MWh of electrical energy generated by use of coal power plants and gas turbines,
respectively. The social planner now faces the problem of comparing and weighting
these two targets. There are multiple ways to do this. We explain our approach in more
detail below.

In multi-objective optimisation problems, we deal with two or more objectives that
are frequently not denoted in the same unit. There is a multitude of solution approaches
used to solve these type of problems as elaborated in Section 1.2. The most frequently
used ones are Particle Swarm Optimisation and NSGAII [6]. We opt for recasting the
multi-objective optimisation problem as a single-objective function using the weighted
sum method, though, with the social cost of carbon as the weighting parameter. Using the
weighted sum method, one expresses all considered objective functions of a multi-objective
problem in a single objective function, which can then be solved in the same manner as a
single-objective optimisation. This is achieved by adding both objectives and multiplying
each with a weighting parameter (see, e.g., [16]). Often, parameters are chosen so that they
add up to one, mostly for clarity. Instead, we opt for expressing the expected damages
from emissions in monetary terms.

We do so because, even though not exact, the social cost of GHG emissions is a
relatively well established research field which enables a sensible operationalisation (for a
review, see [41]). At the same time, this allows us to solve the problem using mathematical
optimisation, thus ensuring finding global optima given a respective preference relation
(Other commonly used techniques like genetic algorithms arrive at approximately optimal
solutions, as they are non-convergent heuristic methods). We therefore consider SCC as
a function that maps the total emitted amount of CO2eq GHG to their societal detriment.
While possible atmospheric tipping points are of concern, we follow a large part of the
environmental economics literature and take SCC to be a linear function of (2) (see [35,36]).
In other words, SCC can be considered as the constant-value societal cost per unit of CO2eq
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emissions. We moreover do not assume any particular value for SCC. While there are some
boundaries on realistic values provided by the literature (e.g., [41]), this is ultimately a
value judgement dependent on the policymakers preferences. Therefore, the upper level
objective function is given by:

min
∆UL

N

∑
n=1

(Iw pw
n + Ig pg

n) +
O

∑
o=1

ρo

Ω

∑
ω=1

Φω

N

∑
n=1

(cc pc
ω,o,n + cg pg

ω,o,n + cLLω,o,n)

+ SCC ·
Ω

∑
ω=1

Φω

O

∑
o=1

ρo

N

∑
n=1

(pc
ω,o,nGc + pg

ω,o,nGg),

(3)

where ∆UL are the upper level decision variables, and SCC is the linear social cost of carbon
per unit of CO2eq emission.

2.2.2. Bilevel Formulation

The optimisation of the upper level objective elaborated in Section 2.2.1 is con-
strained by:

s.t.

{
pw

n = ∑
q

uopt
nqa=wPopt

nqa=w (4)

pg
n = ∑

q
uopt

nqa=gPopt
nqa=g (5)

∑
q

uopt
nqa = 1 (6)

uopt
nqa ∈ {0, 1} ∀q

}
∀n, a (7)

G ≥ 0 (8)

pc
ω,o,n, pg

ω,o,n, Lω,o,n ∈ Θω,o,n

(
do,n, Wω,n, pw

n , pg
n, G

)
∀ω, o, n. (9)

Constraints (4)–(7) regard the investment decisions. Investments can only be made
between multiples of Popt

nqa, where a denotes the asset class, and q the size of the investment
decision. Equation (6) enforces that, for each asset at each node, there is exactly one
investment decision (including the option not to invest at all) and (7) makes decision
variable uopt

nqa binary. G is the GHG-cap, i.e., the maximum cumulative amount of CO2eq
GHG emissions over all nodes and every load demand level do, and is enforced to be non-
negative in (8). Finally, (9) states that the generation of each generating unit in each case at
each node as well as the amount of load demand not serviced is determined by a separate
market clearing optimisation Θω,o,n (the lower level problem). ∆UL =

{
pw

n , pg
n, G, uopt

nqa

}
are the upper level decision variables. The optimal values for the lower level’s decision
variables, pc

ω,o,n, pg
ω,o,n, and Lω,o,n, in turn, depend on the upper level decisions, maximum

generation capacities of the candidate generation units pw
n and pg

n, the decision on the
emissions cap G, as well as the realised combination of wind power in each scenario Wω,n
and the load demand levels do.

On the lower level, the overall emissions are constrained by GHG-cap G that was
decided upon on the upper level. The lower level problem coordinating optimal market
clearing throughout all weather scenarios and load levels in a year is thus given by:
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Θω,o,n
(
do,n, Wω,n, pw

n , pc
n, G

)
= (10){

Min.
∆LL

N

∑
n=1

[
cc pc

ω,o,n + cg pg
ω,o,n + cLLω,o,n

]
(11)

s.t. pw
ω,o,n + pc

ω,o,n + pg
ω,o,n + Lω,o,n − f f

ω,o,n + f t
ω,o,n = do,n : λω,o,n ∀n (12)

0 ≤ pw
ω,o,n ≤ pw

n Wω,n : µw
ω,o,n ∀n (13)

0 ≤ pc
ω,o,n ≤ pc

n : µc
ω,o,n ∀n (14)

0 ≤ pg
ω,o,n ≤ pg

n : µ
g
ω,o,n ∀n (15)

0 ≤ Lω,o,n ∀n

}
∀ o, ω (16)

N

∑
n=1

O

∑
o=1

ρo

[
pc

ω,o,n Gc + pg
ω,o,n Gg

]
≤ G : αω ∀ω. (17)

Here, ∆LL =
{

pw
ω,o,n, pc

ω,o,n, pg
ω,o,n, f f

ω,o,n, f t
ω,o,n, Lω,o,n

}
are the lower level decision

variables. Equation (11) is the lower level objective and minimises generation cost for every
wind condition Wω,n at all times for all nodes. Equation (12) ensures that the electricity
market is always cleared. Specifically, it enforces that the cumulative generation of all
assets at any given node plus its power flow balance and its loss of load always equal
the local power demand. Variables f f

ω,o,n and f t
ω,o,n denote the power flowing through

the transmission line “from” and “to” node n, respectively. Therefore, a property of any
node n is a collection of one or more lines leading “to” and “away from” it. Note that
the power flow can be negative though. Thus, “from” and “to” are rather a measure of
accounting than directional information. Constraints (13)–(15) ensure non-negativity of
power generation and that neither asset produces more than its capacity. In (13), the term
Wω,n describes the wind power generated at node n in scenario ω and determines at which
proportion of the installed capacity the wind turbines can operate. Variables λω,o,n, µw

ω,o,n,

µc
ω,o,n, µ

g
ω,o,n are the dual variables of (12)–(15). The dual variable of the market clearing

Equation (12), λω,o,n, can be interpreted as the marginal nodal price of generation, i.e.,
the marginal value created through an additional unit of power received at node n. The
others can be interpreted as the shadow prices of each production asset. In other words,
they represent the improvement of social welfare ensuing from a marginal increase in
the respective production facility. Equation (16) ensures that the loss of load is always
non-negative. Finally, (17) represents the emissions’ reduction policy. More specifically, it
restricts the overall amount of CO2eq GHG emissions in a year to G, the GHG-cap decided
upon in the upper level. The dual variable of (17) is denoted αω.

The transmission constraints are specified below:{
− f l ≤ fo,ω,l ≤ f l : µ

f
o,ω,l , µ

f
o,ω,l ∀l (18)

fo,ω,l = Sl

(
δ

f
o,ω,l − δt

o,ω,l

)
: µ

f
o,ω,l ∀l (19)

−π ≤ δo,ω,n ≤ π : µδ
o,ω,n, µδ

o,ω,n ∀n (20)

δo,ω,1 = 0 : µ
δre f
o,ω,1

}
∀o, ω (21)

Equation (18) reads that any power flow fo,ω,l through line l cannot ever exceed its
line capacity fl . Note again that every line l leads “from” a node “to” another node. The
power flow is governed by the voltage angle between the sending and the receiving node,
δ

f
o,ω,l and δt

o,ω,l , respectively, as specified by (19). Parameter Sl denotes the susceptance of
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line l. The maximum voltage angle at any node n is confined to ±π in (20). Ultimately, (21)

sets the voltage angle at reference node n = 1 to zero. Terms µ
f
o,ω,l , µ

f
o,ω,l , µ

f
o,ω,l , µδ

o,ω,nµδ
o,ω,n,

and µ
δre f
o,ω,1 denote the respective dual variables.

2.3. Solution Strategy

We solve the problem by transforming it to a single-level mixed-integer problem.
Bilevel problems can be solved by transforming the lower level problem in its respective
dual problem [42]. The lower level constraints given in (10)–(21) are all convex and con-
tinuous, which, implying that strong duality holds [43], i.e., that the optimal values of the
dual problem equal those of the primal problem. Below, (22)–(30) define the dual problem
formulation of the market clearing problem:{

N

∑
n=1

cc pc
ω,o,n +

N

∑
n=1

cg pg
ω,o,n +

N

∑
n=1

cL Lω,o,n =

N

∑
n=1

λω,o,n do,n −
N

∑
n=1

µw̄
ω,o,n pw

n ·Wω,n −
N

∑
n=1

µc̄
ω,o,n pc

n −
N

∑
n=1

µ
ḡ
ω,o,n pg

n

(22)

−λω,o,n + µw
ω,o,n ≥ 0 ∀n (23)

cc − λω,o,n + αω · ρoGc + µc
ω,o,n ≥ 0 ∀n (24)

cg − λω,o,n + αω · ρoGg + µc
ω,o,n ≥ 0 ∀n (25)

cL − λω,o,n ≥ 0 ∀n (26)

λ
f
o,ω,l − λt

o,ω,l − µ
f
o,ω,l + µ

f
o,ω,l , −µ

f
o,ω,l = 0 ∀l (27)

∑
n f

Sl µ
f
o,ω,l −∑

nt

Sl µ
f
o,ω,l + µ

δre f
o,ω,l = 0 n = 1 (28)

∑
n f

Sl µ
f
o,ω,l −∑

nt

Sl µ
f
o,ω,l − µδ

o,ω,l + µδ
o,ω,l = 0 ∀n 6= 1 (29)

µw̄
ω,o,n, µc̄

ω,o,n, µē
ω,o,n, αω ≥ 0

}
∀o, ω (30)

Equation (22) is the strong duality equality and (23)–(26) are the dual constraints
of the constraints of the dual problem. Note that the terms ∑N

n=1 µw̄
ω,o,n pw

n ·Wω,n and

∑N
n=1 µ

ḡ
ω,o,n pg

n in (22) introduce nonlinearity, as µw̄
ω,o,n, pw

n , µ
ḡ
ω,o,n, and pg

n are all decision
variables. We linearise the problem by substituting (22) by (31) and additionally introducing
constraints (32)–(34) [7]. In short, the nonlinear terms are substituted for by an auxiliary
piecewise integer approximation which uses the investment options for each asset at each
node. The full model specification is given in Appendix A. We computationally solve the
problem in Julia’s JuMP.jl, using IBM’s CPLEX as a solver. CPLEX is a solver which, as
opposed to heuristic optimisation methods, uses convergent mathematical optimisation
techniques so that it arrives at global optima. We moreover check our results for plausibility
and find no reason to doubt the verity of our built model.
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N

∑
n=1

cc pc
ω,o,n +

N

∑
n=1

cg pg
ω,o,n =

N

∑
n=1

λω,o,n do,n −
N

∑
n=1

µc̄
ω,o,n pc

ω,o,n

−
N

∑
n=1

∑
q

zaux
nqw ·Wn,ω −

N

∑
n=1

∑
q

zaux
nqg

(31)

zaux
nqa = µa

na − ẑaux
nqa Popt

nqa ∀n, a (32)

0 ≤ zaux
nqa ≤ uopt

nqa M ∀n, q (33)

0 ≤ ẑaux
nqa ≤

(
1− uopt

nqa

)
M ∀n, q (34)

3. Numerical Experiment
3.1. Assumptions

We test our multi-objective GEP model on a three-node system with a heterogeneous
landscape roughly resembling the geographic and demographic profiles of three locations
in Wyoming, USA. Our test data reflect the following features. Node one resembles a
medium-sized city of about 100,000 inhabitants in a plains region sheltered by mountains.
It has a high load demand, relatively low wind speeds and limited capacity to invest in
generation facilities due to limited space. Node two represents a suburban small town
with an above average industrial base, implying that it has a higher per capita power
consumption. It houses about 5000 Inhabitants, has relatively high wind speeds, as it is
located on a more exposed plain and has plenty of space to install additional generation
facilities. Finally, node three is a sparsely populated mountain area. Its load demand is
very low, wind speeds are very high and there is plenty of room available to install wind
turbines. Due to the mountainous terrain, though, its possibilities to build larger scale
power plants are limited. Figure 2 provides a schematic overview over our test system.

Node 1

Node 2

Node 3

line 1 from node 1
to node 2 line 2 from node 2

to node 3

line 3 from node 3
to node 1

Figure 2. Schematic depiction of our test power system.

Due to the mountains separating the three locations, we assume them to be sufficiently
geographically isolated for the wind speeds to be independent of one another. The proba-
bility density function (PDF) of wind speeds can be expressed as a Rayleigh distribution, as
a function of the area’s average wind speed [44]. Figure 3a shows the distributions of wind
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speeds at each node, given the locations’ respective average wind speeds. We discretise
the PDFs into 10 scenarios with an assigned probability at each node by means of a Monte
Carlo Simulation approach. The function to transform wind speeds into electrical power
is assumed to be linear between cut-in speed and rated speed and is taken from [45]. The
cut-in-, rated- and cut-out speeds are chosen at 8, 31, and 51 MPh, respectively. Using this,
we transform each scenario’s wind speed into the capacity usage in that scenario to attain
parameter Wω,n, resulting in the scenarios shown in Figure 3b. This in hand, we construct
Kronecker’s product of all independent scenarios to acquire our entire set of stochastic
scenarios. We moreover assume that the transmission line capacity is equal between all
nodes and that there is no transmission loss, i.e., the line susceptance Sl is equal to the line’s
transmission capacity fl .

(a) PDFs of wind speeds at all nodes (b) Wind power generation scnearios

Figure 3. The probability density functions of wind speeds in Mph at each node are shown in (a);
(b) shows the resulting scenarios, denoting the proportion of rated power Wω,o,n and their respective
probabilities.

As described above, our experiment resembles locations in Wyoming, USA. Naturally,
the data provided by the U.S. Energy Information Administration (EIA) may differ from
a European case, inter alia, in resource prices, average wind speeds and usage patterns.
Moreover, with the energy crisis ongoing at the time of writing this (fall 2022), stable prices
and expectations are hard to come by. We primarily rely on data provided by the EIA and
the U.S. Office of Energy Efficiency & Renewable Energy. We calculate variable resource
prices as their average between January and July 2022. Following [34], we consider three
levels of load demand, each covering a third of the year. These levels do are base load,
medium load, and peak load, with factors 1, 1.5, and 2.

We collect data on CO2eq GHG emissions per MWhel for both coal and natural gas
from [46]. The input efficiency of each generation type is taken from [47]. We use natural
gas price data from [48] and coal prices from [49]. For both of them, we use the average of
monthly prices between January and June 2022. For coal, we also use the average between
the price of Central Appalachian and Powder Basin coal. From the input efficiency and
the factor prices, we calculate the generation price per MWhel. We draw on [50] for typical
values for cut-in speed, rated speed, and cut-out speed of wind turbines and use [51] for an
estimate of the average wind speeds at our nodes. An approximate value for the per capita
usage of electricity in Wyoming comes from [52]. We calculate annualised investment costs
by drawing on data on overnight- and maintenance cost provided by [53]. The lifespans
of wind- and gas turbines come from [40] and [54], respectively. As a simplification, we
assume discount- and inflation rates of zero. Naturally, coal plants also have a fixed annual
maintenance cost. Because decommissioning of existing plants is not considered here,
though, these costs do not affect the GEP problem and are thus not included. Table 2
shows the node specific parameter values used in the experiment. Table 3 shows the



Energies 2022, 15, 8109 13 of 21

chosen parameter values for each source of power generation. We moreover set the baseline
transmission capacity of all lines f to 75 MW and the average value of the lost load cL

to 250.

Table 2. Investment and cost parameters.

Node 1 Node 2 Node 3

max additional wind cap. in MW 120 540 840
max additional gas cap. in MW 200 400 200

base load in MWh 219 53 11
medium load in MWh 328 79 17

peak load in MWh 437 105 22
average wind speed in Mph 11 15 18

Table 3. Parameters specific to each energy carrier.

Wind Coal Natural Gas

annualised investment cost per MW in $US 10,000 — 28,000
minimum unit increment in capacity expansion 60 MW — 50 MW

variable cost in $US
MWhel 0 ≈29 ≈58

CO2eq emissions in tCO2
MWhel 0 ≈1 ≈0.41

3.2. Results

Below, we discuss the findings of the numerical experiment described in Section 3.1.
Figure 4a shows the Pareto Frontier with respect to the policymaker’s preferences regarding
the valuation of the social detriment of GHG emissions for our model specification. Every
point on the curve relates to the optimal trade-off between cost and emissions at the given
level of SCC. The resulting optimal policy decision and the respective expected total system
costs are shown in Figure 4b. The orange line shows the optimal GHG-restriction at each
preference level, while the blue line depicts the associated annualised cost of investment,
generation and loss of load. The sharp decrease of allowed emissions from a valuation of
about $30 per tCO2 resembles the fact that it then becomes socially optimal to replace coal
power plants with natural gas turbines. The second jump in the optimal policy beyond $220
can be attributed to the point that partially accepting some loss of load becomes rational.
As can clearly be seen from Figure 4, in our specification, it becomes rational to forego
almost all fossil fuel based generation from an SCC of $468 onwards, as generation from
gas turbines becomes less attractive than suffering the cost associated with the loss of load.
This can also be seen in the massive jump in expected system cost from that point onwards.

We moreover analyse the effect of different SCC preferences on capacity investment
and the implied expected generation. Figure 5a shows the cumulative optimal investment
decisions in both wind- and gas turbines for each SCC. It can easily be seen that investment
in gas infrastructure becomes increasingly important at medium levels of SCC, when
replacing coal, while quickly decreasing at higher levels as a result of being itself replaced
by both wind turbines with relatively low capacity factors and by loss of load. Figure 5b
shows the cumulative expected generation by asset, also including loss of load, with respect
to SCC. Unsurprisingly, emission-intensive coal production is dropping very quickly with
increasing levels of SCC, being replaced by natural gas. Notably, the expected wind
power production is relatively unchanged over the preference space, even though the
investment in wind turbines increases quite constantly. This can be explained by the
limitation in transmission capacity. While installing wind turbines in at the mountainous
node 3 and even at the moderately windy node 2 is always somewhat attractive, the
maximum transmission capacity to the load hungry node 1 is always 75 MW. The increases
in wind power capacity with rising SCC are simply replacing coal and gas generation in
lower wind speed scenarios. Again, from an SCC of $468 onwards, one can easily see that
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the decrease in expected gas power generation is fully compensated by additional loss
of load.

(a) Pareto optimal frontier
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(b) Optimal values for GHG-cap and total system cost

Figure 4. (a) shows the Pareto optimal frontier for trading off the total cost of generation against
total GHG emissions. Every point on the shown frontier is an optimal solution with respect to the
policymaker’s a priori preference relation regarding both objectives; (b) shows the resulting policy
decision dependent on the chosen level of SCC, as well as the associated expected total system cost in
millino $US.

(a) capacity in wind and gas (b) expected power generation

Figure 5. The cumulative capacity installments of both wind- and gas turbines with respect to SCC
are shown in (a); (b) shows the expected generation of each asset (including loss of load) under each
GHG-emissions preference.

Figure 6 shows the nodal power balance for three distinct scenarios under our experi-
mental specification. Figure 6a depicts the corner case in which the societal detriment of
GHG emissions is fully disregarded. It can easily be seen that power generation in this
scenario relies mostly on cheap coal, while there is still some investment in wind power
capacity at nodes 2 and 3. Figure 6b depicts a case in which the cost of carbon is valued
at $50, roughly the magnitude of the mean value found in the review study by [41]. The
largest difference to the first case is that the power consumption at node 1 is now mostly
covered using gas power. Moreover, a larger proportion of the load demanded at both
nodes 2 and 3 is supplied using wind power. The third case depicted in Figure 6c shows the
expected power generation at a higher level of SCC at $180 per tCO2 under our specification.
This value resembles the call that Fridays for Future Germany put out for an official “fair”
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emissions price [55], and also roughly equals the 2020 mean estimate of environmentalist
think tank Resources for the Future [56].

(a) (b) (c)

Figure 6. The disaggregation of nodal power balances are shown for three relevant scenarios.
(a) SCC = 0; (b) SCC = 50; (c) SCC = 180.

There is actually relatively little difference to Figure 6b, predominantly additional
replacement of coal by natural gas as well as some additional wind power investment. This
holds only as long as the policy area in question is heavily transmission constrained, though.
Analysing scenarios with other transmission line capacities, it can be seen that an increase
in the overall transmission capacity can decrease both system cost and GHG emissions, but
particularly strongly restricting transmission lines can induce considerable losses in social
welfare, both in terms of cost and the environment, as can be seen in Figure 7.

(a) total system cost (b) expected GHG emissions

Figure 7. (a) shows the total system cost in millions of $US with respect to both the valuation of
GHG emissions and the transmission line capacity; (b) shows the CO2eq emissions for the same
observation space.

Naturally, the economic valuation of unserviced load also greatly affects optimal
decision-making. For our benchmark scenario, we assumed a high value of $250 to retain
a relatively high service level for most SCC preferences. As a sensitivity analysis, we test
different configurations of the valuation of both loss of load and GHG emissions. The
resulting initial system cost and emissions are depicted in Figure 8.

Notably, the resulting optimal decisions are highly dependent on the combination
of both valuations, not just their absolute height. This is true for the total system cost in
particular. Figure 8a shows that the highest total cost is actually incurred at medium levels
of the cost of loss of load, combined with a high SCC. This can be explained by the fact
that, at this configuration, loss of load is so costly that it substantially increases the total
incurred cost, while still being sufficiently small in comparison to the social cost of carbon
to make a lower service level acceptable. Figure 8b yields relatively foreseeable results.
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Unsurprisingly, total emissions are highest in any case if SCC is assumed very small. On
the other hand, the most mitigation is achieved when the cost of unserviced load demand
is valued only little in comparison to GHG emissions, as it then becomes more attractive to
simply generate less electricity to decrease emissions.

(a) total system cost (b) expected GHG emissions

Figure 8. (a) shows the total system cost in millions of $US with respect to both the valuation of GHG
emissions and unserviced load demand. (b) analogously shows the CO2eq emissions. Note that the
axes of (a,b) are flipped for better readability.

4. Discussion

We tested our model in a numerical experiment, tuned to relatively realistic conditions.
Our results moreover allow for several conclusions: firstly—transmission matters. The
worst-case scenarios found were always those with minimum line capacity. Installing a
powerful transmission grid can thus enable the rollout of RES, as it allows power flow
between the locations best suited for generation and those with the highest load demands.

Our experiment also showed that often either non-negligible parts of the generated
wind power were shed or the turbines were not even put up, since the combination of
expected local loads and limited transmission lines would have made the investment
irrational. Besides an expanded grid, options like decentralised storage or demand side
management could help to mitigate that barrier. Relatedly, it might also be advisable to
incentivise energy intensive operations to set up closer to the generation centres to allow
for a better facility usage.

It was also evident that coal became unattractive at most assumed levels of SCC,
even while it was the only technology for which facilities were already in place in our
specification. Natural gas, on the other hand, was relatively attractive even at higher levels
of SCC, due to its much lower GHG contents. Naturally, gas prices are difficult to foresee
with the current crisis at hand. However, it seems plausible that, even at very high prices,
natural gas will remain an important factor in the power sector, also due to its beneficial
ramping constraints, until quickly dispatchable solutions such as hydrogen peakers, battery
storage systems and demand response management will be able to fill the role of gas
peakers at scale.

Generally, our results are in line with what theory would suggest, as well as with
the dynamics found by other researchers (as far as numerical experiments with different
specifications are comparable). Natural gas, for instance, is found to keep playing an
important role, even with high penetration of RES, due to its flexibility and lower carbon
intensity when compared to, e.g., coal [27,57]. Particularly, more gas is needed if a stricter
emissions cap is introduced (up to a certain point) [58]. Unsurprisingly, others also found
that ceteris paribus increasing the transmission capacity for resources would lower their
on-site factor costs (e.g., [11]). Moreover, putting a higher monetary value on the societal



Energies 2022, 15, 8109 17 of 21

detriment of emissions is also found to increase total system cost as more costly but less
emitting generation technologies are used [27,28].

5. Conclusions

In this paper, we were seeking to answer the question of how policy-makers could
make optimal decisions in trading off between system cost and GHG emissions, with respect
to their value judgments. Particularly, we therein accounted for generation stochasticity
and optimal operational decisions in a geographically heterogeneous landscape.

We showed how to solve an exemplary version of this problem using three possible
generation technologies, including wind power as a stochastic renewable power source.
Our model does not cover all generation technologies, but our approach could be extended
to incorporate additional elements without thereby introducing particular issues. To arrive
at our solution, we developed a multi-objective bilevel stochastic programme to assist
policymakers in finding good trade-offs between economic performance and limiting GHG
emissions. The application relies on the policymaker’s a priori preference relation of
emissions and short-term cost.

An extended version of our model tuned to the specifics of a policymakers’ region
could assist them to plan ahead for the development of their constituency. They could, for
instance, use their value judgement to define a search area of SCC values and use the results
conjointly determine targets for generation facility expansion and emissions regulation.
Based on this plan, they could implement policy measures, such as incentive schemes,
to steer the local sector development towards their set targets. This can be primarily
useful to smaller constituencies without comprehensive sets of regulation in place, as our
method relates to the earlier stages of planning the setup of such a regulatory system.
Particularly, this might be interesting for some subnational areas in developing Asia or
Africa, as these regions have very high shares of GHG emissions from electricity generation
(see Section 1.1).

In our work, we focused on the issue of wind power generation in a heterogeneous
landscape. To keep our model tractable and emphasise the core of our considerations, we
deliberately left out some circumstances. Thus, our specification still has several limitations
that should be overcome in future work in order to make it applicable in the real world.
Firstly, we only consider a limited number of exemplary generation technologies. This
could be extended through the inclusion of a full set of available technologies, in particular
other renewable energy sources like photovoltaics. Moreover, besides RES generation, other
stochastic elements govern electricity market outcomes. Other sources of uncertainty like
variable load and fluctuations in factor prices should be incorporated as well. Furthermore,
the investment plan could be made more realistic and efficient by making explicit other
relevant investment options, such as storage and transmission capacity. Finally, we chose
a static model for simplicity. A more faithful representation of reality could include a
dynamic version of this optimisation problem, including issues such as planning- and
construction times.
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Nomenclature

Variable Description Variable Description
Indices: UL decision variable:

o Demand level pw
n Wind power capacity expansion at node n

ω Wind scenario
n Node pg

n Gas power capacity expansion at node n

a Asset uopt
nqa

Investment option (binary) is set to 1 for the
optimal investment option

q investment decision G Emissions cap
l Line

LL decision variable:
Parameters: pc

ω,o,n Amount of power supplied by coal
SCC Social cost of carbon per unit of CO2eq emission pg

ω,o,n Amount of power supplied by gas

Iw
Annualised investment costs per MW of wind
capacity installed pw

ω,o,n Amount of power supplied by wind

Ig
Annualised investment costs per MW of gas capacity
installed Lω,o,n Loss of load

Popt
n,q,a Investment of size q in asset class a at nodes n f f

ω,o
Power flow through transmission line coming
from node n

ρo Hours per year in operating condition o f t
ω,o

Power flow through transmission line running to
node n

Φω Probability of wind power scenario ω fo,ω,l Power flow through line l
cc Unit costs of power supplied by coal δ

f
o,ω,l Voltage angle at sending node

cg Unit costs of power supplied by gas δt
o,ω,l Voltage angle at receiving node

cL Cost associated with one unit of lost load

Gc Emissions associated with one unit of electrical
energy produced from coal Dual variables:

Gg Emissions associated with one unit of electrical
energy produced from gas λω,o Marginal nodal price of generation

fl Flow capacity of line l µw
ω,o Shadow price of wind power capacity

Sl Susceptance of line l µ
g
ω,o Shadow price of gas power capacity

Wω,n wind conditions at in scenario ω at node n µc
ω,o Shadow price of coal power capacity

do,n load demand at node n & demand level o αw Dual variable of the emissions constraint

Dual variables of transmission constraints:

µ
f
o,ω,l , µ

f
o,ω,l , µ

f
o,ω,l , µδ

o,ω,l , µδ
o,ω,l ,µ

δre f
o,ω,l

Auxiliary variables:
zaux

nqa , ẑux
nqa

Appendix A. Full Model Specification

min
∆SL

N

∑
n=1

(Iw pw
n + Ig pg

n) +
O

∑
o=1

ρo

Ω

∑
ω=1

Φω

N

∑
n=1

(cc pc
ω,o,n + cg pg

ω,o,n +
N

∑
n=1

cLLω,o,n)

+ SCC ·
Ω

∑
ω=1

Φω

O

∑
o=1

ρo

N

∑
n=1

(pc
ω,o,nGc + pg

ω,o,nGg)

(A1)

s.t.

{
pw

n = ∑
q

uopt
nqa=wPopt

nqa=w (A2)

pg
n = ∑

q
uopt

nqa=gPopt
nqa=g (A3)

∑
q

uopt
nqa=w = 1 (A4)

∑
q

uopt
nqa=w = 1 (A5)

uopt
nqa=w, uopt

nqa=g ∈ {0, 1}∀q

}
∀n, a (A6)

G ≥ 0 (A7)
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N

∑
n=1

cc pc
ω,o,n +

N

∑
n=1

cg pg
ω,o,n +

N

∑
n=1

cLLω,o,n =
N

∑
n=1

λω,o,n do,n −
N

∑
n=1

µc̄
ω,o,n pc

ω,o,n

−
N

∑
n=1

∑
q

zaux
nqa=w ·Wn,ω −

N

∑
n=1

∑
q

zaux
nqa=g

(A8)

zaux
nqa = µa

na − ẑaux
nqa Popt

nqa ∀n, a (A9)

0 ≤ zaux
nqa ≤ uopt

nqa M ∀n, q (A10)

0 ≤ ẑaux
nqa ≤

(
1− uopt

nqa

)
M ∀n, q (A11){

pw
ω,o,n + pc

ω,o,n + pg
ω,o,n − f f

ω,o,n + f t
ω,o,n = do,n (A12)

0 ≤ pw
ω,o,n ≤ pw

n ·Wω,n : µw
ω,o,n (A13)

0 ≤ pc
ω,o,n ≤ pc

n : µc
ω,o,n (A14)

0 ≤ pg
ω,o,n ≤ pg

n : µ
g
ω,o,n

}
∀ω, o, n (A15)

N

∑
n=1

O

∑
o=1

ρo · [pc
ω,o,nGc + pg

ω,o,nGg] ≤ G : αω ∀ω (A16){
− f l ≤ fo,ω,l ≤ f l : µ

f
o,ω,l , µ

f
o,ω,l ∀l (A17)

fo,ω,l = Sl

(
δ

f
o,ω,l − δt

o,ω,l

)
: µ

f
o,ω,l ∀l (A18)

−π ≤ δo,ω,l ≤ π : µδ
o,ω,l , µδ

o,ω,l ∀n (A19)

δo,ω,1 = 0 : µ
δre f
o,ω,l

}
∀o, ω (A20){

−λωo,n + µw
ω,o,n ≥ 0 ∀n (A21)

cc − λω,o,n + αω,o,n · ρo · Gc + µc
ω,o,n ≥ 0 ∀n (A22)

cg − λω,o,n + αω,o,n · ρo · Gg + µ
g
ω,o,n ≥ 0 ∀n (A23)

cL − λω,o,n ≥ ∀n (A24)

λ
f
o,ω,l − λt

o,ω,l − µ
f
o,ω,l − µ

f
o,ω,l − µ

f
o,ω,l = 0 ∀l (A25)

∑
n f

Slµ
f
o,ω,l −∑

nt

Slµ
f
o,ω,l + µ

δre f
o,ω,l = 0 n = 1 (A26)

∑
n f

Slµ
f
o,ω,l −∑

nt

Slµ
f
o,ω,l − µδ

o,ω,l + µδ
o,ω,l = 0 ∀n 6= 1 (A27)

µw
ω,o,n, µc

ω,o,n, µ
g
ω,o,n, αω ≥ 0

}
∀o, ω (A28)
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