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Abstract: This paper aims to address a finite-horizon model predictive control (MPC) for non-
linear drum-type boiler-turbine system using a system-identification method. Considering that the
strong state coupling of a non-linear mechanism model, the subspace identification method is first
utilized to obtain a linear state-space model, and transformed into an input–output model. By taking
the inputs and outputs of the input–output model as system states, an augmented non-minimal
state-space (NMSS) model of state measurable is constructed. In order to reduce the computation
burden, the augmented NMSS model is further transformed into a canonical formulation by adopting
a Kalman decomposition. Based on the minimal realization state-space model, the MPC controller
is parameterized as a finite-horizon optimization problem. Finally, simulations are performed and
evaluated the performance of the proposed method, and the simulation results show that: the
linear model approximate the non-linear system accurately; the proposed MPC method can achieve a
satisfactory stable control performance; and the computation time 18.388 s for the overall optimization
problem also illustrates the real-time performance effectively.

Keywords: boiler-turbine system; subspace identification; model predictive control; terminal
constraint; nominal stability

1. Introduction

The thermal power unit, which mainly converts the chemical fuel (e.g., coal, oil, or
gas) into electrical energy, is one of the most important energy conversion devices. For
a thermal power unit, the fundamental requirement is to guarantee the pressure and
water in the drum within the allowable range, while meeting the load demand of electric
power. However, the complex dynamic characteristics of the boiler-turbine result in many
difficulties for system modeling and control strategy design [1–3].

In practice, the operation of thermal power unit combats many challenges, such as
severe non-linearity and multivariable coupling, which are the potential causes for the
deteriorating performance of stability of thermal power unit. Over the past several decades,
in order to eliminate or decrease the effects caused by these problems, plenty of studies have
been conducted in industrial and academia; e.g., [4–6]. In [4], the authors utilized the fuzzy
method to study the modeling problem of a drum-type non-linear boiler-turbine system.
The author in [7] investigated the coordinated control problem for boiler-turbine system of
coal-fired power plant based on the fuzzy control method. In [8], a multivariable non-linear
exponential ARX model was utilized to characterize the non-linear dynamic features of
thermal power plants over the whole operating range. The works of [9,10] consider the
modeling problem of a thermal power unit which is characterized as a multi-input multi-
output radial basis function-based auto-regressive model with exogenous inputs. In fact,
these literature show the drawbacks of controlling boiler-turbine system: linearization is
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made based on the assumption that part of non-linearity can be ignored, complex controller
design is not easy to implement, and the simple control methods cannot achieve accurate
control.

Model predictive control (MPC), as an advanced control technique proposed by in-
dustry circle, has been recognized for an effective and promising method being applied in
various fields, ranging from petrochemicals, refining, textiles, and autonomous vehicles
(e.g., [11–17]). In [18], the author designed a robust MPC controller for an automatic voltage
regulator against uncertainties. Ref. [19] proposes a heuristic algorithm of MPC to tune
the parameters for the robotic manipulator. MPC optimizes an optimal control sequence
based on the prediction of future outputs within prediction horizon, and only implements
the first control input. The other strength of MPC is that it can directly deal with various
hard or soft constraints. Motivated by this outstanding advantage, many researchers have
utilized MPC to handle the control problems of thermal power unit (e.g., [6,20,21]). In [6],
the authors presented two different step-response models to design dynamic matrix control
strategy for a boiler-turbine system. The results showed that, for controller design of
the boiler-turbine system, the step-response model based on test data is more effective
than a linearized model. In [20], an MPC method merged with the genetic algorithm was
introduced to tackle the boiler-turbine control problem. Recently, a hierarchical control
framework was proposed in [21] to design an optimal control strategy for a boiler-turbine
system, described by the Takagi–Sugeno fuzzy model. The work of [22] considers a fuzzy
MPC method for the boiler-turbine system subject to disturbances and uncertainties. Apart
from focusing on the engineering problems, some studies also concern the economic and
environmental issues of thermal power unit operation. In [2], the authors investigated
a hierarchical MPC of a boiler-turbine system which considers the plant-wide economic
process optimization and regulatory process control simultaneously. Ref. [23] studies an
optimization control method that utilizes MPC for the set-point optimization to improve
the safety and economic performance for boiler-turbine system. In [24], from the perspec-
tive of scheduling and optimization, the authors presented a zone tracking MPC method,
which considers system economic performance during the transient state while always
prioritizing unit load demand tracking. Ref. [25] considers the set-point tracking problem
for a boiler-turbine unit represented by a non-linear model. In order to obtain an efficient
control scheme, the state-space model is on-line linearized at the current operating point,
and utilized for prediction and control policy optimization. Unfortunately, the linearized
model approach usually assumes that the non-linear part can be ignored, which may
cause model mismatch, and results in inaccurate control and performance deterioration.
More recently, considering the complexity on the modeling for boiler-turbine system, since
artificial intelligence techniques show potential solutions for several complex problems,
the academic circle attempt to introduce these techniques, especially in non-linear system
modeling [10,26,27] and controller design [28–31].

In the control literature, there is a abundance of model formulations being utilized in
various research directions [32–36], where the state-space model is still the most widely
studied models for optimal control, robust control and MPC for its advantage at simplicity
implementation of linear system. However, the shortcoming of the state-space model is
that it requires states that are measurable when applying the state feedback control, or
designs a state estimator when applying the output feedback control. In contrast, the
non-minimal state-space (NMSS) model can effectively realize state feedback control by
augmenting measured outputs, inputs, and their past values, while avoiding the design
of state estimator. Few papers related on NMSS model can be seen in the literature (e.g.,
[37–40]). In [39], an improved NMSS-based MPC for multivariable system, which employs
a non-zero-pole decoupling approach, was proposed. Based on an augmented NMSS
model, the authors in [38] designed a fractional-order MPC strategy for the temperature
control model in the industrial heating furnace. For the operation of a boiler-turbine system,
an extensive of measurement data can be easily stored and obtained, thus the subspace
identification modeling method has been applied for the modeling, multivariable controller



Energies 2022, 15, 7935 3 of 20

design and optimization. In [41], the authors developed a data-driven modeling strategy
and designed an MPC controller for boiler-turbine system by dividing the system into
several local regions according to the operation range based on the subspace identification
and multi-model methods. The subspace identification method is able to estimate the
state-space model without non-linear iterative calculation and model parameterization.
Despite the identified state-space model widely utilized, their states of these models are
meaningless. In order to handle this problem, the idea of augmenting the measured outputs,
inputs and their past values of the identified state-space model to construct a NNSS model
is a potential approach so that each state variable is measurable or exactly known. Usually,
when designing a MPC controller based on an NMSS model directly, the computation
burden of MPC optimization problem is large. In fact, utilizing the concept of minimal
realization formulation is an alternative approach, but it is rarely reported in the literature.
On the other hand, many MPC implementations of NMSS model use heuristic method
without stability consideration, this may leads to sub-optimal performance. It is, therefore,
necessary to consider optimality to guarantee the control performance, this formulated the
main standpoint of this paper.

Motivated by the above discussion, considering the inherent non-linear dynamics of
boiler-turbine system and its effect for designing an effective controller, the work hopes to
present a clear and intuitive path on how the identification method and MPC can be applied.
Consider the influence of non-linear dynamics, we first linearize the non-linear system
using an identification method. By adopting the idea of NMSS model and its minimal
realization formulation, the state information will be always known and observers are not
needed. The main contributions are in the identified model utilized for infinite-horizon
MPC (including model minimal realization, terminal control law design, and nominal
stability taken into account) and in the unique control structure to achieve good tracking
ability, which can be highlighted as follows:

• The numerical algorithm for subspace state-space identification (N4SID) is utilized
for a drum-type boiler-turbine system to obtain a linearized state-space model. By
taking the inputs and outputs of the state-space model from the subspace identifica-
tion method as system states, an augmented NMSS model with state measurable is
constructed to avoid a state observer;

• The augmented NMSS model is transformed into a canonical formulation by adopting
a Kalman decomposition in order to reduce the computation burden of controller
parameter optimization;

• Based on the minimal realization state-space model, an MPC controller is transformed
into solving a finite-horizon optimization problem, where the cost function is com-
posed by a finite horizon cost and terminal cost. The nominal stability of finite-horizon
MPC are also guaranteed for the resulting model.

In the presented control structure, we show a development and combination of MPC
and minimal realization model based on previous works [23,42] for a boiler-turbine system.
Compared to the literature in [2,23,25,42], the primary novelty and difference of this paper
reside in constructing a state measurable, minimal-realization state-space model for the
non-linear boiler-turbine system by using identification method to tackle the process
non-linearity that the maintains the simplicity of the framework for linear MPC using
state-space model, so that the designed MPC controller also has good tracking ability and
implementation efficiency.

This rest of this paper is organized as follows. Section 2 shows the facility description
of a thermal power unit and its physical process. Section 3 details the identification process
of NMSS model. Section 4 presents the finite-horizon MPC method based on NMSS model.
Section 5 verifies the effectiveness of the proposed method. Finally, Section 6 summarizes
this paper.
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2. The Overview for Drum-Type Boiler-Turbine
2.1. Description of the Process

Figure 1 shows a simplified schematic of a drum-type boiler-turbine system that
usually includes combustion system, steam-water system, control system, electrical system,
condensing system, and so on. The combustion system and steam-water system generate
the steam to a certain extent high temperature and pressure. The electric system completes
the energy conversion, i.e., realizing the transformation from thermal energy, mechanical
energy to electric energy. The control system ensures the safe and economic operation of
each subsystem.

Figure 1. Simplified schematic diagram of a thermal power unit including main components.

The operation process of boiler-turbine system is briefly introduced. Initially, the
treated pulverized coal from a coal mill is conveyed to the boiler by belt conveying technol-
ogy. Pulverized coal is burned in the furnace to heat the boiler in order to convert the water
into steam. Steam enters the drum and continues to be heated, and part of steam the high
pressure cylinder after primary heating. The drum has the energy store function. When the
load changes, it has a certain buffer effect on the imbalance between evaporation and water
supply, and rate of change on steam pressure. Steam is reheated in order to improve the
thermal efficiency and enters the medium pressure cylinder. Turbine generators are driven
by steam from medium pressure cylinders.

2.2. Boiler-Turbine Non-Linear Dynamic Model

In this paper, the classical non-linear model of a 160 MW boiler-turbine generator unit
firstly investigated in [43] is considered

ẋ1 = −0.0018u2x9/8
1 + 0.9u1 − 0.15u3

ẋ2 = (0.073u2 − 0.016)x9/8
1 − 0.1x2

ẋ3 = (141u3 − (1.1u2 − 0.19)x1)

y1 = x1

y2 = x2

y3 = 0.05(0.13073x3 + 100acs + qe/9− 67.975)

(1)

where x1, x2, and x3, respectively, represent drum steam pressure, electric power, and
fluid density. u1, u2, and u3 denote the valve positions for fuel flow, steam control, and
feed-water flow, respectively. y3 is the drum water level determined by

qe = (0.854u2 − 0.147)x1 + 45.59u1 − 2.514u3 − 2.096

αcs =
(1− 0.001538x3)(0.8x1 − 25.6)

x3(1.0394− 0.0012304x1)

where αcs and qe are the steam quality and evaporation rate, respectively.
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In practice, considering the actuators’ manipulate limitation, the inputs are usually
required to satisfy the following magnitude constraints:

0 ≤ uq ≤ 1, q = 1, 2, 3 (2)

and have to satisfy the following rate constraints:
− 0.007 ≤ u̇1 ≤ 0.007

− 2 ≤ u̇2 ≤ 2

− 0.05 ≤ u̇3 ≤ 0.05

(3)

3. Model Identification Design

The non-linear model (1) properly describes the dynamic characterizes of the boiler-
turbine system, however, it encounters great difficulties in controller design due to state
coupling interaction and non-linearity. In the sequel, in order to obtain a linear model,
the system identification will be utilized to characterize the system dynamic behavior, as
shown in the following section.

3.1. Identification Test Signal

We choose the classical generalized binary noise (GBN) proposed by [44] as the test
signal. The value of GBN takes −a or a. At each predetermined conversion time t, the GBN
signal is converted based on the following rules:{

Prob{u(t) = −u(t− 1)} = psw
Prob{u(t) = u(t− 1)} = 1− psw

, (4)

where psw denotes the conversion probability. Since the distribution is an independent
staggered distribution with probability of psw at each conversion time t, the mean-value of
the signal is 0. The average conversion time is

E[Tsw] =
Tmin

psw
, (5)

where Tmin denotes the minimum conversion time. It means that the time of GBN signal
remains unchanged during the sampling process. The power spectrum of GBN is

Φu(ω) =

(
1− q2)Tmin

1− 2q cos Tminω + q2 , q = 1− 2psw. (6)

Remark 1. Since the plant exhibits severe non-linear dynamics, it is difficult to obtain an accurate
linear model using linearization. In order to fully obtain the prior knowledge of process behavior, the
plant to be identified should be effectively excited. The excitability conditions of the input signal
for the boiler-turbine system (1) are: (a) the signal length should be large enough; (b) the signal
changes quickly with a large amplitude, which can generate sufficient excitation to the system.
From the generation method of GBN, it can seen that GBN have the merits in setting signal length
arbitrarily and having a minimum amplitude factor so that it is available to apply for multivariable
model identification.

3.2. Identification and Modeling Performance

Static or steady-state model is utilized to calculate the equilibrium points, which
determines operation points and generates set values. For the non-linear model (1), in
a steady-state working point, the state variables are constant, therefore,{

ẋ1 = ẋ2 = ẋ3 = 0

y3 = 0
(7)
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One can calculate several nominal working points based on (1) and (7). In this paper,
we consider the case that model (1) represents a 160 MW unit, and the steady-state working
points is xeq = [115, 85, 402.759]T, ueq = [0.4147, 0.7787, 0.5436]T, and yeq = [115, 85, 0]T,
as shown in [6]. It represents 50% operation condition. For this working point, the
corresponding step-response the non-linear model (1) are plotted in Figure 2.

0 500 1000 1500 2000 2500

80

100

120

0 500 1000 1500 2000 2500

50

100

0 500 1000 1500 2000 2500

-0.4

-0.2

0

Figure 2. Step-response of the non-linear system (1) at 50% operation condition.

Based on the non-linear model (1), an open-loop identification experiment is per-
formed to produce the outputs, where Figure 3 shows the state equation in non-linear
model (1) using Maltalb Simulink. For the open-loop experiment, the test signal (GBN
signal) is set as the process control input. Considering that the rules for test signal stated in
Remark 2, choosing the GBN signal follows that: the amplitude should not be too large, and
its disturbance to the steady-state operation should be small so that the process variables
do not exceed the operation limit. In the identification experiment, since there have three
control inputs, we set the sampling time Ts = Tmin = 1 and psw = 1/15 with different
amplitude to obtain the open-loop inputs. By these parameter settings, it is able to obtain
a good low-pass GBN signal that can fully excite model information. Figure 4 shows a GBN
signal utilized in the identification experiment.

Figure 3. The block diagram of state equation in model (1) using Simulink.
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Figure 4. GBN signals utilized in the identification experiment.

Operate the simulation system by superposing the GBN signals in Figure 4 to the
respective control valve as control input, it is able to measure and record n = 2500 sets
of output data. For the resulting input and output data, it is split into two parts: the
first 2000 sets will be utilized for identification, and the rest 500 sets will be utilized for
prediction. In this procedure, it takes about 5.889 s for the identification at Matlab R2021a
platform with a Intel i7-10700 CPU 2.90 GHz processor.

Based on the first 2000 sets input and output data, the N4SID is applied to estimate
the system matrix parameters, mainly including the following two steps: (a) constructing
a Hankel matrix based on the input and output data, and performing the singular value
decomposition (SVD) on the projection of the Hankel matrix to obtain the estimated state
sequence; (b) applying the least square method for the estimated state sequence to obtain
system matrices (A, B, C, D). In the identification, the row number of Hankel matrix is
set as i = 10 to obtain the distribution of the singular value histogram, as illustrated in
Figure 5. It can be seen that the system information mainly distributes in the first three
singular values, which indicates the optimal order of the model as n = 3. Therefore, the
resulting identified model is {

x(k + 1) = Ax(k) + Bu(k)

y′(k) = Cx(k) + Du(k)
(8)

where the system matrices are

A =

0.9086 0.0266 −0.0797
0.1084 0.9915 0.0376
0.0077 0.0217 0.8732

,

B =

−0.0174 −2.5918 −0.0190
−0.5269 −0.0137 0.0768
−0.1285 0.0858 0.0616

,

C =

−0.2205 −1.5809 −0.4900
8.7136 −0.8193 2.4134
−0.0047 0.0059 −0.0235

,

D =

 0.1078 0.0177 −0.0175
−0.0191 −0.8039 −0.0264
0.2541 −0.0958 −0.0212

.
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In Figure 6, the comparison between of prediction values of controlled variables (CVs)
and their real values are plotted. It is shown that the linearized model can accurate behave
the non-linear model (1).
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Figure 5. Singular value histogram.
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Figure 6. Prediction value of CVs and their real values.

3.3. Minimal Realization NMSS Model

Letting y(k) = y′(k)− Du(k), model (8) can be naturally transformed into{
x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)
(9)

Model (9) can be rewritten as the following input–output model:

A(z−1)y(k) = B(z−1)u(k) (10)
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where

A(z−1) = I + a1z−1 + · · ·+ apz−p

B(z−1) = b1z−1 + · · ·+ bqz−q

where z−1 is the backward shift operator, i.e., z−1y′(k) = y(k− 1). a(z−1) and b(z−1) are
the matrix polynomials, {a1, a2, · · · , ap} and {b1, b2, · · · , bq} are the coefficient matrices
with proper dimension. Based on model (10), it is obvious that the order of input and
output are ny = nu = 3. Hence, the coefficient matrices of input–output model (10) are

a1 = −2.7214I3, a2 = 2.4734I3, a3 = −5.623I3

b1 =

 0.9673 0.0496 −0.7013
−0.5216 19.9122 −2.0765
−0.1258 −0.1155 0.0397


b2 =

0.0397 −0.1399 0.6438
1.0945 −37.8389 1.8942
0.1236 −0.0548 −0.0385


b3 =

 0.3278 0.0855 −0.1970
−0.5278 17.5940 −0.5774
−0.0403 0.0413 0.0124


Defining the intermediate state vector xn(k) = [y(k), y(k− 1), · · · , y(k− p+ 1), u(k− 1),

u(k − 2), · · · , u(k − q + 1)]T, model (10) can be rewritten as the following augmented
NMSS model: {

xn(k + 1) = Anxn(k) + Bnu(k)

y(k + 1) = Cnxn(k + 1)
(11)

where

An =



−a1 −a2 · · · −ap−1 −ap b2 · · · bq−1 bq
I 0 · · · 0 0 0 · · · 0 0
0 I · · · 0 0 0 · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0
... I 0 0

... 0 0
0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 I · · · 0 0
...

...
. . .

...
...

...
. . .

...
...

0 0 · · · 0 0 0 · · · I 0


,

Bn =
[
b1 0 · · · 0 I 0 · · · 0

]T,

Cn =
[
I 0 0 · · · 0 0 0 0

]
.

Defining a new state vector x̂(k) = [xn(k), y(k)]T, the augmented NMSS model (11) is
reconstructed as {

x̂(k + 1) = Âx̂(k) + B̂u(k)

y(k) = Ĉx̂(k)
(12)

where

Â =

[
An 0

Cn An I

]
, B̂ =

[
Bn

CnBn

]
, Ĉ = [0 I]
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Next, the augmented NMSS model (12) can be rearranged into a canonical form by
utilizing a Kalman decomposition that splits the states into following four parts:

• States which are both controllable and observable;
• States which are controllable and unobservable;
• States which are observable and uncontrollable;
• States which are uncontrollable and unobservable.

By applying controllability and observability transformations on the augmented NMSS
model (12), it is shown that the augmented NMSS model (12) is transformed into the
following complete Kalman decomposition form:

x̄(k + 1) =


Āco 0 Ā13 0
Ā21 Ācō Ā23 Ā24
0 0 Āc̄o 0
0 0 Ā43 Āc̄o

x̄(k) +


B̄co
B̄cō
0
0

u(k)

y(k) =
[
C̄co 0 C̄c̄o 0

]
x̄(k)

(13)

where x̄(k) = [x̄co(k), x̄cō(k), x̄c̄o(k), x̄c̄ō(k)]T. Therefore, taking the controllable and ob-
servable part from the Kalman decomposition yields the following minimal realization
state-space model: {

x̄co(k + 1) = Āco x̄co(k) + B̄cou(k)

y(k) = C̄co x̄co(k)
(14)

Remark 2. Identification just determines the model order, but the resulting state vector of identified
model (8) are of dimensionless (without physical significance). Augmenting the historic input and
output of model (8) as the system state ensures the state variable can be measured and calculated.
Transforming the NMSS model into a minimal realization formulation ensures its controllability
and observability, which is also helpful to reduce the computation burden and avoid the curse of
dimensionality.

3.4. Control Objectives

For the minimal realization model (14), the control objectives are to design an effective
controller such that the closed-loop system is asymptotically stable, and the constraints
are always satisfied over the control horizon. The two objectives are to be achieved by
manipulating the control input u to steer the state to the equilibrium point, while the control
inputs are required to maintain a desired range. Since the original non-linear system has
been transformed into a linearized model, it ensures that the resulting system state of the
linearized NMSS model is measurable. Subsequently, it is easy to design a state feedback-
based MPC controller so that the drum pressure y1, electric power y2, and the drum level
y3 converge to the equilibrium point, which will be illustrated in the sequel.

4. Finite-Horizon MPC Formulation

In order to perform MPC, an optimization problem of the system to be controlled is
needed. It includes a prediction model of the physical system and its constraint, as well
as a performance function. The following subsections will give the details of designing
a finite-horizon MPC for the minimal realization state-space model (14). The proposed
control structure is shown in Figure 7. MPC is an advanced computer control technology
that on-line optimizes both the current values of control moves and the whole future
control sequence over the control horizon. The MPC controller main has three ingredients:
prediction model, constraints, and cost function.
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Figure 7. Proposed framework of MPC based on minimal realization model.

Consider the following input and state constraints:

− u ≤ u(k + i) ≤ ū,

− ψ ≤ Ψx̄co(k + i + 1) ≤ ψ̄, i ≥ 0, (15)

where u := [u1, u2, · · · , unu ]
T, ū := [ū1, ū2, · · · , ūnu ]

T, uj > 0, ūj > 0, j ∈ {1, · · · , nu};
ψ := [ψ

1
, ψ

2
, · · · , ψ

g
]T, ψ̄ := [ψ̄1, ψ̄2, · · · , ψ̄g]T, ψs > 0, ψ̄s > 0, s ∈ {1, · · · , g}; Ψ ∈ <g×nco .

4.1. Performance Function and Terminal Control Law Design

Consider the following finite-horizon cost function

J(x̄co(k)) =
N−1

∑
i=0

[
‖x̄co(k + i|k)‖2

W + ‖u(k + i|k)‖2
R

]
+

‖x̄co(k + N|k)‖2
P, (16)

where W, R, and P are the positive-definite weighting matrices; N represents the control
horizon. The terminal weighting matrix P is assumed to satisfy [45]

P ≥ (Aco + BcoF)TP(Aco + BcoF) + W + FTRF, (17)

where F is the feedback gain matrix.
Letting X = P−1, F = YX−1 and utilizing Schur complement on (17) obtain

X ? ? ?
AcoX + BcoY X ? ?

W1/2X 0 I ?
R1/2Y 0 0 I

 ≥ 0 (18)
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Lemma 1 ([46]). Suppose that there exist symmetric matrices X = P−1, {Z, Γ} and matrix Y
satisfying (17) and [

Z ?
YT X

]
≥ 0, Zjj ≤ ū2

j,inf, j ∈ {1, · · · , nu} (19)[
X ?

Ψ(AcoX + BcoY) Γ

]
≥ 0, Γss ≤ ψ̄2

s,inf, s ∈ {1, · · · , g} (20)

where uj,inf = min{uj, ūj}, ψs,inf = min{ψ
s
, ψ̄s}; Zjj(Γss) is the j(s)-element of Z(Γ). When

x̄co(k + N) ∈ εP = {z ∈ <n|zTPz ≤ 1} is satisfied and u(k + i + N) = YX−1 x̄co(k + i + N)
is applied, ∀i ≥ 0, then the closed-loop system is said to be asymptotically stable, x(k + i + N),
∀i ≥ 0 always lies inside of ellipsoid εP, and constraint (15) holds for all i ≥ N.

Remark 3. Since model (14) has a minimal realization formulation, it implies that one can directly
state feedback control law, without designing an observer. In Lemma 1, we show the details for
designing a terminal control law using model (14) and handling the constraints based on the
invariant set. In deriving the inequality from (17) to linear matrix inequality (LMI) (18), it is
a congruence transformation that does not introduce any conservatism.

4.2. Overall Optimization Problem and Stability Analysis

The optimal control sequence {u(k|k), · · · , u(k + N − 1|k)} is obtained by solving the
following finite-horizon MPC optimization problem at each time k:

min
u(k|k),··· ,u(k+N−1|k)

J(x̄co(k)), (21)

s.t. − u ≤ u(k + i|k) ≤ ū, i ∈ {0, 1, · · · , N − 1} (22)

− ψ ≤ Ψx̄co(k + i + 1|k) ≤ ψ̄, i ∈ {0, 1, · · · , N − 1} (23)

‖x̄co(k + N|k)‖2
P ≤ 1. (24)

The feasible initial state set is a set of initial state points x̄co(0) under the open-
loop optimal control sequence {u(k|k), · · · , u(k + N − 1|k)} yielded by the optimization
problem (21)–(24), such that the system state x̄co(k) lies in the terminal region εP at instant
k + N, which is defined as

F (P, N) = {x̄co(0) ∈ <n|∃u(i) ∈ U , i ∈ {0, · · · , N − 1}
s.t. x̄co(i + 1) ∈ X , x̄co(N) ∈ εP}. (25)

Following from the above discussions, the following invariant property result is
naturally obtained for optimization problem (21)–(24).

Lemma 2. Assume that x̄co(k) ∈ F (P, N). There exist κ > 0 and u(k + i|k) ∈ U , i ∈
{0, 1, · · · , N− 1}, such that |u(k+ i|k)|2 ≤ κ|x̄co(k)|2, x̄co(k+ i+ 1|k) ∈ X , i ∈ {0, 1, · · · , N−
1}, and x̄co(k + N|k) ∈ εP.

For the finite MPC, the terminal cost function, the terminal-state region and the
terminal control law, shown in the above sections, are the keys to guarantee the close-loop
stability. Note that the non-linear system is described by a linear state-space model in the
minimal realization formulation, so the nominal stability should be discussed. Based on the
presented results, in the following, we will present the stability results of the closed-loop
system, composed by model (14) and control moves {u(k|k), · · · , u(k + N − 1|k)}.

Theorem 1 (Nominal stability). Suppose that (18)–(20) and x̄co(0) ∈ F (P, N) are satisfied,
then (22)–(24) are always feasible for any k ≥ 0. The closed-loop system is said to be exponential
stability by implementing the optimal control input u∗(k|k) in a receding horizon way.



Energies 2022, 15, 7935 13 of 20

Proof. Suppose that, at each k, the optimal solution for problem is denoted as u∗(k + i|k).
Based on Lemma 2, a feasible solution at k + 1 can be constructed as{

u(k + i|k + 1) = u∗(k + i|k), i ∈ {1, · · · , N − 1},
u(k + N|k + 1) = Fx(k + N|k + 1)

(26)

Considering the invariant property, it is clear that (21)–(24) are feasible for any k ≥ 0.
For the purpose of establishing the exponential stability, we should illustrate that there
exist a, b, c (0 ≤ a, b, c ≤ ∞), such that

a‖x(k)‖2
2 ≤ J∗(x(k)) 6 b‖x(k)‖2

2, ∆J∗(x(k + 1)) < −c‖x(k)‖2
2 (27)

where ∆J∗(x(k + 1)) = J∗(x(k + 1))− J∗(x(k)). Once condition (27) holds, then J∗(x(k))
can serve as the Lyapunov function of exponential stability. It is clear that J∗(x(k)) ≥
x(k)TWx(k) ≥ λmin(W)‖x(k)‖2

2 holds, so it is available to choose a = λmin(W). Following
from Lemma 2, one has

J∗(x(k)) ≤
N−1

∑
i=0

[
‖x(k + i|k)‖2

W + ‖u(k + i|k)‖2
R

]
+ ‖x(k + N|k)‖2

P

≤
[
(N + 1)A 2(1 + N‖B‖

√
κ)2 ·max{λmax(W), λmax(P)}

+Nκλmax(R)]‖x(k)‖2
2 (28)

where A = maxi∈{0,1,··· ,N} ‖Ai‖ and κ > 0. Therefore, it is easy to choose b = (N +

1)A 2(1 + N‖B‖
√

κ)2 ·max{λmax(W), λmax(P)}+ Nκλmax(P). At time k + 1, the perfor-
mance cost is denoted as J̄(x(k + 1)) under (26), then it is derived that

J∗(x(k)) ≥ ‖x(k)‖2
W + ‖u(k)‖2

R + J̄(x(k + 1))

≥ ‖x(k)‖2
W + ‖u(k)‖2

R + J∗(x(k + 1)). (29)

Inequality (29) shows that ∆J∗(x(k+ 1)) ≤ −‖x(k)‖2
W −‖u(k)‖2

R ≤ −λmin(W)‖x(k)‖2
2,

then it is available to choose c = λmin(W). Hence, J∗(x(k)) is Lyapunov function to prove
the exponential stability. The proof is complete.

Remark 4. Considering the inherit non-linearity and the optimization mechanism of MPC, it is
difficult to obtain the numerical solution of decision sequence {u(k|k), u(k + 1|k, · · · , u(k + N −
1|k)} even in the case of applying a quadratic performance index. Moreover, the computation burden
is always the core issue to be solved. In order to avoid a complex non-linear optimization problem
and lead to a large computation burden, we identify the non-linear system to obtain a linear model
and transform it into a minimal realization formulation to decrease the system dimension, while
guaranteeing fully state measurability and observability.

Remark 5. For the calculation of identification and controller parameter optimization, error mainly
comes from model-mismatch and numerical arithmetic. In the linearization, the non-linear system
is assumed to operate a relatively ideal working environment by ignoring isentropic efficiency or
isothermal waveforms during the expansion of the working medium in the turbogenerator, this
may lead to modeling error during identification process. It is the main reason for affecting the
performance of controller. However, the designed MPC applies the feedback control law and optimizes
the control sequence in a receding horizon to cope with this error, and maintain good robustness.
For the numerical arithmetic, there exists numerical error because of calculation precision.

5. Simulation Results and Analysis

This section aims to demonstrate the effectiveness of the finite-horizon MPC based
on the minimal realization model (14) and discuss the simulations results to quantify the
advantages and disadvantages.
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5.1. Simulation Settings

Model described by (14) is utilized for the simulated process. The platform of Matlab
2021a installed on a computer with Intel i7-10700 CPU 2.90 GHz, 16 G RAM is utilized for
simulation with a sampling time Ts,MPC = 1.

In the discrete-time domain and MPC implementation, the manganite constraints (2)
and the rate constraints (3) on inputs are rewritten as

0 ≤ u1(k + i|k) ≤ 1, i = 0, . . . , N

0 ≤ u2(k + i|k) ≤ 1, i = 0, . . . , N

0 ≤ u3(k + i|k) ≤ 1, i = 0, . . . , N

(30)

and 
− 0.007 ≤ ∆u1(k + i|k) ≤ 0.007, i = 0, . . . , N

− 1 ≤ ∆u2(k + i|k) ≤ 0.02, i = 0, . . . , N

− 0.05 ≤ ∆u3(k + i|k) ≤ 0.05, i = 0, . . . , N

(31)

where ∆un(k + i|k) = un(k + i|k)− un(k + i− 1|k) for all n = 1, 2, 3.
Consider the control objective described in Section 3, the following two cases will be

presented, so that the results, efficiency and merits of the designed control method are
well understood. Case 1 is the scenario for applying classical linear quadratic regulator
(LQR) method [47], and Case 2 represent the scenario for applying the proposed control
method. In the two cases, both cases take the same weighing matrices W = I, R = I to
make a fair comparison.

Case 1. Since the LQR can not deal with constraints, Equations (30) and (31) will not be imposed.

Case 2. Based on the resulting minimal realization model {Āco, B̄co, C̄co}, the following optimiza-
tion problem is off-line solved

max
X,Y

trace(X) s.t. (18)–(20) (32)

Problem (32) is a standard convex optimization problem that can be directly solved by
Yalmip toolbox to obtain X. One has the following terminal weighting matrix

P =


1.1852 0.0051 0.0125 −0.1211 0.1697
0.0051 2.3474 −0.0809 0.0757 −0.1275
0.0125 −0.0809 2.7050 −0.5774 −0.7972
−0.1211 0.0757 −0.5774 5.2791 −0.1514
0.1697 −0.1275 −0.7972 −0.1514 5.4558

.

In Case 2, besides the modeling and constraints, the control parameters should also
be set. An important parameter is control horizon N since it affects control quality and
computational complexity. Increasing N will improve the optimality, but increases com-
putation burden. For making a balance between optimality and computation, N = 5 is
properly determined under several comparison experiments. Based on the above parameter
settings, problem (21)–(24) is online solved at each time k to optimize a control sequence
{u(k|k), u(k + 1|k, · · · , u(k + N − 1|k)}, and perform the first control input u(k|k).

5.2. Simulation Results

Closed-loop simulation profiles generated by the two cases are shown in Figures 8–13.
Following from the responses in Figures 8 and 9, it is obvious that the LQR method can not
stabilize model (14). However, the control input signals and output responses of the de-
signed MPC controller plotted in Figures 10–13 converge to the steady-state working point.
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In Figure 10, the constraint of each control action and its rate constraint are always satis-
fied, this verifies the advantages of MPC at handling physical constraints. Figures 11–13
show the outputs (electric power, drum steam pressure, and drum water level) that can
eventually maintain stable control by applying the optimal control inputs, respectively. In
practice, amplitude constraints have to be considered to guarantee a physical safe operation
for the plant, and rate constraints avoids extensive controller parameter tuning. From
the comparison, it can be seen that the MPC controller based on the minimal realization
state-space model steer the inputs and outputs of the closed-loop system to the equilibrium
point, which verify the effectiveness of the proposed MPC. In conclusion, the simulations
results illustrate that control performance of MPC controller is superior to a LQR controller.
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Figure 8. Control inputs of LQR.
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Figure 9. Outputs of LQR.
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Figure 10. Control inputs of MPC.
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Energies 2022, 15, 7935 17 of 20

10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 13. Drum water level (m).

Further important investigation is to evaluate the performances of the developed
models in real-time applications, so we consider the computation complexity of MPC
optimization problem. There mainly involve two problems: off-line optimization (32),
and online optimization (21)–(24). They are convex optimization problem composed by
linear matrix inequalities (LMIs). Usually, the interior point method is applied to solve
the feasible solution of LMIs. It is a polynomial complexity algorithm. The complexity
is proportional to K3L for a given α, where K and L represent the number of scalar LMI
variables and the number of scalar rows in LMIs, respectively. It is obvious that the system
dimensionality and control horizon affect the complexity of an optimization problem. As
stated in Remark 4, the linear model utilized for optimization is transformed into a minimal
realization formulation, so we ensure the eventually MPC problem of good efficiency from
modeling. In the simulation, the total computation time for carrying out off-line and online
stages is 18.388 s. Following the computation time, the implementation efficiency of a linear
finite-horizon MPC based on the developed minimal realization model in the real-time
performance has been effectively examined.

6. Conclusions

The focus of this paper is to investigate the control problem of the boiler-turbine
system based on a system identification method and the finite-horizon MPC. The sub-
space identification method is firstly employed to obtain a linear state-space model that
can properly reflects the dynamic characteristics. By transforming the state-space model
into the input–output model and extending its inputs and outputs as a new augmented
state, a NMSS model of state measurable is established, and transformed into a minimal
realization formulation in order to facilitate state feedback controller and also reduce the
computation complexity. A finite-horizon MPC controller, which utilizes a cost function
incorporating with a finite-horizon cost and a terminal cost, is designed to guarantee the
nominal stability. The physical constraints are handled by an invariant ellipsoid constraint
with the terminal control law. Through theoretical proof and comparison simulation, the
approach is proven to give an effective control strategy for non-linear system to maintain
satisfactory performance as well as a well implementation efficiency. For future works, an
interesting plan is to study other issues and make improvements, such as considering the
robustness against parametric uncertainty and economic optimization problem.
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Nomenclature
The following abbreviations and symbols are used in this manuscript:

MPC model predictive control
NMSS non-minimal state-space
ARX autoregressive exogenous
N4SID numerical algorithm for subspace state-space identification
GBN generalized binary noise
SVD singular value decomposition
CVs controlled variables
LQR linear quadratic regulator
LMIs linear matrix inequalities
x1(y1) drum steam pressure (kg/cm2)
x2(y2) electric power (MW)
x3 fluid density (kg/cm3)
u1 fuel flow valve position
u2 steam control valve position
u3 feed-water valve position
y3 drum water level
αcs steam quality
qe evaporation rate (kg/s)
xeq(ueq, yeq) steady-state working (equilibrium) point
psw conversion probability
Prob{·} the occurrence probability of an event “·”
Tsw minimum conversion time
E[·] average conversion time
Tsw minimum conversion time
Φu(·) power spectrum of GBN
z−1 backward shift operator
<n n-dimensional Euclidean space
In n-dimensional identity matrix
N prediction horizon
x(u, y) state (input, output) vector of identification model
z−1 backward shift operator
xn intermediate augmented state of NMSS model
x̂ system state of NMSS model
A(B, C, D) system matrices of identification model
An(Bn, Cn) system matrices for NMSS model
Āco(B̄co, C̄co) controllable and observable part of NMSS model
x̄co system state of minimal realization for NMSS model
P terminal weighting matrix
W, R positive-definite weighting matrices
u(ū) the lower (upper) bound of input
εP ellipsoid invariant set
r the radius of an ellipsoid
‖x‖2

Q xTQx
h(k + i|k) the value of vector h at time k + i, predicted at time k
λmin(Q) the minimal eigenvalue of matrix Q
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