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Abstract: With large penetration of wind power into power grids, the accurate prediction of wind
power generation is becoming extremely important. Planning, scheduling, maintenance, trading and
smooth operations all depend on the accuracy of the prediction. However due to the highly non-
stationary and chaotic behaviour of wind, accurate forecasting of wind power for different intervals
of time becomes more challenging. Forecasting of wind power generation over different time spans
is essential for different applications of wind energy. Recent development in this research field
displays a wide spectrum of wind power prediction methods covering different prediction horizons.
A detailed review of recent research achievements, performance, and information about possible
future scope is presented in this article. This paper systematically reviews long term, short term and
ultra short term wind power prediction methods. Each category of forecasting methods is further
classified into four subclasses and a comparative analysis is presented. This study also provides
discussions of recent development trends, performance analysis and future recommendations.

Keywords: wind power prediction; machine learning; deep learning; hybrid methods; time series
analysis

1. Introduction

According to the global wind energy council report 2022, wind power capacity added
in 2021 was 93.6 GW which was the second best year. However, in the same report it is
mentioned that, to meet net zero, a four times increase in installation is required by the end
of the decade. This implies that wind power is going to play a key role in future worldwide
energy requirements. However, irregularities and randomness in wind power generation
severely affect large-scale access of wind power to the grid [1,2]. This impacts dispatch
operation, power quality and stable power system operations. Therefore, an accurate wind
power prediction method is very important to reduce the burden on grid dispatching
operations and to improve wind farm management [3,4]. However, the accurate prediction
of wind power generation is a complex task owing to the stochastic nature of wind speed.
The accurate prediction of wind power is challenging due to the nonlinear behaviour
of wind speed, its random patterns and its dependence on atmospheric pressure and
temperature [5,6]. Due to the stochastic nature of wind speed, the accurate prediction of
wind power generation is a complex task.

Being a very active field of research, a large number of wind power prediction models
have been developed. Few review articles [7,8] on this topic are available. Reference [7]
presents a detailed review of past and present methods in WPP along with the future
scope in this area. Reference [8] presented a review of hybrid models based on empirical
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mode decomposition. In this article we present recent developments in WPP and provide
quick access to meaningful works. Based on the type of prediction models, existing
wind power prediction (WPP) methods are categorised into physical models [9], statistical
models [10,11], and hybrid models [12,13]. Detailed physical analyses and descriptions
of wind farm layout and wind turbines, and physical descriptions of meteorological and
geographical conditions are required to build physical models. Physical attributes of
geographical location such as terrain and wind turbulence affect the accuracy of the physical
models. The physical models need various environmental parameters such as wind speed,
wind direction, and air pressure. These parameters are obtained from the numerical weather
prediction data which is updated once every few hours. In areas where the numerical
weather prediction (NWP) system is not available the physical models are not useful. Due
to the low update frequency of NWP data, physical models are not suitable for a prediction
horizon of more than 6hrs, i.e., short-term prediction [14,15].

Several statistical models have been developed in the literature for WPP. In this review
we have classified them into time series methods, machine learning methods and deep
learning methods. Time series methods consist of linear and nonlinear time series-based
models such as auto-regressive (AR), auto-regressive moving average (ARMA) [16], moving
average (MA) and auto-regressive integrated moving average (ARIMA) [17]. Various
machine learning (ML) methods such as support vector machine (SVM) [18], support vector
regression (SVR), Gaussian process regression (GPR) [19], random forest and k-means
clustering artificial neural networks are used for WPP.

With the development of high computing power and advanced machine learning and
deep learning methods, accurate and effective wind power prediction methods have been
developed. Various combinations of physical, statistical and deep learning methods have
also evolved to improve prediction accuracy. Furthermore, data cleaning, preprocessing
and feature extraction methods combined with advanced learning algorithms lead to
improved results.

In this paper, we have systematically investigated WPP methods based on different
prediction horizons, algorithms and evaluation criteria. In this review, we present detailed
documentation of various algorithms, their performance and discussions. Wind power
forecasting can be categorised depending on prediction horizon or prediction methodology.
In Table 1 prediction horizons and the corresponding time range are listed. According to
the prediction horizon, they can be categorised as long-term, short-term or ultra-short-term
methods. Prediction methodologies are classified as physical, statistical and hybrid meth-
ods. With the recent developments in computing power and ML techniques, the statistical
methods are further classified as time series methods, machine learning methods and deep
learning (DL) methods. Hybrid methods are a combination of different prediction method-
ologies; it can be a combination of time series and ML or ML and DL or a combination of
all of them. In this article, we have followed the prediction horizon for the categorization of
WPP methods and, for each category, related prediction methodologies are discussed. The
statistics of the number of articles referred to in this article are shown in Figure 1. In this
review, we have considered articles published on WPP after 2015. It is clear from Figure 1
that recent research in this field mainly focuses on short-term wind power prediction.

Table 1. Prediction horizons in WPP.

Prediction Horizon Time Range

Long term a day to 6 days ahead
short-term an hour to a day ahead
Ultra short-term 5 min to 1 h
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Figure 1. The distribution of articles reviewed into long-term, short-term and ultra-short-term
predictions.

Depending on the amount of power generated in different time scales, the prediction
methodologies are classified as long term, short-term and ultra short-term. For example,
for turbine maintenance scheduling, optimization of operating cost and other management
issues, a day ahead or 2 to 3 days ahead, i.e., long term predictions are required. From a
day until several hours ahead, predictions are enough for planning related to load dispatch
and for treading issues. Further, a shorter prediction horizon is required for turbine control,
and real time grid operations. Several learning algorithms have been developed since the
past decade that cover the wide range of forecasting horizons. Figure 2 shows recently
published prediction methodologies (referred in this article) for long term, short-term and
ultra short-term WPP. Clearly it can be seen that recently, researchers are focusing on short-
term WPP. As far as prediction methodologies are concerned, a number of publications on
hybrid methods are more for all the three prediction horizons. This implies that the hybrid
models are more suitable and widely used for short-term prediction applications.

Figure 2. Distribution of different categories of articles reviewed.

In this paper, recent advancements in wind power forecasting approaches are reviewed.
Performance evaluation metrics are presented in Section 2. Classification of WPP methods
based on prediction algorithms is presented in Sections 3–5. Detailed review of long term
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forecasting methods is discussed in Section 3. Different prediction algorithms developed
for short-term forecasting are presented in Section 4, Furthermore, Section 5 reviews ultra
short-term WPP methods in detail. Section 6 is devoted to detailed discussions and future
scope in this area. Finally, the conclusions are presented in Section 7.

2. Performance Evaluation Metrics

Performance evaluation metrics are measures to judge or quantify the goodness or
usefulness of the prediction algorithm. These metrics generally estimate the distance be-
tween original output and the estimated output. Performance of the wind power prediction
models is evaluated using several statistical metrics; the following are frequently used
performance measures. Let Yi be the ith actual load value, Ŷi be the ith predicted load value,
Ȳi the mean of the actual load value and N the total number of predicted points. Different
evaluation metric used as performance measures are listed below.

1. Mean absolute error (MAE) :
MAE is average value of absolute different between predicted and actual value.

MAE =
1
N

N

∑
i=1

∣∣Yi − Ŷi
∣∣. (1)

2. Root Mean Square Error (RMSE):
RMSE computes the standard deviation of the residuals between predicted and actual
values. Residuals defined the distance between regression line data points and RMSE
measures the spread of these residuals.

RMSE =

√
∑N

i=1
(
Ŷi −Yi

)2

N
. (2)

3. Mean Square Error (MSE):
The mean squared error calculates the average of the squares of the error in the
prediction.

MSE =
1
N

N

∑
i=1

(
Yi − Ŷi

)2. (3)

4. Mean Absolute Percentage Error (MAPE):
The mean absolute percentage error (MAPE) is average of the absolute percentage
error in the forecasts.

MAPE =
1
N

N

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣. (4)

5. Normalised RMSE (NRMSE):
Normalization of the RMSE value is useful for fair comparison of the model on
different scales. The normalization can be performed with respect to mean or standard
deviation. The following is the Mean NRMSE.

MeanNRMSE =
RMSE

Ȳ
. (5)

6. Normalized Mean Absolute Error (NMAE):
NMAE is used to compare the MAE of models with different scales. The NMAE is a
two-step process. The normalization can be performed with respect to mean, range or
inter quartile range. The following is Range NMAE.

RangeNMAE =
MAE

range(Y)
. (6)
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7. Root Mean Square Prediction Error (RMSPE):
RMSPE calculates the root mean squared percentage error regression loss.

RMSPE =

√
∑N

i=1(Predictedi − Actuali)
2

N
× 100. (7)

8. R-Square (R2):
R2 is the coefficient of determination, it computes the variance of the prediction from
the measured data. A negative value of R2 implies worse prediction while it can reach
a maximum value of 1.

R2 = 1− ∑ntest
i=1

(
Ŷi −Yi

)2

∑ntest
i=1 (Yi − Ȳ)2 . (8)

3. Long Term Prediction

Maintenance of wind turbines and other management issues are planned with the help of
long term prediction. These activities do not require highly accurate prediction accuracy.

3.1. Time Series Analysis

Time series prediction models are mathematical models that estimate model parame-
ters from the historic data. Time series prediction models can capture nature of system and
generate predictions. Time series models with different orders generate different results.

A polynomial extension of the AR model, i.e., PAR is presented in [20]. A polynomial
AR (PAR) model of degree 2 derived from Volterra series expansion (9) is used for wind
power prediction. A comparative study of PAR with MLFF, MLP, ANN, AR and ANFIS is
also presented in [20]. Compared to these nonlinear models PAR requires less parameters,
is computationally efficient, and performs better for longer prediction horizons (more than
12 h). Experimental analysis was performed on the data published for Global Energy
Forecasting Competition 2012 [21] and NRMSE, NMAPE and bias were used as error
measures. In (9), µ is the intercept, excitation sequence ε(l) is n independent and identically
distributed with distributionN (0, σ2) and a(1)i , a(2)i,j , · · · , a(p)

i,··· are coefficients for first, second
and pth order polynomials, respectively, degree of the non-linearity is p and the AR order k.

x(l) = µ +
k

∑
i

a(1)i x(l − i) +
k

∑
i

k

∑
j

a(2)i,j x(l − i)x(l − j) + · · ·+
k,···
∑
i,···

a(p)
i,···x(l − i) · · ·+ ε(l). (9)

Large fluctuations in wind power within a relatively short time interval caused by
wind is defined as a wind power ramp event. These power ramps lead to a potential
disaster and affect the stability and safety of the wind farms and power grids. In order to
take preventive action before such disaster happens, the accurate prediction of power ramp
events is most important. Wind power prediction and ramp event detection algorithm is
presented in [22]. Two models have been proposed for wind power prediction. Long term
trends in the data are captured using wind power curve model utilizing NWP. A correction
model improves the local prediction accuracy using a multivariate prediction algorithm.
For power ramp event detection a well-known swinging door algorithm [23] is used and a
higher accuracy of ramp event prediction was reported. Table 2 list the time series methods
for long term WPP and their respective performances.

3.2. Machine Learning

A wide range of machine learning models including extreme learning machine, sup-
port vector machine (SVM) [18] and the Gaussian process [19], backpropagation net-
work [24] and radial basis function are applied for WPP. These methods learn a nonlinear
regression function that fits the relationship between the input feature space and the output
wind power from the data.
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Table 2. Time series methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1. Karakus et al., 2017 [20] Polynomial AR NRMSE
NMAPE

0.1199
6.8146

2 Ouyang et al., 2019 [22] Residue correction
MAE
RMSE
Bias

4.9647
8.9453
0.0013

Back propagation neural network (BPNN) is a widely used nonlinear method for wind
power prediction. In [25], the basic structure of BPNN is used along with the conjugate
gradient method for weight optimization and termed the method as conjugate gradient
neural network (CGNN). There are various meteorological factors such as air pressure,
humidity, temp etc. influence the wind power, in [25] along with wind speed and wind
cos above mentioned parameters are also taken as input to the CGNN. For experimental
validation the data from wind farms in Mongolia and China is used. Accuracy as well as
time taken by the proposed CGNN and existing Racial Basis Function Neural Network
(RBFNN), Steepest Gradient Neural Network (SGNN), and Extreme Learning Machine
(ELM) is reported. Due to conjugate gradient optimization, the training time as well as
MAE of the CGNN are less than those of the other compared methods. Ref. [26] also used
the swinging door algorithm for power ramp prediction. In [26], first, the data are divided
into two data segments—a ramp window or a non-ramp window. The optimum window
size for these two events is decided using a genetic algorithm. Once the optimum window
size is decided then the power in the optimized window is predicted using SVM, which
receives NWP data as input data. Depending on the predicted power, the swinging door
algorithm detects whether it is a power ramp event or not. To validate the results, different
window sizes were analysed and the accuracy and false positive rate of ramp detection
were reported.

Support vector machine (SVM) [18] is a popular machine learning algorithm due to
its generalization ability and high dimensional data handling capability. SVM is widely
used for wind speed and wind power prediction. The accuracy of the SVM depends on
various hyper-parameters of kernel and cost function. In [15], SVM with hybrid kernel
function is proposed for wind power prediction. Two separate kernels polynomial and
radial basis function (RBF) were used to build a hybrid kernel that can capture correlation
in the local and distant data samples. The parameters of the hybrid kernel are estimated
using an improved particle swarm optimization algorithm. Experimental analysis showed
better accuracy of SVM with hybrid kernel in terms of RMSE, MAE and MAPE compared
to ARMA, SVM with only RBF and the echo state network. Table 3 shows machine learning
models developed for long term WPP.

Due to the no-nstationary behaviour of the wind energy, a single algorithm is not able
to fit the data accurately. In this situation, ensemble learning methods are used to improve
the accuracy. In ensemble learning, multiple base learning methods are combing. Improve-
ment of the accuracy can be achieved by one of the following approaches—to perturb the
training data, model parameters, attributes of the data and base models. The selection of
appropriate base learners is also important to increase accuracy. Non-probabilistic learning
methods provide point prediction outputs but do not provide an estimate of uncertainty.
Gaussian process regression is a powerful nonparametric Bayesian method for supervised
learning. Along with the probabilistic predictions, it also provides confidence intervals
of predictions. Ensemble learning model in [27] utilizes Gaussian process regression as
the base learners. In order to improve the accuracy and diversity of the learning meth-
ods, first the perturbations on training data and input attributes are combined. Next, the
Gaussian mixture model (GMM) clustering is applied to create different clusters of the
data. Further, GPR is applied on each cluster separately to fit each cluster individually.
This method is termed the selective ensemble of finite mixture Gaussian process regression
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models (SEFMGPR). Performance of the ensemble learning improves with the pruning
method. In [27], a genetic algorithm-based pruning method has been adopted to select
significant models. The pruning algorithm enhanced the performance as well as reduced
the model complexity.

Table 3. Machine learning methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Fang et al., 2016 [28] Improved GPR NRMSE 0.14564
2 Tian et al., 2016 [25] CGNN MSE 0.004

3 Tinghui et al., 2017 [26] Swinging door+SVM Precision, Recall
Accuracy, Error

0.8059, 0.8390
0.8747, 0.1253

1

4 Zhongda et al., 2018 [15] Modified SVM
RMSE
MAE
MAPE

59.313
50.344
0.038

5 Bogdan et al., 2021 [29] Comparison of ML RMSE
MAPE

412
0.267

2

6 Huaiping et al., 2021 [27] ensemble of
mixture of GPR

RMSE
R²

1.7771
0.9057

3

1 for 2 h time window. 2 indicate hourly prediction, daily prediction values are 13.9% 65.60. 3 indicate 4 step
ahead prediction.

Another Gaussian process based approach in [28] proposed a composite covariance
function (CF) for the GP. Performance of the GPR varies with the CF. The composite CF pro-
posed in models the relation between wind features and auxiliary features. The composite
CF is the multiplication of squared exponential CF that can integrate multiple NWP features
into a single composite CF. The GP approach in [28] used the 2012 global energy forecasting
competition wind power forecasting data, and outperformed all of the competitors on
this data.

A comparative analysis of different machine learning techniques to forecast the pro-
duction of wind energy not for a single wind farm but for an entire country Poland has been
presented in [29]. They have presented the results of two decision tree based algorithms,
i.e., random forest (RF) and Extreme Gradient Boosting (XGB) and two neural network
based algorithms, i.e., artificial neural network (ANN) and deep neural network (DNN).
For the experimental analysis, various interesting inferences were also presented in [29].
Although all four algorithms predicted wind power with high accuracy, XGB was better
in terms of MAPE for hourly predictions and ANN for daily sums of produced energy.
Performance analysis for different seasons was also presented and it was inferred that
MAPE was the highest in June and the lowest in January. This is due to the fact that the
windiest day occurs in January and the calmest day appears in August. The lowest variance
in prediction was reported in the winter season and was highest in the summer season.

3.3. Deep Learning Models

Wind power data are characterised as highly nonlinear as well as high dimensional.
Compared to shallow machine learning models, deep learning models are more suitable
for such data. With high computing power and the ability to fit complex and nonlinear
function deep learning methods are widely used for WPP.

In [30], instead of statistical features, stacked autoencoder (SAE) features are proposed
for wind power prediction. Structural properties of the wind data are effectively extracted
using an autoencoder. A two level autoencoder is designed for structural feature extrac-
tion. During the training stage, the input data are divided into small data segments and
predictions are performed on those segments individually. Features are also extracted for
each segment. For wind power, a cluster-based ensemble regression is proposed, where the
data segments are first clustered and then a regression model is learned separately for each
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cluster. Compared to statistical features 12.63% improvement in the prediction accuracy
was reported when SAE features are used.

A combinatory approach for feature generation, feature selection and power prediction
is presented in [31]. They presented an improved wavelet neural network (WNN) that uses
the Morlet wavelet as an activation function of the neural network for feature extraction.
Next, relevant features are selected using a maximum dependence, maximum relevancy,
and minimum redundancy (MDMRMR) feature selection algorithm. Later they trained a
2D CNN using these selected features as input and PSO based improved optimization algo-
rithm. Shallow 2D CNN is build that consist of input layer, two convolutional layers, two
pooling layers and one fully connected layer. Extensive experimentation was performed to
validate the proposed method. This combinatory approach is evaluated for three different
prediction horizons i.e., an hour ahead, day-ahead, and 48 h and two separate databases for
this analysis. Accuracy of both the methods is reported with respect to different measures.
Comparative analysis of deep learning methods in long term WPP is shown in Table 4.

Table 4. Deep learning methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Abedinia et al., 2017 [30] autoencoder features
and SVR PE 0.152 1

2 Abedinia et al., 2020 [31] 2D CNN MAPE
NRMSE

5.93%
9.40%

1 for ensemble of SVR.

3.4. Hybrid Approach

Multiple prediction horizons are proposed in [32] using a hybrid approach for long
term prediction and reinforcement learning for short-term prediction. For long term wind
power prediction sigma point Kalman filter is modified using complementary ensemble
empirical mode decomposition. Initially, sigma points are used to limit the boundary
effects; next the historic data are decomposed into various intrinsic mode functions with
steady-state features using the complementary ensemble empirical mode decomposition
(CEEMD) method. For power prediction, each stable sequence is updated to reconstructed
using sigma point based Kalman filter. For short-term prediction, a deep deterministic
policy gradient (DDPG) method is proposed in [32]. Prediction results are compared with
different state-of-the-art methods on the basis of MAE, MAPE, SDE and RMSE.

A hybrid approach to predicting wind power from the numerical weather prediction
data and actual wind power data are presented in [33]. Daily similarities are observed in
the wind power and based on these similarities the data can be easily clustered. Using
spatial similarities in the NWP data, k-means clustering is used to split the data into
different subsets. Next, the samples matching with the predicted day are used to train the
generalized regression neural network (GRNN) model. Experimental analysis shows that
GRNN can effectively model the nonlinear relationship between the wind data and the
predicted output. The results also show the impact of clustering on the long term wind
power prediction. In [34], a bagging neural network (BaNN) is also combined with k-means
clustering for long term wind power prediction. Prediction accuracy is enhanced by fine
tuning the BaNN parameters using an optimization method. They also used improved
empirical mode decomposition (IEMD) to reduce the fluctuations during the forecasting
process to improve the accuracy. The Experimental analysis was performed on the data
collected from three different farms. Since CNN do not provide good prediction results,
such hybrid approaches with improved clustering methods and advance neural networks
need to be further explored for long term predictions.

An hourly forecast of day-ahead wind power method proposed in [35] combines
variational mode decomposition (VMD) and LSTM. Compared to empirical mode decom-
position (EMD), VMD provides less fluctuation and retains more adequate data information
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for forecasting. VMD decomposes the input wind series data into different modes, sep-
arate LSTM with three layers is trained for each mode. Experimental analysis of two
different VMDs, recursive (R) VMD and direct (D) VMD with LSTM is presented in [35].
Performance of the VMD-LSTM method is compared with the BP, ELM, and SVM and
results show that VMD- LSTM achieved significant results. RMSE, MAE and MAPE are
reported for one-day, two day and three day-ahead prediction. Hybrid methods and their
corresponding performances referred to in this article are listed in Table 5.

Table 5. Hybrid methods for long term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Dong et al., 2016 [33] NWP + GRNN NMAE
NRMSE

10.67
14.01%

2 Shi et al., 2018 [35] LSTM + VMD
RMSE
MAE
MAPE

6.44
7.16
22%

3 Abedinia et al., 2020 [34] BaNN +
K-means clustering

MAPE
NRMSE

2.71
19.78%

4 Zhang et al., 2021 [32] E-EMD + RNN MAE, SDE
RMSE, MAPE

144.79, 60.32
81.77, 12.79%

4. Short-Term Prediction

Short-term wind power prediction assists with deciding power generation plans,
regional dispatching, and maintenance plans.

4.1. Machine Learning

Instead of using a single ML algorithm, the combining of different ML models into
an ensemble predictor provides improved results. The heterogeneous ensemble approach
in [36] used decision trees (DT), k-NN, or support vector regressors as base algorithms.
They also analysed the performance of individual as well as different combinations of the
base predictors. Different combinations provide different accuracies and computational
complexity. On the basis of these two parameters, the combination of DT and SVR provided
improved results. Experiments were conducted using the power output data of the five
wind parks. Ensemble of Boosted Trees, Random Forest, and Generalized Random Forest
are presented in [37] for short-term wind power prediction. Correlation or time dependen-
cies in the data are considered in ensemble learning, which improved the accuracy. Time
lagged values are added as new features and a feature importance analysis is performed to
decide the impact of features on the forecast. The proposed method is evaluated using data
from five farms and compared with SVR and GPR in terms of R2, RMSE and MAE.

A variant of Gaussian process regression model is proposed for short-term prediction
in [38]. Computational complexity of the GPR increases with dimensionality of the data.
In order to reduce computational complexity and to model the non-stationarities in the
wind data, a new teaching learning based optimization (TLBO) is proposed. Optimal
parameters of the Gaussian process are learned during the training process using the
TLBO. It also helped to improve the learning rate and computational complexity. This
method effectively forecasted the data from a single farm as well as from an entire Ireland.
Performance of the GPR outperforms many other ML methods with proper selection of
covariance function and optimization. However, even with the optimally tuned parameters,
a drastic reduction in accuracy and confidence interval is observed if the missing data are
encountered. In [39], data imputation approach is used to handle missing data and new
datasets are generated. Missing data are reconstructed from the distribution of the data
and the iterative learning algorithm. Next, the GPR model is built using the reconstructed
data for wind power prediction. Performance of the proposed approach is compared with
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SVM and MLP using data from three different wind farms and GPR reported better results
in terms of RMSE and MAE.

Appropriate parameter selection usually helps to improve the accuracy of the learning
algorithm. Out of multiple parameters and features available in the meteorological data,
the work in [40], used most useful features of the wind data. Using the correlation and
the importance measures, spatially averaged wind speed and wind direction are selected
for the wind power prediction. Next, random forest is selected as a prediction algorithm
due to its low computation complexity compared to other ML methods. Impact of selected
features on the prediction accuracy is also analysed.

Short-term wind power prediction in [41] explores correlation between wind speed
and wind power data. This method combines NN and PLS to form Nonlinear Partial Least
Square (NPLS) method. The historic data are applied as input to the NN and the output
of the NN is provided as input to the PLS which provides the final wind power predicted
value. For experimental analysis two well known NNs i.e., BPNN and RBFNN are used
and combined with PLS. The performance of BPE-PLS and RBFE-PLS and compared with
SVM, BPNN, RBFNN and PLS. For experimentation, datasets with three different weather
conditions are used. In terms of RMSEP measure, the RBFE-PLS algorithms outperformed
all the other method on all the dataset.

Extreme learning machine is a feed forward neuron network with three layers, input
layer, hidden layer and output layer. A few wind power prediction method used ELM as
a regressor, but the training strategy (leave one out) is not suitable for high dimensional
data. Kernel ELM is proposed in [42] adopts k-fold cross validation with its average MSE
as error function. High nonlinearity of wind data are effectively captured by kernel ELM.
Performance of learning machines depend on the parameter selection, in case of KELM,
optimal values of regularization coefficient and kernel width improves the performance.
In [42], KELM is trained using the wind power data and optimal parameters are learned
using differential evolution (DE) optimizer and average MSE of k-fold cross validation.
This approach improves the generalizability as well as stability of the model. Performance
of the KLEM with cross validation and DE optimizer (DECVKLEM) is compared with
KLEM with cross validation and GA as an optimizer. Compared to GACVKLEM, only
8.34% improvement has been observed in case of DECVKLEM, but the convergence speed
of DE base CVKLEM is more. In [43] ELM is trained using PSO and combined with
Adaboost for short-term wind power prediction. Performance of the Adaboost-PSO-ELM
is compared with PSO-BP, GPR, PSO-SVM, PSO-ELM, GA-ELM, few tree based methods
and Adaboost-PSO-BP and better performance of Adaboost-PSO-ELM is reported.

Accurate wind speed prediction is important for NWP based WPP, so to improve the
accuracy of WPP, the NWP data from three different organizations is combined in [44] and
used for prediction. Three forecasted wind speeds from NWP are fused using weighted
naive Bayes (WNB) method and accurate wind speed is estimated. Next, wind power
prediction is performed using BPNN. Ref. [45] modified BPNN and proposed a small-
world BPNN (SWBP). Small-world networks ties to reduce the gap between artificial and
biological neural networks [46] by modifying node type, connections between the nodes,
and realization function. Input features for the SWBP are selected using modified mutual
information (MI) and applied to the SWBP. The proposed model is compared with BPNN
for 15 min-ahead power prediction and found better than BPNN in terms of training time,
prediction accuracy and convergence.

Uncertainty and missing values in the wind data incurs difficulties in the accurate
prediction. In such cases, grey models are found useful. In [47], grey model GM(1,1) with
background value optimization is proposed for wind speed prediction. Two separate grey
models are designed and combined to improve the wind speed prediction accuracy. Further,
for WPP, SVR is designed. Various parameters of SVR such as cost function, precision
and variance of the kernel function are estimated using PSO optimizer. Results of PSO-
SVR are compared with ARIMA on the basis of MAE, MAPE and RMSE and nearly 30%
improvement in speed prediction and 35% improvement in power prediction are reported.
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Multimodality, nonstationarity, and skewness are characteristics of the wind power
which make wind power prediction a challenging task. In [48], an infinite Markov switching
autoregressive model is used for wind power forecast. Using a nonparametric Bayesian
approach, a posterior predictive distribution is computed which is further used to predict
wind power and uncertainty of the forecast. Probabilistic methods provide estimate of the
value as well as uncertain in prediction. Compared to MSAR, TVQR and BELM model,
the proposed nonparametric method performed better.

Pattern Sequence-based forecasting (PSF) [49–51] method has shown its potential in
short-term wind speed forecasting accurately [52], but for the first time, it offers higher
accuracy for wind power time series in [53]. This is a kind of its own approach, where
the wind power time series was first smoothened down with the reference of the corre-
sponding wind speed time series dataset and then a smoother wind power time series was
forecasted with the PSF algorithm. This smoothening process comprised of generation
of label sequences in the PSF method and a matching process with Naive Bayesian. The
proposed approach was observed to be less chaotic for wind speed predictions than the
existing ones.

An integrated approach is employed in [54] for short-term wind power prediction. Un-
certainty, nonlinearity, missing data extended training time and computational complexity
these are various factors that affects performance of the prediction system. Uncertain-
ties and missing information in the data are modelled and the controlled fuzzy network,
wavelet decomposition models the dynamic behaviour, and nonlinearities are modelled
with NN. In [54], an integrated approach of these methods is presented. Similar to ANFIS,
a fuzzy NN is proposed where a wavelet function is used as an activation function and the
combined model is termed as Fuzzy WNN (FWNN). Optimization of this combined model
is carried out using PSO and gradient descent. Performance of the FWNN is compared with
7 ML methods, RBF, SVR, ANN, ANN-GA, ANN-PSO, ANFIS, ANFIS-GA and ANFIS-PSO.
Table 6 list the details of the machine learning methods in short-term WPP.

Table 6. Machine learning methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Heinermann et al., 2016 [36] SVR MSE 588.60

2 Yan et al., 2016 [38] Variant of GPR NRMSE
MAE

0.05
0.1

3 Lahouar et al., 2017 [40] random forests MAE,RMSE
NAME,MAPE,MASE

0.93, 1.76
1.72, 10.29, 0.4

1

4 Wang et al., 2018 [41] Nonlinear PLS RMSECV
RMSEP

206.2611
225.5973

5 Liu et al., 2018 [39] GPR with
data imputation

RMSE
MAE

0.9763
0.8321

2

6 Xie et al., 2018 [48] Bayesian Framework Skill score
Coverage

−5.314
0.164

7 Wang et al., 2019 [55] Small-world NN eNRMSE
eNMAE

7.5
4.9

8 Zhang et al., 2019 [47] PSO-SVR
MAE
RMSE
MAPE

76.9
109.4
15.7%

9 Jianqi et al., 2020 [44] Weighted Naive Bayes MAE
NRMSE

8.97
77.23%

10 Junho 2020 [37] Boosted Trees + RF
MAE
RMSE
R2

22.54
50.44
98.88
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Table 6. Cont.

Sr. No. Articles Models Evaluation Metric Evaluation Value

11 Ning et al., 2020 [42] Kernel ELM

MAE
RMSE
MSE
R2

7.30
10.22
104.59
0.53

12 Guoqing et al., 2021 [43] Adaboost
MAE, MSE
RMSE, MAPE
R2

23.38, 1023.4
31.99, 0.028
0.99

13 Ghoushchi et al., 2021 [54] fuzzy Wavenet RMSE
MAPE

0.198
0.00123

1 values not explicitly mentioned noted from graph for 6-step ahead. 2 for 20% missing rate.

4.2. Deep Learning Methods

In [56], DNN based ensemble learning is proposed where base-regressors and a meta-
regressor both are built using DNN. First several autoencoders act as base methods and are
trained using the training data and transfer learning. Transfer learning saves the time to
train the system from scratch as well as provides suitable weight initialization for training.
Due to abrupt changes in the meteorological conditions, the transients are observed in
the predictions. These transients are smoothed with the help of a meta-regressor. In [56],
Restricted Boltzmann Machines (RBMs) are stacked to Deep Belief Network (DBN) which
acts as a meta learner. Once the base learner is trained, the test data features and predictions
from the base learners on test data are applied as input to DBN for final prediction value.
Data from five wind farms is uses for evaluation of the algorithm and the results in terms
of RMSE, MAE and SDE are reported. Two step approach in [57] uses DBN and k-means
clustering for wind power prediction. The noise in the NWP greatly affects the accuracy of
the learning method, so the NWP data are divided into different clusters using k-means
clustering. Next the clustered data (e.g., NWP wind speed, wind direction, humidity, temp
etc.) is applied as input to the DBN. The DBF consists of five layers with three hidden
layers. For prediction, the test data are divided into clusters and the clusters belonging to
those data are fed to the trained model to obtain the wind power. In comparison to BPNN
and WMNN, the performance of the proposed method improved by 44%.

A Gaussian mixture model combined with NN is termed the Gaussian Mixture Density
Network (MDN). The conditional density function of the data is predicted using a trained
MDN which is further used to predict the required uncertainty information. The parameters
of the Gaussian mixture are computed using a feed forward NN. An improved deep MDN
proposed in [58] uses beta distribution to solve density leakage associated with MDN
and modified ReLU activation function to handle NaN issue associated with activation
function. Data from seven wind farms is used and proposed method is compared with
8 existing methods and the improvement in the performance is recorded. Time and
memory complexity analysis is also presented and the proposed method requires 10 min
training time.

NWP provides various parameters such as wind speed, wind direction, temp, air
pressure etc. of which wind speed is an important parameter for power prediction. A gated
recurrent unit neural network (GRUNN) presented in [59] makes use of the variance of the
NWP wind speed prediction error for wind power prediction. It utilizes both temporal as
well as statistical characteristics of the time series data. Bidirectional GRUNN in [59] is a
simple version of LSTM [60] with two gates in GRU. In the proposed method, first, local
features are extracted from the NWP data and a weight time series is constructed using
the NWP wind speed prediction error and extracted features. This weight time series is
applied as input to GRUNN which corrects the NWP wind speed. Once correct wind speed
is obtained then Power Forecasting is performed using the Wind Power Curve Model. This
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computationally efficient method is compared with SVN and ANN and the results in terms
of RMSE and MAE are presented.

Data cleaning and feature reconfiguration approach using CNN is proposed in [61]
for WPP. It has been observed that performance of the prediction system degrades in
presence of outliers. In [61], outliers are identified using density based clustering method.
After data cleaning the wind data are applied to CNN, since CNN requires images as an
input; a feature reconfiguration is an essential step. Each sample of wind data has two
features; wind direction and wind speed along with the label, i.e., wind power. Wind
direction and wind speed sample along with the corresponding temporal information and
label are arranged in a 2D matrix which is applied as an input to the CNN. The CNN
architecture consists of one input layer, two convolutional layers, and one fully connected
layer, ReLU is used as an activation function, no pooling layers are used and parameter
tuning is performed by trial and error. MAE, MAPE and NRMSE are used as performance
measures for the evaluation of the proposed scheme. This is the only method that re-
configures wind data as a 2D matrix and uses an image based deep learning approach.
In our opinion, if parameter tuning is performed by an optimization method then accuracy
can further increase. Table 7 shows the deep learning methods for short-term WPP and
their performances.

Table 7. Deep learning methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Qureshi et al., 2017 [56] DNN with transfer learning
MAE
SDE
RMSE

0.0658
0.0929
0.0939

1

2 Wang et al., 2018 [57] Deep belief network NMAE
NRMSE

0.0236
0.0322

3 Ding et al., 2019 [59] Gated RUNN RMSE
MAE

13.45
6.87

2

4 Zhang et al., 2020 [58] Deep Mixture
Density Network

NMAE
NRMSE

0.108
0.147

5 Wang et al., 2021 [61]
Multidimensional
data cleaning +
feature reconfiguration

MAE, MAPE
NRMSE

2.18, 4.36%
7.29%

1 results of test data from farm 1. 2 % value of MAE and RMSE for day 1.

4.3. Hybrid Methods

LSTM and genetic algorithm (GA) are combined for wind power prediction in [62].
The performance of the LSTM algorithm largely depends on the window size. A smaller
window size implies no information is forwarded and carried, whereas a larger window
size implies noise in the past samples. A genetic algorithm is used to learn optimum
window size. Experiments were performed on the dataset from seven wind farms in the
European region. The data consisting of sixteen features measures a duration of 48 h and a
12 h interval is applied as an input to the Genetic LSTM (GLSTM) network. GA is used to
train the network to find the optimum window size and number of neurons. Performance
of GSTM is compared with the ARIMA, a few deep learning methods and SVR of three
different kernel functions. To validate the effectiveness, six variants of GLSTM are applied
on the seven datasets and improvement in the performance was reported. Closed to zero
MSE, MAE and RMSE were reported with the proposed GLSTM network.

Wind power ramps events are predicted in [63] using different ML algorithms. A com-
parative analysis of ML methods to predict ramp events has been presented. In this hybrid
approach the data from numerical-physical models is applied as input the various ML
algorithms. The effectiveness of SVM, GPR, ELM and MLP for ramp event prediction
is experimentally verified in [63]. RMSE, MAE and sensitivity are used as performance
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measures for evaluation of these methods on three wind farm dataset. The performance of
GPR outperformed other methods in terms of all the measures.

Decomposition methods for WPP decompose the wind power time series into different
components depending on different characteristics such as frequency, scale [64,65]. Next
different prediction algorithms can be applied on these components for WPP. These decom-
position methods can efficiently model the nonlinearities, however in many cases these
components shows chaotic behaviour which degrades the prediction accuracy. To remove
the uncertainty and low amplitude variations from these components and to improve the
accuracy, singular spectrum analysis (SSA) [66,67] was found to be very useful. In [14],
ensemble empirical mode decomposition (EEMD) is used to decomposed the time series
data into different components. After determining the chaotic components, SSA is applied
to remove the impact of the chaotic components on the accuracy. The proposed method has
two stages—a decomposition stage and a prediction stage. The first stage consists of EEMD,
chaotic TS analysis, and SSA and is referred to as multi-scale singular spectrum analysis
(MSSSA). In the next stage, the authors used LSSVM-based framework as a prediction
algorithm and developed an iterative multi-step short-term WPP method. Due to chaotic
TS analysis and iterative multi-step algorithm, the accuracy of the prediction for both
chaotic as well as non-chaotic components increases. The proposed method is evaluated on
historical data from farms located in Spain and Canada.

A short-term wind power prediction method with high accuracy is presented in [68].
The hybrid prediction method combines empirical mode decomposition and kernel ridge
regression (KRR). Mutual effects in different components of time series data are isolated
using EMD. They further combined RVFL and ELM with EMD and comparative analy-
sis of EMD-KRR, EMD-RVFL and EMD-ELM is also presented. To reduce computation
complexity and improve the training time, an improved version of EMD-KRR is also pre-
sented in [68]. The proposed algorithm is evaluated on four different prediction horizons,
i.e., 10 min, 30 min, 1 h and 3 h ahead and comparable improvement in accuracy and
computation time is reported. In order to avoid limitations of EMD (mentioned in an earlier
section), Ref. [48] combined VMD with multi-kernel ridge regression (MKRR) instead of
EMD. Improvement in the performance is reported over its EMD counterpart.

Wavelet decomposition is widely used to decompose a signal into different frequency
bands. Use of the wavelet kernels as an activation function of the CNN is recently trending
in wind power prediction algorithms. In [69], wavelet kernel is used in LSTM and achieved
30% improvement in performance compared to existing wind power prediction methods.
Gaussian, Morelet, Ricker and Shannon are four different wavelets that are used as acti-
vation functions. LSTM composed of four layers is trained using Rmsprop optimizer for
wind power prediction. Data from seven farms in the European region are used for the
evaluation of the work, results of four different wavenets (wavelet + LSTM network) on the
data from seven wind farms are reported in terms of MSE, MAE, MAER, MAPE, and R2.
The lowest prediction errors are observed in the case of all four networks. .

Depending on the weather conditions, the wind speed varies and hence wind power
generated. Based on the wind speed there exists different wind grades such as breeze, cool
breeze, strong wind etc. Fuzzy k-means clustering is applied in [70] to classify the historic
time series data into these wind classes. Each class corresponds to different speed hence
the wind power data corresponding to each class and amount of power generated by each
class will be different. Therefore instead of learning single function that can fit all these
classes, separate SVR is trained for each class. The optimization of various SVR models is
performed using enhanced harmony search (EHS) algorithm. The authors also presented
the uncertainty analysis in terms of confidence interval using EHS-based QR approach. The
proposed multiple SVR-based method provides 3 h-ahead 15 min wind power forecasts.

Wind power series is characterised by long memory characteristics and strong un-
predictability. The forecasting method should be able to capture both the characteristics.
Hybrid approach in [71] combines autoregressive fractionally integrated moving average
ARFIMA to capture long memory characteristic and LSSVR to capture nonlinearities in
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the data. Such integration of linear and nonlinear component for wind power forecast
improves the performance. Experimental analysis and comparison with ARFIMA, LSSVM
and hybrid ARFIMA-BP demonstrates the superiority of the ARFIMA-LSSVM model. Com-
bination of time series and ML method are computationally efficient solution for short-tern
wind power prediction.

Two optimization algorithms are employed in [72] to optimize ANFIS [73] for short-
term wind power prediction. The initial parameters of ANFIS are randomly initialized
and fuzzy c-means (FCM) clustering is used to generate fuzzy inference structure (FIS).
Two optimizers GA and the PSO run simultaneously and independently and optimal
model parameters are selected based on RMSE. The GA–PSO hybrid algorithm performs
better than BPNN, GA-BPNN, and NF-based forecast models. Hybrid approach composed
of DWT, seasonal autoregressive integrated moving average (SARIMA), and LSTM is
proposed in [74]. First, the input data are cleaned using data pre-processing methods such
as isolation forest, re-sampling, and interpolation. Next, the pair of DWT and IDWT is
applied on the cleaned data to decompose data into different components and to remove
noise. Next the approximation and detail components are analysed by SARIMA model.
SARIMA being sensitive to seasonal components is more suitalbe than ARIMA for non-
stationary datasets to improve the prediction accuracy. Finally each decomposed band is
processed through LSTM for power prediction. Combined effect of DWT, SARIMA and
LSTM has shown drastic improvement in the prediction accuracy.

In the case of ML and DL models, it has been observed that accuracy largely de-
pends on hyperparameters and therefore optimization methods play an important role.
In [75], training an LSTM novel optimization method is proposed. The hybrid approach
in [75], ARIMA and LSTM are combined for short-term WPP. After data preprocessing
and assessing stationarity, three different optimization approaches are applied for WPP.
Grid search is applied to find optimum hyperparameters of ARIMA, LSTM. Along with
grid search Optuna optimizer is proposed to accelerate the process of hyperparameter
search. The integration of preprocessing, outlier removal, imputation, resampling and
optimizer along with ARIMA and LSTM has resulted into significant improvements in
results. Hybrid methods for short-term WPP are listed in Table 8.

Table 8. Hybrid methods for short-term WPP.

Sr. No. Articles Models Evaluation Metric Evaluation Value

1 Liang et al., 2016 [76] SVM + ELM NMAE, NRMSE 0.0417, 0.0621
2 Cornejo et al., 2017 [63] Hybrid ML Methods RMSE, MAE 5.3066, 3.9519
3 Huang et al., 2017 [70] SVM + k-means clustering RMSE, MRE 57.0628, 2.0112%
4 Yuan et al., 2017 [71] Hybrid AR + LSSVM RMSE, MAPE, MAE 114.80, 8.33%, 85.56

5 Safari et al., 2017 [14] EEMD + SSA + LSSVM NRMSE
NMAE

5.9671
3.4262

6 Naik et al., 2018 [68] EMD + KRR RMSE, MAPE 1.0674, 7.68%
7 Zheng et al., 2018 [72] GA + PSO+ ANFIS MAE, NMAE, MAPE 45.73, 1.83, 6.64
8 Liu et al., 2019 [77] LSTM + wavelet MAE, MAPE, RMSE 10.12, 3.01%, 14.22
9 Son et al., 2019 [78] LSTM + ANN RMSE, MAPE 3.67, 5.04%
10 Mishra et al., 2019 [79] ANN + RBF MAPE, RMSE 8.1043, 0.8394
11 Zhang et al., 2019 [80] CEEMD + LLE + ELM NRMSE, NMAE, R 7.372, 6.124 91.958

12 Shahid et al., 2020 [69] LSTM + Wavelet
MSE, MAE
MAER, MAPE, R2

0.0089, 0.0644
0.0416, 0.4512, 0.9221

13 Shahid et al., 2020 [69] GP + ANNs + Axp-GPNN RMSE, SDE, MAE 0.0845, 0.0580, 0.0841

14 Zhao et al., 2020 [81] SSA+
Temporal CNN RMSE, SMAPE, R2 188.79, 23.07, 0.9804

15 Yan et al., 2020 [82] EWT + KLEM + GRUNN RMSE, MAE,
GRA

33.75, 27.44
0.95

16 Liu et al., 2020 [83] Wavelet + LSTM MAE, MAPE, RMSE 49.896, 5.831, 63.991
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Table 8. Cont.

Sr. No. Articles Models Evaluation Metric Evaluation Value

17 Han et al., 2020 [84] wavelet WPD + VMD + SSA
NMAE, NRMSE,
MAPE, R2

0.66, 0.84,
2.3, 0.99

18 Duan et al., 2021 [85] VMD + LSTM neural network MAE,RMSE,TIC 41.10, 58.77, 0.0047

19 Shahid et al., 2021 [62] LSTM + GA MSE, MAE, RMSE,
EV, R2Score

0.00924, 0.87413, 0.09615
0.07271, 0.87656

20 Huang et al., 2022 [86] VMD + BiLSTM–CNN–WGAN GP MAE, MAPE, RMSE 0.28, 1.26%, 0.33
21 Zhang et al., 2022 [74] DWT + SARIMA + LSTM Prediction Accuracy 0.99
22 Hanifi et al., 2022 [75] ARIMA + LSTM RMSE 484.3

5. Ultra Short-Term Wind Power Prediction
5.1. Machine Learning

A multi-linear regression algorithm is presented in [87] for ultra short-term WPP.
Initially, the dimensionality of the data is reduced and only relevant parameters from the
NWP data are selected. Next, phase space reconstruction is performed using a covariance
matrix and eigen values. Further, state variables of the regressive model are extracted
from the proposed phase space. Finally the multivariate regression model provides the
predicted wind power. Performance of this approach is compared ARIMA, BPNN, LSSVR
and single-variable phase space reconstruction and proposed model found more accurate
and fast.

Ultra short-term (10 min) wind power prediction is presented in [88] using ELM
wherein the weights are optimized using the Salp Swarm Algorithm. The input dataset
consists of wind speed, wind direction, temperature and other climate factors. The ELM
has single hidden layer, the weights and bias of this network are first optimized by SSA
using historic wind data. SSA helps to avoid overfitting and improves generalization ability
of ELM. This method is compared with other variants of ELM and found better in terms of
accuracy. However, the performance of this method degrades in the presence of outliers.

An efficient yet low-complexity algorithm based on k-nearest neighbour classifier is
proposed in [89] for very short-term wind power prediction. The proposed method utilizes
the power of information that lies in different parameters of meteorological data. Instead
of using highly complex ML method or an ensemble of them, in [89], a simple but efficient
KNN classifier is trained using multidimensional data. The authors selected wind speed,
wind power, wind direction, air temperature and barometric pressure time series as input
data. The combined and individual influence of each of these parameters and different
distance measures on the prediction accuracy is also analysed. Through this analysis,
wind speed and barometric pressure are found to be most influential parameters for WPP
whereas, wind direction and air pressure are decided as ineffective for WPP. Although this
method is simple and effective its performance is not compared with existing methods.

5.2. Deep Learning

The prediction horizon of ultra short-term wind power prediction ranges from a
few minutes toa few hours. Therefore, the prediction algorithms need to capture spatial
as well as temporal variations in the data. Existing deep learning methods captures
nonlinear relation between the input parameters and predicted power using spatial features.
For accurate ultra short-term wind power prediction, Ref. [90] proposed combination of
spatio-temporal correlation model (STCM) and LSTM. CNN is used for spatial feature
extraction and LSTM extracts the temporal relation between input and output. Performance
of the combined model is compared with individual CNN and LSTM and better results
are reported in terms of MAE, MAPE, RMSE and NRMSE. Ref. [91] also explored the
spatio-temporal relationship for ultra short-term WPP. Wherein, attention mechanism that
automatically calculates the contribution of input in the output is used for feature selection.
In general, the convolutional network carries only spatial information; in [91], a temporal
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CNN is introduced for spatial as well as temporal feature extraction. The performance of
TCN for ultra short-term WPP is improved by incorporating a self-attention mechanism in
the TCN. The proposed SATCN extracts temporal features that improve the performance
of the LSTM connected to it. Performance evaluation of the combined TCN-LSTM system
is carried out using meteorological data and wind power data of full year. Combined
feature extraction and prediction scheme shows better results than other methods. For ultra
short-term WPP prediction—spatial as well as temporal—both the trends are important.
Therefore, for this category of WPP, the combined effect of spatio-temporal features and a
learning algorithm seems to be a promising future dimension.

5.3. Hybrid Methods

An improved EMD (IEMD) is proposed in [92] to overcome shortcomings of EMD
through analysis and improvement of sifting process of EMD. IEMD decomposes non-
stationary data into stationary components. Depending on the fluctuations in the data,
a series of intrinsic mode functions (IMFs) is obtained from the IEMD. Large fluctuations
degrade the prediction accuracy while a moderate one improves it [13]. That means
depending on the available fluctuations in the data one can change the prediction model,
i.e., for moderate variations linear prediction can provide required accuracy and for large
fluctuations we need complex models. The authors used ANN for high frequency and
separate SVM for mid frequency, low frequency and and trend item. Validation is performed
using two different datasets and results are compared with only ANN and EMD.

A hybrid method combining k-means clustering and an adaptive neuro-fuzzy infer-
ence system (ANFIS) is proposed in [73] for ultra short-term wind power prediction. In this
approach, phase space variables are first obtained from PSR; next, optimal input variables
are selected using a feature selection method. Selected input variables are categorised
into different subsets using k-means clustering and ANFIS is trained using these clusters.
Parameters of the ANFIS are optimized using PSO.

In [93], a hybrid approach combining LSTM, wavelet transform and PCA was utilized
to forecast ultra-short-term wind power. Initially, for signal decomposition and feature
extraction, wavelet transform and PCA are applied on the time series. Further these
features are applied as input to the LSTM network. Next the authors used normal condition
distribution to find the prediction error of the wind power.

A deep learning based hybrid approach is proposed in [94] for ultra short-term (5
min) wind power prediction. Feature extraction is performed using CNN and the extracted
features are used to train gated recurrent units. Long term trends in the data across the time
steps are captured using GRU. Next, a fully connected NN is used to forecast wind power
generation. Comparison with existing advanced prediction methods such as RNN, LSTM,
Bi-LSTM, GRU, ARIMA and SVM is presented to show the effectiveness of the proposed
hybrid scheme. The authors presented a fair comparison by separately tuning parameters
of all the compared methods to their best setting. The results show that performance of
proposed scheme is close to ARIMA and SVM in terms of MAE, RMSE and MAPE. Similar
approach using GRU, CNN and LSTM is proposed in [95] for ultra short-term (5 min)
wind power prediction. Authors used CNN for feature extraction, GRU to learn long-term
variations and LSTM for prediction. However, parameter tuning has been carried out using
Harris Hawks Optimization algorithm [96]. This combined approach outperformed all the
compared method with large gap in terms of MAPE. Table 9 shows ultra short-term WPP
methods reviewed in this article.
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Table 9. Ultra short-term wind power prediction.

Sr. No. Articles Models Evaluation Metric Evaluation Value Prediction Horizon

1 Yesilbudak et al., 2017 [89] KNN classifier eNRMSE, eNMAE
eNMAPE

2.475%, 15.839
1.158% 10 min

2 Liu et al., 2018 [87] PSR and MLR NMAE 5% less than 4 h

3 Yang et al., 2018 [92] IEMD + ANN + SVM
NRMSE
DMAP
DMQP

9.21%
93.82%
91.91%

4 h

4 Dong et al., 2018 [73] mRMR + IVS NRMSE, NMAE 6.67, 4.10 1 h to 4 h

5 Tan et al., 2020 [88] SSA_ELM
MAE
MAPE
RMSE

0.09
0.47
0.16

15 min to 4 h

6 Sun et al., 2020 [93] LSTM + WT MAPE, RMSE 1.54%, 3.66 2 h
7 Hossain et al., 2021 [94] LSTM + GRUNN MAE, RMSE, MAPE 2.45, 3.85, 9.80% 5 min
8 Hossain et al., 2021 [95] CNN + GRU + LSTM MAPE 17.9 5 min and 10 min

6. Discussion

In this paper, we have presented a selective review of state-of-the-art wind power
prediction methods. We do not aim to compare different methods and reported results
rather, we highlight recent developments and benchmarks in this field. We presented three
different classes of WPP based on prediction horizon and for each class, detail discussions
on prediction methodology or algorithms are also presented.

From the presented review it has been observed that, in recent times, relatively few
publications report on time series methods for WPP. Time series models are not competent
enough to capture high degree of nonlinearity and stochastic behaviour of wind. Higher
order polynomials can model nonlinear behaviour, but complexity increases with the
degree of the polynomial and finding global minima not guaranteed.

Machine learning methods are suitable for all the prediction horizon. Variants of BPNN
and ELM are proposed with different optimization methods. It is noted that, same network
with different optimizers produce different results, since datasets are not same. Variants
of Gaussian process regression and ELM with advanced optimizers shown improved
results. Along with the accuracies, GP based approaches provide the confidence interval
of the results. Being a nonparametric method, GP-based approaches do not require cross
validation. Instead of using a single ML method, ensemble learning methods are widely
used for WPP in different horizons. Through ensemble learning different base learner
effectively models the non-stationary behaviour of wind. Ensemble of different learning
algorithms have shown improvement in the accuracies.

With increased computing power and ability to model complex nonlinear functions,
deep learning models can provide accurate predictions than shallow machine learning
methods. The deep learning models extract optimal features as well as learn a regression
function. Each of these models perform well individually, combination of time series and
ML and deep learning models substantially improves the results.

Rightly pointed out in [8], in recent years, a substantial increase in hybrid approaches
has been observed. It is effectively applicable to all prediction horizons. Variants of EMD
are combined with different ML, LSTM and deep learning models to improve the prediction
accuracy. Decomposition power of wavelets are incorporated in deep learning by using
wavelet as an activation function and substantial improvement is observed. Combination
of LSTM, CNN and decomposition methods drastically improves accuracy of short-term
and ultra short-term WPP. However, these methods become computationally very heavy.
It is noted that appropriate feature selection, data cleaning and optimizers and network
selection are key to improving the accuracy of WPP.

It has been observed that the selection of an optimizer is a very crucial step in the case
of ML and DL models. Recently developed hybrid approaches make use of LSTM and CNN
along with different decomposition methods; however, the combination of decomposition
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methods and deep learning models does not perform well unless hyperparameters are
properly tuned. In our opinion, with sufficiently large development in the deep learning
area, efficient optimization algorithms are needed, and researchers need to focus on this
aspect as well.

Data preprocessing is an important step in WPP; it can be seen that, in [74,75], data
preprocessing such as outlier removal, anomaly detection and removal, resampling and
interpolation substantially improved the performance of the algorithm. Therefore, along
with the algorithmic development data, preprocessing is also an important factor. The R
package for data cleaning and preprocessing is presented in [97]. Researchers can used
such tools for data preprocessing and also to analyze data at various scales and resolutions
to find relevant features.

7. Conclusions

This paper presents a selective review of wind power forecasting methods. In this
paper, WPP methods are classified based on the prediction horizon and for each category
we investigated time series, machine learning, deep learning and hybrid approaches for
WPP. Among these four categories, recent developments are skewed towards hybrid
methods. This paper focuses on a comparison of existing state-of-the-art methods based
on pre-processing, feature extraction, algorithm and performance. Compared to long term
approaches, due to the high requirement for stable dispatching of the power grid, short-
term forecasting methods are gaining more attention. A combination of feature extraction,
time series decomposition and learning algorithms improves the forecasting accuracy.
Investigations in this paper favour the hybrid methods, which show high performance for
all three prediction horizons. It is noted that there is a large variation in databases, related
NWP data and performance measures; therefore common datasets and parameters are
needed for bench-marking. The discussions in this paper provide guidelines about current
achievements and future requirements.
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AWNN Adaptive Wavelet Neural Network
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BPNN Back-Propagation Neural Network
CNN Convolutional Neural Network
DBN Deep Belief Network
ELM Extreme Learning Machine
ENN Elman Neural Network
EVS Explained Variance Score
FFNN Feed Forward Neural Network
GA Genetic Algorithm
GFS Global Forecasting System
GMM Gaussian Mixture Model
GP Gaussian Process
GPR Gaussian Process Regression
IF Isolation Forest
LSSVM Least Square Support Vector Machine
LSTM Long Short-Term Memory
MA Moving Average
MAPE Mean Absolute Percentage Error
MARE Mean Absolute Relative Error
MDN Mixture Density Neural Network
MLP Multilayer Perceptron
MSE Mean Square Error
MSLE Mean Squared Logarithmic Error
NAAE Normalised Absolute Average Error
NMAE Normalised Mean Absolute Error
NMBE Normalized Mean Bias Error
NMSE Normalized Mean Square Error
NN Neural Network
NRMSE Normalised Root Mean Square Error
NWP Numerical Weather Prediction
PSO Particle Swarm Optimisation
R2 R-Square
RBFNN Radial Basis Function Neural Network
RF Random Forest
RMSE Root Mean Square Error
RVM Relative Vector Machine
SDE Standard Deviation Error
SNMAE Square Normalized Mean Bias Error
SVM Support Vector Machine
SVR Support Vector Regression
WNN Wavelet Neural Network
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