
Citation: Kumar, V.; Chandan, K.;

Nagaraja, K.V.; Reddy, M.V. Heat

Conduction with Krylov Subspace

Method Using FEniCSx. Energies

2022, 15, 8077. https://doi.org/

10.3390/en15218077

Academic Editor: Xue Chen

Received: 2 October 2022

Accepted: 22 October 2022

Published: 31 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Heat Conduction with Krylov Subspace Method Using FEniCSx
Varun Kumar 1,* , K. Chandan 2 , K. V. Nagaraja 2,* and M. V. Reddy 3,*

1 Department of Mechanical Engineering , Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Bangalore 560035, India

2 Department of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham,
Bangalore 560035, India

3 Nouveau Monde Graphite, Montreal, QC G2E 2G9, Canada
* Correspondence: varunkumarr2001@gmail.com (V.K.); kv_nagaraja@bl.amrita.edu (K.V.N.);

reddymvvr@gmail.com (M.V.R.)

Abstract: The study of heat transfer deals with the determination of the rate of heat energy transfer
from one system to another driven by a temperature gradient. It can be observed in many natural
phenomena and is often the fundamental principle behind several engineering systems. Heat transfer
analysis is necessary while designing any product. The most common numerical method used to
analyze heat transfer is the finite element method. This paper uses the finite element method to
demonstrate steady and transient heat conduction in a three-dimensional bracket. The goal here was
to determine the temperature distribution and rate of heat flow in the solid. This is crucial in designing
machine elements as they are subjected to various thermal loads during operation and also due
to fluctuations in the surrounding environmental conditions. The temperature significantly affects
stress, displacements, and volumetric strains. Thus, to analyze thermal stresses induced in a machine
element, it is necessary to find the temperature field first. The thermal analysis was performed using
the open-source package FEniCSx on Python. The program was run using a preconditioned Krylov
subspace method for higher-order function spaces. The Krylov subspace solver drastically reduces
computational time. The time taken for the execution of each order was recorded and presented.

Keywords: heat conduction; finite element method; steady state conduction; transient conduction;
FEniCSx; higher-order function space

1. Introduction

Heat conduction can be observed in many natural phenomena and is essential while
designing many engineering systems. It is categorized as steady and transient. Processes
are simpler to study when they are stable since complicated transient characteristics are
avoided and they can still manage to offer accurate answers to our questions. Thus, they
are analyzed under some assumed steady conditions, even though most heat transfer issues
in practice are transient [1]. Finite element analysis speeds up design and development
by lowering the number of physical tests, which also cuts down on the cost and dura-
tion of prototyping and testing [2]. The finite element method (FEM) solves and finds
solutions to field problems that arise in engineering and mathematical modeling using
numerical methods [3]. Problem areas of interest include fluid flow, heat transfer, mass
transfer, electromagnetism, etc. Solving such problems requires the spatial distribution of
dependent variables to be determined. They can be described either by partial differential
equations or integral expressions [4]. Many mechanical problems are governed by partial
differential equations (PDEs). FEM solves these PDEs by dividing the geometry into small
elements (discretization) and using numerical methods to give an approximate solution
with minimum error [5,6]. This paper demonstrates steady and transient heat conduction in
a three-dimensional bracket using FEniCSx [7,8]. FEniCSx is an open-source package that
uses the FEM to solve PDEs by converting scientific models into finite element code [9,10].

Energies 2022, 15, 8077. https://doi.org/10.3390/en15218077 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15218077
https://doi.org/10.3390/en15218077
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-2495-6619
https://orcid.org/0000-0003-2535-5054
https://orcid.org/0000-0002-6979-5345
https://doi.org/10.3390/en15218077
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15218077?type=check_update&version=1

Energies 2022, 15, 8077 2 of 16

FEniCSx is beginner friendly, but also offers powerful capabilities for more proficient pro-
grammers. FEniCSx is a massively upgraded version of the original FEniCS library [11,12].
FEniCSx has several improvements over FEniCS, including memory parallelization and
enhancements to the libraries [13]. FEniCSx consists of four libraries—UFL, Basix, FFCx,
and DOLFINx. DOLFINx is the computational environment of FEniCSx. Unified Form Lan-
guage (UFL) [14] is a language in which variational formulations are written. Basix [15,16]
is a finite element definition and tabulation runtime library. FFCx [17] generates efficient C
code from the UFL form. FEniCSx uses finite elements for discretization and the PDE is
expressed in the variational or weak form. The variational form is transcribed into Python
using mathematical operators of UFL in FEniCSx. All the above-mentioned attributes
make FEniCSx faster and more convenient, and can access the whole array of FEM while
maintaining a strong open-source structure. The three-dimensional geometry was made in
Autodesk Inventor 2023. The geometry was then imported into Gmsh [18]. In Gmsh, the
mesh was created and surface and volume facet tags were created to apply the required
boundary conditions. The mesh was imported into FEniCSx and the finite element analysis
was performed. The mesh and solution can be viewed within Python itself using the
plotting package PyVista [19]. The results were exported in XDMF format and viewed in
ParaView [20,21].

Standard numerical methods for linear systems that are used in direct solvers are
based on a clever implementation of Gaussian elimination. These are recommended for
up to a few thousand unknowns and are very capable of solving many simpler problems.
However, for very large systems, these methods are very inefficient even on the fastest
supercomputers. This problem was overcome by ILU-preconditioned Krylov subspace
solvers [22]. The use of iterative solvers, such as the Krylov subspace solvers paired with
algebraic multigrid preconditioners, is a crucial aspect of scaling finite element analysis.
The goal of the Krylov solver is to try to incorporate all of the approximations that have
been computed thus far in the iteration process into a superior solution. This considerably
simplified the computing of optimum solutions in the Krylov subspace. The Krylov
subspace solver produces the same result but is much faster compared to the direct solver,
especially when the matrix is very complex to solve. Another advantage of the iterative
Krylov subspace solver is that it uses much less memory than a direct solver. The analysis
is performed using the conjugate gradient (CG) method. CG is a refined method for solving
a symmetric, positive definite system matrix. The rate of convergence depends on a factor
involving the ratio of the largest and the eigenvalue of A(Ax = b). The actual values of the
eigenvalues play no part in the speed of the convergence. A good approximation K for
A can be created using the property that the eigenvalues of K−1 A are grouped around 1.
This leads to the fast convergence of CGs when applied to K−1 Ax = K−1b as the ratio of
the eigenvalues is moderate. This method is known as preconditioned CGs. These solvers
are available though PETSc, a scientific computing toolkit. The PETSc library for python
is petsc4py. A combination of the accuracy of the HO function space and the speed of the
Krylov subspace solver makes this methodology extremely reliable and efficient compared
to those in commercial FEM packages.

2. Heat Conduction

An analysis performed using thermodynamic principles will reveal how much energy
must be transferred to reach a new equilibrium state while satisfying the law of conser-
vation of energy. However, while designing engineering systems, the heat transfer rate is
much more important than the amount of heat transferred. This rate cannot be obtained
by thermodynamic laws alone. Unlike thermodynamics, heat transfer is a transient phe-
nomenon. Heat transfer plays a crucial role in designing devices such as refrigerators,
air-conditioning systems, solar collectors, electronic components, spacecraft, etc. [23,24].
Conduction is the transfer of heat energy from particles with higher energy to adjacent
ones with lower energy through interactions between the particles. Primarily, conduction

Energies 2022, 15, 8077 3 of 16

happens in solids but it can also happen in liquids and gases. Conduction is governed by
Fourier’s law of heat conduction [25]:

Q̇cond = −κA
dT
dx

, (1)

where κ is the thermal conductivity of the solid medium, dT/dx is the temperature gradient,
and A is the area.

2.1. General Heat Conduction Equation

An energy balance on an element using Fourier’s law gives [25]:

∂

∂x

(
κ

∂T
∂x

)
+

∂

∂y

(
κ

∂T
∂y

)
+

∂

∂z

(
κ

∂T
∂z

)
+ ėgen = ρc

∂T
∂t

, (2)

where ėgen is the heat generation per unit volume, ρ is the density and c is the specific heat
capacity of the material. If κ is assumed to be constant, then Equation (2) reduces to the
Fourier–Biot equation:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

ėgen

κ
=

1
α

∂T
∂t

, (3)

where α = κ/ρc is the thermal diffusivity of the solid medium. This equation cannot
be directly implemented into FEniCSx. FEM starts by rewriting the PDE as a variational
equation. It is obtained by multiplying the PDE by a test function v and integrating it by
parts. The variational form is represented using the UFL library. The derivation of the
variational forms for steady and transient heat conduction is given in Sections 4.1 and 5.1
respectively.

2.2. Boundary Conditions

Boundary conditions (BC) are the mathematical descriptions of the conditions at the
boundaries of the system. In this paper, three types of BCs often used in heat transfer
problems were implemented in thermal analysis [25].

2.2.1. Temperature Boundary Condition

The simplest way of analyzing the thermal conditions of the surface of a system is by
knowing the temperature. The temperature may remain constant or it may vary with time.
There are no derivatives involved in defining the temperature. Thus, temperature BCs are
Dirichlet BCs.

u = u0
D on Γ0

D, u = u1
D on Γ1

D, · · · (4)

2.2.2. Heat Flux Boundary Condition

The heat flux can be used as a boundary condition of a surface. It involves a par-
tial derivative of temperature in the direction of the heat flux. Thus heat flux BCs are
Neumann BCs.

− κ
∂u
∂n

= g0 on Γ0
N , −κ

∂u
∂n

= g1 on Γ1
N , · · · (5)

If gi in the above equation is equal to zero, then Equation (8) becomes:

− κ
∂u
∂n

= 0 or
∂u
∂n

= 0. (6)

The above equation infers that the heat flux across the surface is equal to zero. This is
called the adiabatic or insulated boundary condition.

Energies 2022, 15, 8077 4 of 16

2.2.3. Convection Boundary Condition

Convection is the transfer of heat between a solid and the surrounding fluid through
conduction and fluid motion. It is governed by Newton’s law of cooling,

Q̇conv = hAs(Ts − T∞), (7)

where h is the convection coefficient [26,27], As is the area, Ts is the surface temperature,
and T∞ is the ambient temperature. Convection boundary conditions are Robin bound-
ary conditions.

− κ
∂u
∂n

= r0(u− s0) on Γ0
R, −κ

∂u
∂n

= r1(u− s1) on Γ1
R, · · · , (8)

where r is the convection coefficient and s is the surrounding ambient temperature.

3. Bracket Geometry

As mentioned in the introduction , the three-dimensional geometry of a bracket
was made in Autodesk Inventor 2023. The geometry was then imported into Gmsh. The
geometry was meshed and surface and volume facet tags were created to apply the required
boundary conditions. The mesh has 86,592 elements and 15,603 nodes. The geometry used
is shown in Figures 1 and 2.

Figure 1. Bracket geometry with tetrahedron meshing.

Energies 2022, 15, 8077 5 of 16

Figure 2. Overhead view of the bracket geometry.

4. Steady Heat Conduction

Under steady state conditions, the time derivative on the RHS of Equation (3) is zero.
Thus, the equation reduces to the Poisson equation:

∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 +

ėgen

κ
= 0. (9)

It can also be represented as:

−∇ · (κ∇u) = − f in Ω. (10)

To solve this in FEniCSx, the PDE must be expressed in the variational form [28,29].

4.1. Variational Formulation

The variational form of Equation (10) is [30,31]:

−
∫

Ω
∇ · (κ∇u)v dx =

∫
Ω

κ∇u · ∇v dx−
∫

∂Ω
κ

∂u
∂n

v ds. (11)

To apply different BCs, the boundary integral is split into Neumann (Heat Flux) BCs
and Robin (Convection) BCs:

−
∫

∂Ω
κ

∂u
∂n

v ds = −∑
i

∫
Γi

N

κ
∂u
∂n

ds−∑
i

∫
Γi

R

κ
∂u
∂n

ds = ∑
i

∫
Γi

N

gi ds + ∑
i

∫
Γi

R

ri(u− si) ds. (12)

Thus, we obtain the variational form as:

F =
∫

Ω
κ∇u · ∇v dx + ∑

i

∫
Γi

N

giv ds + ∑
i

∫
Γi

R

ri(u− si)v ds−
∫

Ω
f v dx = 0. (13)

To obtain the bilinear and linear parts from Equation (13), the Robin BCs must be split:∫
Γi

R

ri(u− si)v ds =
∫

Γi
R

riuv ds−
∫

Γi
R

risiv ds. (14)

Thus, the bilinear form is:

a(u, v) =
∫

Ω
κ∇u · ∇v dx + ∑

i

∫
Γi

R

riuv ds, (15)

Energies 2022, 15, 8077 6 of 16

and the linear form is:

L(v) =
∫

Ω
f v dx−∑

i

∫
Γi

N

giv ds + ∑
i

∫
Γi

R

risiv ds. (16)

4.2. FEniCSx Implementation

All the simulations were run on a 13-inch MacBook Pro with 1.4 GHz quad-core Intel
Core i5 with 128 MB eDRAM (Turbo Boost up to 3.9 GHz) and 8 GB of 2133 MHz LPDDR3
memory. The DOLFINx version used was 0.5.0. FEniCSx was installed using Conda as it is
the recommended install method for Mac OS and is also available on Linux. The version of
ParaView used was 5.10.1.

4.2.1. Importing the Mesh

The mesh along with the facet tags can be imported using the read_ f rom_mesh function
from the dolfinx.io.gmshio library. The mesh file (mesh3D.msh) and the python script
(SteadyThermal.py) must be in the same folder so that the script can access the mesh.

4.2.2. Defining the Function Space

After importing the mesh, the finite element function space has to be created. The
most commonly used elements are Continuous Lagrange elements and the degree (order)
of the function space can be varied as shown in Figure 3. Higher degree polynomial approx-
imations provide superior results but take more time to solve [32,33]. This disadvantage is
overcome by using a Krylov solver as it can speed up the execution of the program.

Figure 3. Continuous Lagrange tetrahedron for order = 1, 2, 3, 4, 5, 6.

4.2.3. Defining the Variational Form and Boundary Conditions

The trial function u and test function v have to be defined before expressing the
variational problem. To define the variational form, the boundary integral must be split
into parts of Neumann and Robin BCs using the facet tags that are imported with the mesh.
Facet tags are markers for different parts of the surface of the mesh. Tag 52 represents the
large cylindrical hole, 53 represents the rectangular hole, 54 represents the two smaller
cylindrical holes, and 55 represents the remaining surfaces. Facet tags are used to apply the
BCs at the required boundary surface. The large cylindrical hole has a Dirichlet (constant
temperature) condition of 100, the two smaller cylindrical holes have a Dirichlet condition
of 60, the rectangular hole has a Neumann (heat flux) condition of 200 into the surface, and
the rest of the surfaces have a Robin (convection) condition with r equal to 10. There is a
heat generation of 10. After the creation of the boundary conditions, a For loop is run to
collect all the Dirichlet boundary conditions in a list bcs = [] and to append the boundary
integral contributions to the variational form F.

Energies 2022, 15, 8077 7 of 16

4.2.4. Solving the Linear Variational Problem

The variational form F is split into the bilinear form a(u, v) and linear form L(v). The
variational form is implemented into FEniCSx using the UFL library. The solution of the
linear problem uh ∈ V is such that it satisfies a(u, v) = L(v). PETSc is the linear algebra
backend being used. The linear problem is solved using a preconditioned Krylov subspace
method as it is much faster and requires 92% less memory than a direct solution [34]. The
solution is stored as a XDMF file to be viewed in ParaView.

4.3. Results

The temperature contours for different orders are given below. Figures 4–6 show the
temperature contours for orders 1, 2, and 3 respectively. These plots were made using
PyVista with ipygany as jupyter backend as it provides better contrasts. For higher order
function spacess, PyVista joins the isoparametric nodes and makes the grid look more
refined. The program was executed by running python SteadyThermal.py in the terminal.

Figure 4. Temperature contour of a function space of order 1.

The time taken for execution under direct and Krylov solvers for different orders of
the function space is given in Table 1.

Table 1. Comparison of execution time between direct and Krylov solvers for SteadyThermal.py .

Order DOFs Direct Solver Krylov Solver(CG)

1 15,603 2.342662 s 1.241860 s
2 111,273 59.647889 s 2.411070 s
3 360,543 561.680618 s 9.031274 s
4 836,949 5047.619034 s 31.712334 s
5 1,614,027 45,448.596721 s 115.382458 s

As evident from Table 1, the number of DOFs increases drastically with the order
of the function space. So the problem becomes much harder to solve with an increase in
the order. The direct solver, LU factorization, is similar to Gaussian elimination. It is a
very potent and simple method and can be efficiently used for many simpler problems
with a few thousand unknowns. LU factorization solves the linear mesh with ease (2.34 s).
However, sparse LU decomposition quickly becomes inefficient as the size of the matrix

Energies 2022, 15, 8077 8 of 16

increases; it is very inefficient for order 2 (59.65 s) and struggles a lot for order 3 (561.68 s).
On the other hand, the Krylov solver solves order 2 in 2.41 s (vs. 59.65 in direct solver)
and order 3 in 9.03 s (vs. 561.68s in direct solver). Thus, the Krylov solver is far superior
to the direct solver in terms of computational time. Since the result is the same as the one
produced by the direct solver, there is no need to compare the results of the two solvers.
Thus, the Krylov subspace solver is an iterative method that is faster and requires less
memory. Figure 7 shows the bar chart of Time vs. Order for both direct and Krylov solvers.
Note that the Time scale on the y-axis in Figure 7 is logarithmic.

Figure 5. Temperature contour of a function space of order 2.

Figure 6. Temperature contour of a function space of order 3.

Energies 2022, 15, 8077 9 of 16

Figure 7. Comparison of execution time between direct and Krylov solvers.

5. Transient Heat Conduction

Transient heat conduction is governed by Equation (3) and it can also be written
as [28,29,35]:

∂u
∂t

= ∇2u + f in Ω× (0, T]. (17)

5.1. Variational Formulation

To solve time-dependent PDEs, the time derivative is discretized using a finite differ-
ence approximation: (

∂u
∂t

)n+1

= ∇2un+1 + f n+1. (18)

This reduces the problem to a sequence of stationary problems which then can be
solved one after the other. The time-derivative can be approximated using a backward
finite difference scheme: (

∂u
∂t

)n+1

≈ un+1 − un

∆t
, (19)

where ∆t is the time discretization parameter. Substituting Equation (19) in Equation (18)
gives the time-discrete version of the transient heat equation called the implicit Euler
discretization:

un+1 − un

∆t
= ∇2un+1 + f n+1. (20)

The above equation is rearranged in such a way that the right-hand side contains com-
puted terms un from the previous time step and the left-hand side contains the unknown
un+1 in the current time step.

u0 = u0 , (21)

u0 is the initial conditions. Knowing u0, solutions for u0,u1,u2, and so on can be found:

un+1 − ∆t∇2un+1 = un + ∆t f n+1 , n = 0, 1, 2, . . . (22)

Energies 2022, 15, 8077 10 of 16

Equation (22) can also be written as:

un+1 − ∆t∇2un+1 − un − ∆t f n+1 = 0, n = 0, 1, 2, . . . (23)

The above equation is converted into the weak form by multiplying it with a test
function v and integrating second-order derivatives by parts to give the bilinear form as:

a(u, v) =
∫

Ω
(uv + ∆t∇u · ∇v)dx, (24)

and the linear form as:
Ln+1(v) =

∫
Ω
(un + ∆t f n+1)vdx. (25)

The variational form is implemented into FEniCSx using the UFL library.

5.2. FEniCSx Implementation

The transient heat conduction simulation was run on the same system as the steady
conduction simulation. The DOLFINx version used is 0.5.0. The analysis was performed
for HO function spaces using both the direct solver and the Krylov solver. In this transient
analysis, the variational problem is solved 100 times, making it a much larger analysis to
run compared to the steady-state analysis. Thus, the time for execution of this program is
substantially larger than the steady state program. Importing the mesh and defining the
function space is the same as the steady-state case given in Section 4.2. The variational
problem is solved inside a For loop running from t = 0 to t = T with the time step dt. Thus
the variational problem is solved for each time step and the result is stored in a XDMF file
inside the loop.

5.2.1. Boundary Conditions

The large cylindrical hole has a Dirichlet BC of 100, the two smaller cylindrical holes
have a Dirichlet BC of 40, the rectangular hole has a Dirichlet condition of 80, and the rest
of the surfaces have a Neumann boundary condition of 0, i.e., an adiabatic or insulated
boundary condition.

5.2.2. Temporal Parameters

The temporal parameters for this analysis are as follows:

• Start Time t = 0 s;
• Final Time T = 5 s;
• Step Size dt = 0.05 s;
• Number of time steps = T/dt = 100 steps.

5.3. Results

The temperature contours using a linear (order 1) function space at different time
points are given below. Figures 8–12 show the temperature distribution of the linear
function space for t = 0.55, 1.05, 1.55, 2.55 and 4.55, respectively.

Figures 13–15 show the temperature distribution of the cubic function space for t = 0.55,
1.05 and 4.05, respectively.

As mentioned before, these plots were made using PyVista with ipygany as the jupyter
backend as it provides better contrasts. The program was executed by running python
TransientThermal.py in the terminal. The results were exported in XDMF format and the
animation can be viewed in ParaView.

The time taken for execution under direct and Krylov solvers for different orders of
the function space is given in Table 2.

Energies 2022, 15, 8077 11 of 16

Figure 8. Temperature contour of a function space of order 1 at t = 0.55 s.

Figure 9. Temperature contour of a function space of order 1 at t = 1.05 s.

Figure 10. Temperature contour of a function space of order 1 at t = 1.55 s.

Energies 2022, 15, 8077 12 of 16

Figure 11. Temperature contour of a function space of order 1 at t = 2.55 s.

Figure 12. Temperature contour of a function space of order 1 at t = 4.55 s.

Figure 13. Temperature contour of a function space of order 3 at t = 0.55 s.

Energies 2022, 15, 8077 13 of 16

Figure 14. Temperature contour of a function space of order 3 at t = 1.05 s.

Figure 15. Temperature contour of a function space of order 3 at t = 4.05 s.

Table 2. Comparison of execution time between direct and Krylov solvers for TransientThermal.py .

Order DOFs Direct Solver Krylov Solver (CG)

1 15,603 80.71472 s 8.6550031 s
2 111,273 4803.45891 s 68.042709 s
3 360,543 21,769.80122 s 418.93187 s

As evident from the above table, the direct solver takes 80.7 s to solve order 1 while
the Krylov subspace solver takes 8.65 s. Thus, the Krylov solver is around 9.3 times faster
than the direct solver for the linear function space. The direct solver is very inefficient for
HO function spaces and takes 1.33 h for order 2 and 6 h for order 3 as this analysis is far
more computationally intensive than the steady-state analysis. The Krylov solver manages
to produce results for HO function spaces in 68.04 s (vs. 1.3 h in direct solver) for order
2 and in 418.93 s (vs. 6 h in direct solver) for order 3. Thus, the Krylov subspace solver
produces the same results in a much shorter time. Since the result is the same as the one
produced by the direct solver, there is no need to compare the results of the two solvers.

6. Conclusions

This paper demonstrated steady and transient heat conduction in a three-dimensional
bracket using the finite element method. Dirichlet, Neumann, and Robin BCs were used in

Energies 2022, 15, 8077 14 of 16

the analysis. Since heat transfer happens almost everywhere, there are countless applica-
tions of FEM in solving thermal energy problems. Energy applications of heat conduction
include engines, spacecraft, heat exchangers, electronic components, cooling systems, and
chemical processes. In thermal engineering applications, the geometries of engines, tur-
bochargers, radiators, and turbines are incredibly complex. The design of these machines
requires accurate and reliable data from computational analysis about the temperature
distribution and rate of heat flow as they are subjected to various thermal loads during
operation [35,36]. Commercial packages such as ANSYS and ABAQUS can run standard
simulations using already-established FEM frameworks. However, one cannot implement
one’s formulations or run new solvers in commercial packages. Analysis using function
spaces of order 3 and above with Krylov subspace solvers such as the ones presented in
this paper is simply not possible in commercial packages. It is a well-established fact that
using HO function spaces produces more accurate results while taking more time to solve.
This disadvantage is overcome by using a preconditioned Krylov subspace method as it is
much faster and requires 92% less memory than a direct solution. Thus, the methodology
presented in this paper of combining HO function spaces with Krylov subspace solvers is
superior in terms of both accuracy and speed. This opens the gateway to solving more com-
plex problems that are yet to be solved. The time comparisons in Tables 1 and 2 show that
Krylov solvers can even be 30 times faster than a direct solver. The efficiency of the Krylov
solvers allows one to perform complex and intensive simulations on personal computers
reducing the necessity for expensive high-performance computers(HPCs). Another point
to note is that, in the case of transient heat conduction, the solution of HO function space
with a Krylov solver can be faster than the solution of linear function space with a direct
solver. The BCs can easily be made time-dependent by making the values a function of time
(ex: 100 ∗ sin2 (t− π)). This provides a huge advantage over commercial FEM softwares as
most commercial simulation softwares rely on direct solvers. FEniCSx makes it easy to enter
the variational forms that are very close to the mathematical syntax and automates several
features for anyone with a moderate level of knowledge of the mathematical framework
of FEM. It is also an open-source package and is an excellent FEM tool for both learners
and experts.

Author Contributions: Conceptualization, V.K..; methodology, V.K..; software, V.K..; validation, V.K.
and K.C.; formal analysis, V.K..; investigation, V.K. and K.C.; resources, V.K. and K.C.; data curation,
V.K. and K.C.; writing—original draft preparation, V.K. and K.C.; writing—review and editing, V.K.
and K.C.; visualization, V.K.; supervision, K.V.N. and M. V. Reddy; project administration, K.V.N.
and M.V.R.; funding acquisition, M.V.R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research is funded through an invitation to publish a paper conveyed to the corre-
sponding author(M.V.Reddy).

Data Availability Statement: Not applicable.

Acknowledgments: We are appreciative to the administration of Amrita School of Engineering,
Bangalore, for their continuous support and encouragement in completing this work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations and Nomenclature
The following abbreviations are used in this manuscript:

FEM Finite Element Method
PDE Partial Differential Equation
UFL Unified Form Language
CG Conjugate Gradient
BC Boundary Condition
u Trial Function
uD Dirichlet BC

Energies 2022, 15, 8077 15 of 16

Γi
D Boundary with Dirichlet BC

Γi
N Boundary with Neumann BC

Γi
R Boundary with Robin BC

Ω Spatial Domain
v Test Function
un u at time level n
DOF Degree of Freedom
HO Higher Order

References
1. Kareem Jalghaf, H.; Omle, I.; Kovács, E. A Comparative Study of Explicit and Stable Time Integration Schemes for Heat

Conduction in an Insulated Wall. Buildings 2022, 12, 824. [CrossRef]
2. Dokken, J.S.; Mitusch, S.K.; Funke, S.W. Automatic shape derivatives for transient PDEs in FEniCS and Firedrake. arXiv 2020,

arXiv:2001.10058
3. Cook, R.D.; Malkus, D.S.; Plesha, M.E.; Witt, R.J. Concepts and Applications of Finite Element Analysis; John Wiley & Sons, Inc.:

Hoboken, NJ, USA, 2007.
4. Susanne, C.; Brenner, L. Ridgway Scott The Mathematical Theory of Finite Element Methods; Springer: New York, NY, USA, 2008.

[CrossRef]
5. Smitha, T.V.; Nagaraja, K.V. An efficient automated higher-order finite element computation technique using parabolic arcs for

planar and multiply-connected energy problems. Energy 2019, 183, 996–1011. [CrossRef]
6. Supriya, D.; Nagaraja, K.V.; Smitha, T.V.; Jayan, S. Accurate higher order automated unstructured triangular meshes for airfoil

designs in aerospace applications using parabolic arcs. Aerosp. Sci. Technol. 2019, 88, 405–420.
7. Zhang, J.; Chauhan, S. Fast explicit dynamics finite element algorithm for transient heat transfer. Int. J. Therm. Sci. 2019, 139,

160–175. [CrossRef]
8. Bergagio, M.; Li, H.; Anglart, H. An iterative finite-element algorithm for solving two-dimensional nonlinear inverse heat

conduction problems. Int. J. Heat Mass Transf. 2018, 126, 281–292. [CrossRef]
9. Kudela, L.; Chýlek, R.; Pospíšil, J. Efficient Integration of Machine Learning into District Heating Predictive Models. Energies

2020, 13, 6381. [CrossRef]
10. Luo, Y.; Zhang, L.; Feng, Y.; Zhao, Y. Three-Dimensional Streamline Tracing Method over Tetrahedral Domains. Energies 2020, 13,

6027. [CrossRef]
11. Alnaes, M.S.; Blechta, J.; Hake, J.; Johansson, A.; Kehlet, B.; Logg, A.; Richardson, C.; Ring, J.; Rognes, M.E.; Wells, G.N. The

FEniCS Project Version 1.5. In Archive of Numerical Software 3; 2015. Available online: https://publications.lib.chalmers.se/
records/fulltext/228672/local_228672.pdf (accessed on 1 October 2022).

12. Logg, A.; Mardal, K.A.; Wells, G. Automated Solution of Differential Equations by the Finite Element Method; Springer:
Berlin/Heidelberg, Germany, 2012. [CrossRef]

13. Habera, M.; Hale, J.S.; Richardson, C.N.; Ring, J.; Rognes, M.E.; Sime, N.; Wells, G.N. FEniCSX: A sustainable future for the
FEniCS project. In SIAM PP20 Minisymposium: Improving Productivity and Sustainability for Parallel Computing Software; Seattle, WA,
USA, 2020. Available online: https://fenicsproject.org/citing/ (accessed on 1 October 2022).

14. Alnaes, M.S.; Logg, A.; Ølgaard, K.B.; Rognes, M.E.; Wells, G.N. Unified Form Language: A domain-specific language for weak
formulations of partial differential equations. ACM Trans. Math. Softw. 2014, 40, 1–37. [CrossRef]

15. Scroggs, M.W.; Dokken, J.S.; Richardson, C.N.; Wells, G.N. Construction of arbitrary order finite element degree-of-freedom maps
on polygonal and polyhedral cell meshes. ACM Trans. Math. Softw. 2022, 48, 1–23. [CrossRef]

16. Scroggs, M.W.; Baratta, I.A.; Richardson, C.N.; Wells, G.N. Basix: A runtime finite element basis evaluation library. J. Open Source
Softw. 2022, 7, 3982. [CrossRef]

17. Kirby, R.C.; Logg, A. A compiler for variational forms. ACM Trans. Math. Softw. 2006, 32, 417–444. [CrossRef]
18. Geuzaine, C.; Remacle, J.-F. Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing

facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309-1331. [CrossRef]
19. Sullivan, C.; Kaszynski, A. PyVista: 3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit

(VTK). J. Open Source Softw. 2019, 4, 1450. [CrossRef]
20. Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook; Elsevier:

Amsterdam, The Netherlands, 2005; ISBN-13: 978-0123875822.
21. Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware: New York, NY, USA, 2015; ISBN 978-1930934306.
22. Van Der Vorst, H.A. Krylov Subspace Iteration. Comput. Sci. Eng. 2000, 2, 32–37. [CrossRef]
23. Gao, C.; Liu, Y.; You, R.; Li, H. Theoretical and Numerical Study on Thermal Insulation Performance of Thermal Barrier Coatings.

Energies 2022, 15, 6880. [CrossRef]
24. Moumtzakis, A.; Zoras, S.; Evagelopoulos, V.; Dimoudi, A. Experimental Investigation of Thermal Bridges and Heat Transfer

through Window Frame Elements at Achieving Energy Saving. Energies 2022, 15, 5055. [CrossRef]
25. Cengel, Y.A.; Ghajar, A.J. Heat and Mass Transfer: Fundamentals and Applications, 6th ed.; McGraw-Hill Professional: New York, NY,

USA, 2020.

http://doi.org/10.3390/buildings12060824
http://dx.doi.org/10.1007/978-0-387-75934-0
http://dx.doi.org/10.1016/j.energy.2019.06.187
http://dx.doi.org/10.1016/j.ijthermalsci.2019.01.030
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.04.104
http://dx.doi.org/10.3390/en13236381
http://dx.doi.org/10.3390/en13226027
https://publications.lib.chalmers.se/records/fulltext/228672/local_228672.pdf
https://publications.lib.chalmers.se/records/fulltext/228672/local_228672.pdf
http://dx.doi.org/10.1007/978-3-642-23099-8
https://fenicsproject.org/citing/
http://dx.doi.org/10.1145/2566630
http://dx.doi.org/10.1145/3524456
http://dx.doi.org/10.21105/joss.03982
http://dx.doi.org/10.1145/1163641.1163644
http://dx.doi.org/10.1002/nme.2579
http://dx.doi.org/10.21105/joss.01450
http://dx.doi.org/10.1109/5992.814655
http://dx.doi.org/10.3390/en15196880
http://dx.doi.org/10.3390/en15145055

Energies 2022, 15, 8077 16 of 16

26. Piasecka, M.; Maciejewska, B.; Łabędzki, P. Heat Transfer Coefficient Determination during FC-72 Flow in a Minichannel Heat
Sink Using the Trefftz Functions and ADINA Software. Energies 2020, 13, 6647. [CrossRef]

27. He, J.; Wang, K.; Li, J. Numerical Analysis of the Convective Heat Transfer Coefficient Enhancement of a Pyro-Breaker Utilized in
Superconducting Fusion Facilities. Energies 2021, 14, 7565. [CrossRef]

28. Langtangen, H.P.; Logg, A. Solving PDEs in Python The FEniCS Tutorial I; Springer: Cham, Switzerland, 2016. [CrossRef]
29. Reddy, J.N.; Gartling, D.K. The Finite Element Method in Heat Transfer and Fluid Dynamics; CRC Press: Boca Raton, FL, USA, 2011.

[CrossRef]
30. Langtangen, H.P.; Mardal, K.-A. Introduction to Numerical Methods for Variational Problems; Springer: Cham, Switzerland, 2016.

[CrossRef]
31. Larson, M.G.; Bengzon, F. The Finite Element Method:Theory, Implementation, and Applications. In Texts in Computational Science

and Engineering; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
32. Smitha, T.V.; Nagaraja, K.V. Application of automated cubic-order mesh generation for efficient energy transfer using parabolic

arcs for microwave problems. Energy 2019, 168, 1104–1108. [CrossRef]
33. Kumar, S.; Jakkareddy, P.S.; Balaji, C. A novel method to detect hot spots and estimate strengths of discrete heat sources using

liquid crystal thermography. Int. J. Therm. Sci. 2020, 154, 106377. [CrossRef]
34. McDonagh, J.; Palumbo, N.; Cherukunnath, N.; Dimov, N.; Yousif, N. Modelling a permanent magnet synchronous motor in FEniCSx

for parallel high-performance simulations. Finite Elem. Anal. Des. 2022, 204, 103755. [CrossRef]
35. Singh, P. Errors Incurred in Local Convective Heat Transfer Coefficients Obtained through Transient One-Dimensional Semi-

Infinite Conduction Modeling: A Computational Heat Transfer Study. Energies 2022, 15, 7001. [CrossRef]
36. Jakkareddy, P.S.; Balaji, C. Estimation of local heat transfer coefficient from natural convection experiments using liquid crystal

thermography and Bayesian method. Exp. Therm. Fluid Sci. 2018, 97, 458–467. [CrossRef]

http://dx.doi.org/10.3390/en13246647
http://dx.doi.org/10.3390/en14227565
http://dx.doi.org/10.1007/978-3-319-52462-7
http://dx.doi.org/10.1201/9781439882573
http://dx.doi.org/10.1007/978-3-030-23788-2
http://dx.doi.org/10.1007/978-3-642-33287-6
http://dx.doi.org/10.1016/j.energy.2018.11.138
http://dx.doi.org/10.1016/j.ijthermalsci.2020.106377
http://dx.doi.org/10.1016/j.finel.2022.103755
http://dx.doi.org/10.3390/en15197001
http://dx.doi.org/10.1016/j.expthermflusci.2018.04.026

	Introduction
	Heat Conduction
	General Heat Conduction Equation
	Boundary Conditions
	Temperature Boundary Condition
	Heat Flux Boundary Condition
	Convection Boundary Condition

	Bracket Geometry
	Steady Heat Conduction
	Variational Formulation
	FEniCSx Implementation
	Importing the Mesh
	Defining the Function Space
	Defining the Variational Form and Boundary Conditions
	Solving the Linear Variational Problem

	Results

	Transient Heat Conduction
	Variational Formulation
	FEniCSx Implementation
	Boundary Conditions
	Temporal Parameters

	Results

	Conclusions
	References

