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Abstract: A novel bare-bones particle swarm optimization (BBPSO) algorithm is proposed to realize
intelligent mine ventilation decision-making and overcome the problems of low precision, low speed,
and difficulty in converging on an optimal global solution. The proposed method determines the
decision objective function based on the minimal power consumption and maximal air demand.
Three penalty terms, namely, dynamic ventilation condition, the supplied air volume at the location
where the air is required, and roadway wind speed, are established. The particle construction
method of “wind resistance” instead of “wind resistance & air volume” is proposed to reduce
the calculation dimension effectively. Three optimization strategies, namely the contraction factor,
optimal initial value, and elastic mirror image, are proposed to avoid premature convergence of the
algorithm. The application flow of intelligent decision-making in the field and the parallel computing
architecture are also discussed. Five methods are used to solve the problems. The results reveal that
the improved parallel BBPSO algorithm (BBPSO-Para-Improved) outperforms other algorithms in
terms of convergence efficiency, convergence time, and global optimization performance and meets
the requirements of large ventilation systems for achieving economic and safety targets.

Keywords: intelligent ventilation; ventilation on demand; multi-objective decision-making; evolutionary
computation; parallel computing

1. Introduction

Coal is the main energy source in China. According to the preliminary calculation of
the National Bureau of Statistics, coal consumption increased by 0.6% in 2020. Furthermore,
coal provides 56.8% of the total energy supply in China. Coal consumption is expected
to dominate China’s energy system, and the use of fossil energy will remain unchanged
for many years. Coal will remain the country’s main energy source, closely related to
national economic performance and energy security. However, after more than ten years
of sustained and rapid development, the coal industry has many problems, such as back-
ward mining technology, depth of deposits, large production systems, a harsh operating
environment, severe ecological damage, severe aging of personnel, talent shortage, and
low automation. Under China’s strategic “carbon neutrality” objectives, the coal industry
should transform from extensive conventional development to high-quality development
to coordinate the relationship between social development and carbon emission reduction.
The transformation and upgrade of intelligent coal mining are critical to efficient coal
production and the development of a high-quality coal industry [1,2]. Ventilation is a
crucial aspect of intelligent mine construction [3,4].

An underground ventilation system provides fresh air and removes hazardous dust
and gases to ensure safe and efficient production. However, with the increased complexity
of ventilation networks, ensuring safe and economical ventilation systems becomes dif-
ficult [5–9]. The total energy consumption of ventilation increases to 25–60% of the total
energy consumption [10–13], and insufficient air volume in the location that requires air
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can result in casualties [14]. Therefore, developing a novel intelligent decision-making
algorithm has received considerable attention. An intelligent decision-making algorithm
with high precision and rapid convergence can quickly provide the optimal control scheme
when the air volume is insufficient at the location where the air is required and eliminate the
safety risks of toxic and harmful gas diffusion and human suffocation in a timely manner.
Intelligent decision-making algorithms use multiple air windows in the ventilation network
to optimize the ventilation system [15–18].

The conventional decision-making methods for mine ventilation can be categorized
into three categories:

• Methods based on graph theory, such as the loop method and path method [19–22];
• Methods based on nonlinear mathematical programming, such as the Lagrange multi-

plier method or unconstrained optimization by constructing a penalty function, and
solving by Newton and quasi-Newton methods [23–26];

• Methods based on evolutionary calculation [27–32].

The above methods have unique advantages and disadvantages. Each method exhibits
unique advantages and disadvantages. Although graph theory solution methods require
technicians, the adjustment effect cannot satisfy the optimal total air resistance value in
the mine when the resistance changes. Continuous adjustment is required until certain
criteria are satisfied. Ventilation power consumption is a critical consideration [33–35].
However, only the target air volume is considered in such methods, and the ventilation
power consumption is ignored. The mathematical programming solution should only
set the optimization objectives and constraints that can be calculated. However, with
the increasing complexity of the ventilation system and high-dimensional problems, this
method cannot ensure convergence to global optimization or computational efficiency.
Therefore, constructing a penalty function that accurately satisfies constraints, such as
the node air volume balance and loop air pressure balance, should be considered. With
the development of evolutionary computing, intelligent algorithms such as the genetic
algorithm, simulated annealing algorithm and particle swarm optimization algorithm
are used in mine ventilation; however, the decision-making efficiency and accuracy of
large-scale networks are low. Thus, these methods cannot be applied in practice. With
intelligent ventilation attracting considerable attention, optimality and speed of intelligent
decision-making theory have become critical parameters, which makes studying an efficient
intelligent decision-making algorithm crucial.

In this study, a novel decision-making algorithm was proposed to improve safety and
reliability and reduce the energy consumption of the mine ventilation system. The objective
function was constructed based on the economy and safety target for a ventilation system.
The evolutionary bare-bones particle swarm optimization (BBPSO) algorithm was proposed
to solve problems associated with a parallel computing architecture. Three strategies were
proposed to improve intelligent decision-making for effectively realizing the key problem
of fast global optimization decision-making in a large-scale ventilation system.

2. Mathematical Model

Particle swarm optimization (PSO) [36] is an evolutionary computing technology
proposed by Eberhart and Kennedy in 1995, Kennedy subsequently improved the algorithm
and proposed BBPSO [37]. To understand the BBPSO algorithm, PSO is first detailed.

2.1. Mathematical Model of PSO

PSO is an optimization algorithm based on group information sharing and is derived
from simulating the foraging behavior of birds. Each particle in the algorithm is a solution
in the solution space, which constantly updates its position and speed according to the
group experience and the individual cognitive optimization process of searching for the
optimal solution in a multi-dimensional space.
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The algorithm flow is as follows: initialize the population of size s living in the
D-dimensional space, and each particle has a random birth point position Xi(0) and initial-
ization speed Vi(0) as follows:

Xi(0) =
[

x(1)i (0), x(2)i (0), · · · , x(d)i (0)
]
, i = 1, 2, · · · , s, (1)

Vi(0) = [v(1)i (0), v(2)i (0), · · · , v(d)i (0)], i = 1, 2, · · · , s. (2)

The fitness value of each particle is calculated according to the population fitness
function. After the t-th search, the optimal position searched by particle Xi is pi(t), and the
optimal position searched by all particles in the population is pg(t).

The individual optimal adaptation value obtained by each search and the global
optimal fitness value of the population update the speed and position of the next particle
as follows:

Vi(t + 1) = w ·Vi(t) + c1 · rand1 · [pi(t)− Xi(t)] + c2 · rand2 ·
[
pg(t)− Xi(t)

]
, (3)

Xi(t + 1) = Xi(t) + Vi(t + 1), (4)

where w is the inertia weight, c1 and c2 are the learning weights of particles and populations,
respectively, and rand1 and rand2 are random numbers uniformly distributed from 0 to 1.

2.2. Mathematical Model of BBPSO

In the follow-up study, Clerc and Kennedy analyzed the motion trajectories of particles
and revealed that the direction of travel of particles oscillated around the direction of the
weighted average of pg and pi. The proposed BBPSO algorithm is based on this method.
Parameters, such as velocity term, inertia weight, and learning factors, are removed based
on the PSO algorithm. Only Gaussian sampling was used to update the particle position,
simplifying the complex parameter adjustment process and exhibits a stronger ability for
random searching. The equation for updating BBPSO particles is as follows:

Xi(t + 1) ∼ N(µi, σi)
µi = 0.5 ·

(
pi(t) + pg(t)

)
σi =

∣∣pi(t)− pg(t)
∣∣ . (5)

The center of the particle’s optimal position pi and the population’s optimal position pg
determines the sampling center, and the distance between pi and pg determines the size of
the sampling confidence interval. During the search process, the particles are likely to move
toward the center position µi of pi and pg, and are in the α = 0.05 confidence interval of
[µ − 1.96σ, µ + 1.96σ]. As the distance between pi and pg reduces, the sampling confidence
interval also reduces. This characteristic attracts all particles to the vicinity of pg in the later
search stage, which improves optimization accuracy.

3. Intelligent Decision Objectives and Constraints
3.1. Objective Function

The minimal ventilation power consumption (economy target) and the maximal air
demand (safety target) are the two most critical economy and safety indicators of the
ventilation system. Considering that the values of various dimensions cannot be added
directly, the following standardized objective function is constructed:

minL = ω
k ·

k
∑
i

qi f ·H(qi f )−minN (qi f )
maxN (qi f )−minN (qi f )+ε

+ (1−ω)
l ·

l
∑
i

ψi

ψi =
qis−max(qil ,qir)
qiu−max(qil ,qir)

, qis ∈ {qis|qis/qir > 1∩ qil < qis < qiu},
, (6)

where L is the objective function; ω is the weight of the ventilation power consumption
term, 0 < ω < 1; k is the number of fans; qif is the fan air volume, in m3/s, H is the fan
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pressure-characteristic equation;N is the fan power-characteristic equation; ε is a minimum
value that avoids the denominator being 0; l is the number of wind locations; qis is the
supplied air volume at the location where air is required, m3/s; qil is the lower limit of the
air volume at the location at where air is required, qiu is the upper limit of the air volume at
the location where air is required, m3/s; qir is the required air volume at the location where
air is required, m3/s.

3.2. Penalty Function

In the penalty function, a penalty is added to the infeasible solution, which forces the
particle swarm to move toward the feasible solution. The penalty function must satisfy
two conditions:

• The search of particles should depend on the particle’s optimal value and the popula-
tion’s optimal value. Therefore, the penalty function cannot be constructed by using a
simple truncation method, and the penalty value should have a gradient;

• The penalty value should be standardized.

Therefore, for each penalty item that is not in the reasonable interval, the distance is
calculated between the penalty item and the center of the reasonable interval. Then the
distance is introduced into the deformed tanh function, as in Equation (7), with the function
image displayed in Figure 1. The final penalty value of each item is in the (1, 2) range, a
penalty gradient exists, and the number of penalty items can be approximated numerically
for the algorithm to search the position conveniently with fewer penalty items as follows:

T (dis) = 0.5 · edis − e−dis

edis + e−dis + 1.5. (7)
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Figure 1. Image of the deformed tanh function.

The fan operating conditions, air volume supplied at locations where air is required,
wind speed, and direction are critical economy and safety indicators and are the penalty
items for inspection and calculation:

(1) The penalty item of fan working condition is as follows:

dis1 =

∣∣∣∣ q f−0.5·(q f l+q f u)
0.5·(q f l+q f u)

∣∣∣∣
pnl1 = k

ω · T (dis1)
, (8)

where qf is the fan’s operating air volume, in m3/s; qfu and qfl are defined as the upper and
lower air volume limits of fan, respectively, in m3/s; the denominator is the standardized
parameter for unifying the standardized magnitude scale; dis1 is the distance between the
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fan working condition and the center of the reasonable operating range of the fan; and pnl1
is the standardized fan item penalty value.

(2) The penalty item of supplied air volume at the location where air is required.

dis2 =
∣∣∣ qis−0.5·(qiu+max(qil ,qir))

0.5·(qiu+max(qil ,qir))

∣∣∣
pnl2 = l

1−ω · T (dis2)
, (9)

where qis is the supplied air volume of the location i where air is required, in m3/s; qiu and
qil are the upper and lower limits of the air volume at the location where air is required,
respectively, in m3/s; qir is the demanded air volume at the location where air is required,
in m3/s. dis2 is the distance between the supplied air volume of roadway i and the center
of the reasonable air demand range; pnl2 is the standardized penalty value of air demand.

(3) The penalty items for checking the wind speed and wind direction of the roadway are
as follows:

dis3 =
∣∣∣ qi−0.5·(qil+qiu)

0.5·(qil+qiu)

∣∣∣
pnl3 = κ · T (dis3)

, (10)

where qi is the air volume of the roadway i, qiu and qil are the upper and lower limits of the
roadway air volume, respectively, in m3/s; dis3 is the distance between the air volume of
the roadway i and the center of the reasonable air volume range; κ is the weight coefficient
of the roadway, which is related to roadway type; and pnl3 is the penalty item for wind
speed checking.

3.3. Particle Construction Method

The objective function’s unknowns include the air window’s wind resistance to be
adjusted and the air volume of all roadways. If the particles are constructed by the method
of “wind resistance plus air volume”, in addition to the aforementioned penalty function,
constraining and punishing the particles that do not satisfy the law of air volume balance
and air pressure balance is critical. For large-scale ventilation systems, the dimension of
the air volume parameter is high. Irrespective of the method used to construct the penalty
function, the particles that satisfy the constraints are extremely rare in the whole high-
dimensional search space. Therefore, satisfying the constraints accurately and achieving
engineering precision is difficult. With the increase in the objective function’s dimension,
the solution’s time complexity increases nonlinearly, and the decision-making efficiency
of large-scale ventilation systems is extremely low. Therefore, the air volume parameters
do not contribute to the construction of particles, and only “wind resistance” is used to
construct particles, and the entire air volume is obtained through network calculation. Thus,
the dimensions of the search space are considerably reduced, which improves accurate
convergence and reduces the algorithm’s time complexity.

(1) Selection of the air window to be adjusted

The air window to be adjusted is selected according to the sensitivity of the air window
roadway to the target location that requires air. When the target air volume is insufficient,
the positive sensitivity (dij > 0, see Equation (16)) air window is adjusted. When the air
volume of the target location required exceeds the limit, the negative sensitivity (dij < 0,
see Equation (16)) air window is adjusted. In mines, multiple target locations that require
air generally exist, and the sensor collects data to determine the required air volume and
current air volume of the target location. According to the air volume adjustment, the
sensitivity data calculated and stored in advance is used to calculate the appropriate air
window combination to realize the multi-window linkage control of the ventilation system.

The sensitivity of the current state of the air window cannot accurately represent its
adjustability. Therefore, the method of selecting five points in the sensitivity attenuation
and considering the average value is used to represent the adjustability of the air window.



Energies 2022, 15, 7980 6 of 17

The range of the attenuation area is related to the order of magnitude of the wind resistance
of the adjacent roadway and is generally 10−4–101. The sensitivity is described later in the
trans-border particle processing method.

(2) The mass flow network solution algorithm is used to solve the air volume iteratively.

For any circuit in the ventilation network, the following equilibrium law exists:

∆h(qm) = ∑
i

αi ·
ri0

ρi · ρ0
· qim · |qim|+ hi f + hia = 0, (11)

where αi is the direction of roadway i in the loop, clockwise is positive, and counterclock-
wise is negative; ri0 is the standard wind resistance of roadway i, N·s2·m−8; ρ0 is the
standard air density of roadway i, in m3/kg; ρi is the air density of roadway i, in m3/kg; hif
is the fan pressure of roadway i, Pa; hia is the additional resistance of roadway i.

The balance equation at the approximate point qim(k) of the k-th iteration is ex-
panded, and the expansion terms of the second-order and above are omitted to obtain the
following formula:

∆h(qim(k)) = ∑
i

αi · ri0
ρi ·ρ0
· qim(k) · |qim(k)|+ hi f + hia

+(qim(k + 1)− qim(k)) ·
(

∑
i

2 · αi · ri0
ρi ·ρ0
· |qim(k)|+ hi f

′ + hia
′
)
= 0

. (12)

The aforementioned formula is transformed, and to avoid nonconvergence, the de-
nominator term is scaled to obtain the following formula:

∆qim(k) = qim(k + 1)− qim(k) =
−∑

i
αi · ri0

ρi ·ρ0
· qim(k) · |qim(k)|

∑
i

∣∣∣2αi · ri0
ρi ·ρ0
· qim(k)

∣∣∣ . (13)

The air volume is obtained by an iterative structure sequence.

qim(k + 1) = qim(k) + ∆qim(k). (14)

4. Global Optimization Improvement Strategy

In the late searching period, the clustering characteristic of BBPSO improves the
accuracy of the convergence solution. However, in the early searching period, this feature is
not conducive to forming population diversity, and the algorithm may fall into premature
convergence because of insufficient sampling. To enable the BBPSO to search for the
optimal global solution, three aspects, namely the contraction factor, initial value, and the
trans-border particles, are optimized.

4.1. Contraction Factor

A contraction factor is added to the variance of Gaussian sampling σ, and the range of
the contraction factor is mapped to the interval [ξu, ξl]. A large contraction factor in the
early searching period can expand population diversity. With the epochs increasing, the
contraction factor at the late searching period gradually decreases, which improves local
optimization and resolves accuracy. The calculation formula of the contraction factor is
as follows:

ξ = (ξu − ξl) ·
maxt− t
maxt− 1

+ ξl , (15)

where ξ is the contraction factor; ξu and ξl, are its upper and lower limits, respectively; in
this paper, the values are 1.3 and 0.8; max t is the maximum number of epochs; and t is the
number of epochs.
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4.2. Optimized Initial Value

The quality of the initial particle value is a factor that considerably affects the algo-
rithm’s convergence to the optimal global solution. The initial particle value is optimized
from the perspective of ventilation system sensitivity [38].

Sensitivity dij is defined by the change rate of the air volume in roadway j caused by a
slight change of wind resistance in roadway i as follows:

dij = lim
|∆ri |→0

∆qj

∆ri
=

∂qj

∂ri
. (16)

Furthermore, tij is defined as the rate of change of sensitivity dij:

tij = lim
|∆ri |→0

dij(ri + ∆ri)− dij(ri)

∆ri
=

∂dij

∂ri
=

∂2qj

∂r2
i

. (17)

Sensitivity can reflect the change of effective air volume caused by unit wind resistance
adjustment, and the search efficiency in the high sensitivity area is higher than that in the
low sensitivity area. Figure 2 shows the sensitivity curve of roadway e17 to roadway e43
and the sensitivity attenuation rate in the calculation example in this paper. In low wind
resistance areas, the sensitivity of the roadway is high, and the attenuation rate is also high.
Any change in wind resistance considerably influences the air volume of the roadway. With
the increase in the wind resistance, the sensitivity decreases to near 0 and remains flat, and
the change of wind resistance has a limited influence on the air volume of the roadway. The
region with high sensitivity and high attenuation rate occupies a small proportion of the
entire search domain, but the search efficiency is high. Several valid points remain in the
low-sensitivity region, which also requires allocating a small number of search resources.
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In the conventional particle swarm initialization method, generally, uniform sampling
is adopted in the search interval. However, this resource allocation method is not reasonable
for the wind resistance parameters with variations in orders of magnitude. The high
sensitivity interval is generally the wind resistance interval [0, 1], which only accounts
for 0.2% of the entire search domain. In contrast, the low sensitivity interval is generally
the wind resistance interval [1, 500], which accounts for 99.8% of the search domain. The
probability of uniformly sampled initial particles falling into the high sensitivity interval
[0, 1] is considerably smaller than that of falling into the low sensitivity interval [1, 500].
Thus, the most effective points would be missed, which could waste computing resources,
resulting in low convergence efficiency or failure to converge to the optimal global value.
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The problem of sampling deviation can be solved by changing the linear coordinate
axis r of the wind resistance to uniformly distributed sampling on the logarithm axis
log10(r) and subsequently mapping back to the linear coordinate system when constructing
particles. Figure 3 shows the sensitivity curve and its attenuation rate on the logarithmic
axis and the simulated sampling points on the logarithmic axis. The high sensitivity region
is in the (−6–0) range on the logarithmic axis, and the low sensitivity region is in the
(0–2.7) range on the logarithmic axis. The sensitivity to the logarithmic axis can force each
order of the magnitude interval to allocate identical computing resources, whereas uniform
sampling allocates more resources to the high-sensitivity region. The low sensitivity region
is then considered to ensure a certain search power to effectively improve the algorithm’s
computational efficiency and global optimization ability.
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4.3. Processing of Trans-Border Particles

In the early searching period, the optimal particle value is far from the optimal
population value, and particles exceed the boundary of the search domain during Gaussian
sampling. In the conventional processing method, the trans-border particles are drawn
back to the boundary of the search domain. However, this processing method exhibits two
disadvantages. First, the particles at the boundary of the search domain are not the optimal
solution to the target problem, especially for the complex ventilation system optimization
problem; drawing back to the boundary results in waste computing resources. Second,
simply drawing the trans-border particles back to the boundary of the search domain results
in a loss of population diversity and omission of key information, leading the algorithm
to converge on the optimal local solution. The correct processing of trans-border particles
can affect the convergence trend of the particle swarm. The information of the trans-border
particles should be maximally preserved to avoid wasting computing resources and expand
the population diversity, which is conducive to global optimization.

Therefore, the strategy is formulated to improve population diversity for global opti-
mization in the early stage and improve local search ability and accuracy in the subsequent
stage. In the early search stage, the birth point of the particle is regenerated, and the
parameters of the trans-border dimension of the particle are re-initialized and sampled in
the search domain of this dimension. This method of addressing trans-border particles
can improve population diversity without wasting resources. However, re-initializing the
particle birth point in the subsequent search stage is not conducive to clustering the particle
swarm. The elastic mirror boundary strategy [39] was introduced to draw the trans-border
particles from (±∞, xib) to (xib, µ), and the corrected particle position is determined by the
following formula:

x′i(t + 1) = µi +
(xib − µi)

2

xi(t + 1)− µi
, (18)
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where i is the trans-border dimension; x′i(t + 1) is the modified position of the trans-border
particle; µi is the search center of dimension i; xib is the boundary dimension i; and xi(t + 1)
is the position of the trans-border particle.

Figure 4 shows a schematic of the elastic mirror mechanism for handling trans-border
particles. The 95% confidence range determined by the search center µi is likely to fall
outside the boundary, and the particle is out of bounds in the D1 dimension. According to
Equation (18), the greater the over-border distance of the particle is, the closer its corrected
position is to the search center; when the particle trans-border distance is not large, the
corrected position is near the boundary. This strategy maximally preserves its original
characteristics while expanding the diversity of the population.
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5. Intelligent Decision Architecture and Process for Large Ventilation Systems
5.1. Parallel Computing Architecture

As the serial calculation of the BBPSO algorithm proceeds, the fitness of all particles is
calculated at each epoch. The convergence time of the algorithm increases nonlinearly as
the network size and particle number increase. The complexity of BBPSO is determined by
combinations of multiple factors, such as scale, dimension, and whether multiple objectives,
multiple fans, or air windows with positive and negative sensitivity exist. The algorithm
cannot converge rapidly because of the small feasible region and multiple peaks, which
considerably reduces intelligent decision-making on the application efficiency of large-scale
ventilation networks.

A parallel computing architecture for large ventilation networks is designed based
on a parallel computing pool and shared memory technology, as shown in Figure 5. The
architecture consists of a particle layer, a computing layer, and a sharing layer. The particle
layer typically undertakes various processes, each containing several particles as its basic
unit. The particle swarm processes do not directly communicate with each other, and this
layer stores the current position and optimal position of the particles of the entire particle
swarm. The computing layer connects the particle layer and the sharing layer, collects
information from the sharing layer and the particle layer, realizes the data exchange and
high-speed parallel computing between the two layers, and feeds back better calculation
results to the particle layer and the sharing layer. The sharing layer updates the optimal
population value and the optimal fitness. The layer is the shared memory between multiple
processes, and a process lock ensures the security of inter-process communication. Only
one process can use the shared memory at a time. The parallel computing architecture can
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be deployed on elastic cloud servers for high-speed decision computing based on server
load balancing.
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5.2. Intelligent Decision Application Process

The application process of the complete intelligent decision algorithm that is based on
parallel architecture is further described in Figure 6. The flow is described as follows:

Step 1: Initialize the ventilation system data, generate the population, generate the
objective function, and use the field data collected by the sensor to generate the decision tar-
get, as well as other calculation parameters such as the maximum epochs and convergence
fitness, go to Step 2;

Step 2: Because the loop does not require multiple repeated calculations, it is calculated
according to the ventilation network data for particle fitness, go to Step 3;

Step 3: According to the particle position and objective function, calculate the fitness
of each particle in parallel, go to Step 4;

Step 4: Determine whether the particle fitness is better than the current optimal particle
fitness. If it is better, update the optimal particle fitness and go to Step 5; Otherwise, go to
Step 6.

Step 5: Determine whether the particle fitness is better than the optimal population
fitness. If it is better, then the optimal fitness of the population is updated, and go to Step 6.

Step 6: Determine whether the maximum number of evolutionary epochs is reached
or the fitness is allowed. If so, end and output the optimal particle position; if not, go to
Step 3 to enter the next round of calculation.
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6. Calculation Example

Figure 7 shows a mine ventilation system with 189 roadways, 149 nodes, 1 main fan, 3
intake air shafts, and 2 mining faces. The red position is the target air-requiring location,
and the blue position is the adjustable air window. Through the adjustment of the air
window, the air volume at the target air-requiring location can confirm the standard while
considering the fan’s safety and power consumption. The intelligent decision is calculated
based on the real mine data. To facilitate visualization, in this example, only two locations
(e17, e36) that require air as the targets are selected for optimization. Two positive sensitivity
air windows (e43, e171) are selected for adjustment.

Five methods are used to solve the decision-making problem for the ventilation system
in Figure 7, including:

• Parallel bare-bones particle swarm optimization algorithm with the strategy improved
in this paper (BBPSO-Para-Improved);

• Serial bare-bones particle swarm optimization algorithm with improved strategies
(BBPSO-Seri-Improved);

• Parallel bare-bones particle swarm optimization without improved strategies (BBPSO-
Para);

• Serial particle swarm optimization (PSO-Seri);
• Serial genetic algorithm (GA-Seri).

A total of 18 clusters of calculations were conducted. Here, ω is 0.5, which can ensure
the robustness of the decision scheme. When ω is close to 0 or 1, the algorithm is unstable.
The ventilation disturbances may cause the decision to meet safety standards no longer.
The particle number is set to 10, max t is set to 300 and tol is set to 0 to ensure that each
algorithm completes 300 calculation epochs.
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Figure 7. Ventilation system.

Figure 8 shows the fitness contour and particle trajectory. The scope of the graph is a
two-dimensional search domain. For better presentation, the linear axes are replaced by
the logarithm axes, representing the logarithm of air window resistance. The blue region
is the feasible region, and the red region is the infeasible region. The actual area of the
feasible region is considerably smaller than the display area. After sampling statistics,
the feasible domain in this example only accounts for approximately 2.19% of the search
domain. Particles are randomly generated in the search domain, and particles aim to search
the optimal value in the feasible domain. The particle swarm cooperatively completes the
optimization through the iterative evolution of the population. The search process changes
the position of the particles in the search domain, and each position corresponds to the
control scheme of air window resistance. When the particle swarm finds the optimal value,
the optimal position can be derived and transformed into the optimal control scheme. In
the figure, the star represents the optimal population value, the arrow vector represents
the particle, and the direction points to the sampling center of the optimal particle value
and the optimal population value. Several particles are closely adjacent, overlapping, and
marked by boxes in the figure.

When iteration begins, the particle distribution is dispersed. When iteration continues,
the optimal value of the population is constantly updated. All particles gravitate to the
center of the particle’s optimal value and the population’s optimal value and cluster around
the optimal global value. The improvement to the optimization strategy proposed in this
study allows the feasible region to be entered in fewer epochs, and the optimal global value
can be searched in approximately 30 epochs.

Figure 9 shows the fitness curves of the five methods. The points in the figure represent
the mean, and the strips represent the standard deviation. BBPSO-Para-Improved and
BBPSO-Seri-Improved quickly searched toward the feasible region and determined the
optimal global solution due to the rational optimization strategy and the rapid fitness
decline. Because of the shared memory and process lock mechanisms, the search efficiency
of parallel computing is approximately equivalent to serial computing. However, the search
time for parallel computing is considerably less. BBPSO-Para is not optimized by strategy
and requires more epochs than BBPSO-Para-Improved does. However, the method is
generally superior to PSO and GA algorithms. For PSO-Seri, as the iteration progresses, the
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optimal particle and the optimal population values gradually approach, the search range
reduces, and premature convergence can easily occur. The GA-Seri algorithm exhibits poor
search efficiency and an extended iteration cycle because GA is more inclined to natural
selection, and the population does not exhibit the directionality of independent selection,
which results in achieving slow convergence and high precision difficult in fewer epochs.
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Figure 9. Fitness curves of five algorithms.

Table 1 details the performance of five algorithms, including the average calculation
time, the average convergence epochs (nonconvergence is calculated according to the
maximum epoch number of 300), and average convergence rate. When the fitness is less
than 0.65, the method converges to the optimal global solution. The improved BBPSO
algorithm exhibited a stronger global optimization ability and converged on the optimal
global solution quickly and efficiently. Thus, parallel computing considerably reduces the
solving time and efficiency. The larger the scale of the ventilation system is, the higher
the proportion of time consumed by inter-process communication than solving for small
ventilation systems.

Table 1. Performance of five algorithms.

Algorithm Average
Calculation Time/s

Average
Convergence Epochs

Average
Convergence Rate/%

GA-Seri 111.54 285.28 16.7
PSO-Seri 27.21 231.50 38.9

BBPSO-Para 11.01 112.11 77.8
BBPSO-Seri-
Improved 25.32 49.61 100.0

BBPSO-Para-
Improved 10.71 46.06 100.0

Computer specification: CPU Intel Core i7-10700F, 2.9 GHz; GPU Nvidia Geforce GTX1650, 4 GB; RAM 16 GB.

7. Conclusions

A mine ventilation intelligent decision-making algorithm based on BBPSO was de-
veloped to overcome the problems of low accuracies and slow speeds of conventional
decision-making algorithms. Based on safety and economic factors, the objective function
was constructed, and three constraints were imposed on the fan-working-condition value,
the air-required value, and the wind-speed value. The improved strategies were developed
based on three aspects: the contraction factor, optimized initial value, and processing of
trans-bounder particles. The algorithm’s parallel computing architecture and engineering
application flow were studied to improve efficiency and real-time responses when applied
to the decision-making problem of large-scale mine ventilation systems. The simulation
experiments were carried out on a real mine ventilation system. The results revealed that
the proposed method exhibited better convergence accuracy and efficiency than other intel-
ligent decision-making algorithms, resulting in more accurate and efficient decision-making
for intelligent mine ventilation.

However, the effect of data error on decision accuracy should also be considered
in real-world applications. Real ventilation systems in extensive ventilation regions are



Energies 2022, 15, 7980 15 of 17

characterized by the possibility of many disturbances and synergistic effects of factors
related to the ventilation of mine workings, which may cause disturbances in the operation
of the algorithm and requires further research. For future work, we will focus on improving
the algorithm’s robustness to run reliably in industrial scenarios.
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Nomenclature

X Position of particle
V Velocity of particle (PSO)
w, c Weights (PSO)
rand Random number
N Normal distribution
pi Optimal position of particle i
pg Optimal position of population
L Objective function
ω Weight of the ventilation power
qif Fan air volume
qis Supplied air volume
qiu Upper limit of the air volume
qil Lower limit of the air volume
H Fan pressure-characteristic equation
N Fan power-characteristic equation
T Deformed tanh function
dis Distance
pnl Penalty value
qfu Upper air volume limits of fan
qfl Lower air volume limits of fan
α Direction of roadway
r Resistance of roadway
ρ Air density of roadway
ξ Contraction factor
dij Sensitivity
tij Rate of change of sensitivity
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