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Abstract: For various sorts of hard coal, enrichment by flotation is used for feed consisting of grains
smaller than 0.5 mm. Regarding process automation, coal flotation is a multidimensional, dynamic
nonlinear object of control, for which the main control signal is the flow rate of the flotation agent.
Typically, in Polish coal-processing facilities the monitoring and control systems of the flotation
process can only measure the parameter of the waste quality (content of ash in flotation tailings).
This naturally becomes an output signal, enabling an indirect assessment of the ongoing process.
Therefore, knowledge of the dynamic properties of the flotation process, analysed as an object with
one control input (the flow rate of the flotation agent) and with one output for measuring (content of
ash in flotation tailings) may be material in designing automatic control systems for this operation. It
is important to use an appropriate identification method when developing a model of the dynamics
of the flotation process, especially if the model parameters are to be determined on an ongoing
basis. This article discusses the research method and presents the results of applying the method
of identifying the dynamic properties of the coal flotation process with the use of the Kalman filter.
We carried out a comparative analysis of the results obtained by this method based on the Kalman
algorithm and the method of least squares, taken as the reference method. The presented parameters
of the dynamic models were calculated based on actual data obtained from industrial tests conducted
at the coal-processing plant at one of the Polish mines. It was demonstrated that, for control purposes,
the Kalman algorithm can be successfully applied in identification of the coal flotation process. This
is due to the fact that it gives satisfactory results in relation to the adopted reference method despite
the fact that it is a recursive algorithm.

Keywords: identification; the Kalman filter; coal flotation; method of least squares

1. Introduction

Coal flotation is the most effective technique used to improve the nature of fine parti-
cles by reducing contaminants and has been the subject of many studies [1–6]. In Polish
coal-processing facilities, the flotation process is a side enrichment process as the feed
consists of grains smaller than 1 mm. In industrial practice there are usually measured
quantitative parameters of the feed, such as flow rate (qn) and concentration of solids in
the feed (kcs). Electromagnetic flow meters are used to measure the flow rate of the feed [7].
Concentration of solid particles is usually measured using a radiometric density meter
and less commonly a piezometric meter [7–11]. However, the ash content in the feed (an)
is not available for measurement. Of the output signals, which refer to quantitative and
qualitative parameters of flotation products, the only one available for measurement is
ash content in flotation tailings (ao). This quantity is measured using the MPOF optical
ash meter [7,10,12]. Quantitative and qualitative parameters of the concentrate (commer-
cial product) are determined on the basis of periodic sampling, the values of which are
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determined by laboratory methods. Thus, due to the limited measurement information
available on an ongoing basis, the content of ash in flotation tailings becomes a parameter
that enables indirect assessment of the quality of the enrichment process. In this case, it
rests upon the expert knowledge of the operator, who, on the basis of the current readings
of the tailings ash meter, the feed flow meter, and the densimeter, evaluates with some
degree of approximation the enrichment process and is able to estimate the required ash
content in the flotation tailings (ao(ref)), for which flotation will be duly carried out under
these conditions [13].

From the point of view of automatic control, the coal flotation process can be repre-
sented schematically as in Figure 1. It is a non-linear dynamic object with three control
signals, namely flotation-reagent flow rate (vo), turbidity aeration air flow rate (qa), and
suspended solids level in the flotation cell (h). The output volumes are concentrate outflow
γk, ash content in concentrate ak, and waste outflow γo, ash content in waste ao. Since
the physical and chemical conditions are mainly determined by the flotation reagents, the
flotation-reagent flow rate can be considered as the leading control volume. This is all the
more justified as the level of suspended solids in the flotation cell and the level of air flow
rate are usually stabilized in local control loops and their setpoints are changed occasionally.
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Figure 1. Coal flotation process as a facility with multiple inputs and multiple outputs.

As already mentioned, the available output measure is the ash content of the tailings;
therefore, the dynamic properties of the coal flotation process considered as a facility with
the flow rate of the flotation reagent as an input and the ash content of the flotation tailings
as an output signal are of interest. In the flotation process, the interfering signals are the
parameters of the changing feed. As the results of industrial research have shown, the feed
parameters can remain constant or change slightly over the next few operating periods
(working shifts) [14,15]. This steady state of the feed can be used to determine interesting
dynamic characteristics that can be used to estimate the parameters of the process-dynamics
model. Knowledge of the dynamic properties of the flotation process makes it possible
to determine the response time of the system to a change in the input signal (flotation
reagents) at different parameters of the flotation feed, which is valuable information for
the process operator. Knowledge of the dynamic model is essential for the selection of
regulator settings in the situation of closing the feedback loop from the waste-ash signal.
(Figure 2).
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Due to the non-linear static characteristics of the coal flotation process, automatic
control is only justifiable around a fixed operating point, and with each change in the
operating point, identification of the dynamics model and adjustment of the controller
settings should take place. This justifies the need to identify the dynamic properties of
the process with the use of recursive methods, i.e., methods enabling the determination
of the object model during its operation.. These include a method based on the Kalman
filter equations [16]. This paper describes an algorithm with the use of the Kalman filter to
identify an object model based on the response of the system in the form of a change in
the ash content of the flotation tailings to a step in the flow rate of the flotation reagent as
the leading control signal. The results of the identification of the dynamics model with the
application of the Kalman filter were compared with the results of the batch method (least
squares method), which was adopted as the reference method.

2. Method for Identifying the Dynamic Properties of the Coal Flotation Process

A step response method was used in an industrial experiment. It involves stepping
an input signal and observing the system’s response to this step function. It is a well-
known method that is one of the basic tests [17]. It usually provides sufficient accuracy
without the need for lengthy and complex analyses. Identifying an object with this method
involves conducting an experiment to collect data and calculating the parameters of the
dynamics model. If the batch method is used, the model parameters are calculated after the
experiment has been completed and the data collected, whereas if the recursive method is
used, the model parameters are determined during the experiment (in real time). The step
response method requires an arbitrary adoption of the structure of the dynamics model.
For inertial industrial facilities, an inertial model of order one with a delay is often sufficient
to describe the dynamic properties [17,18]. It is particularly useful for automatic process
control and the associated selection of controller settings (Figure 2) [19]. The equation of
the object model can be represented by the operator transmittance:

K(s) =
k× e−sτ

sT + 1
(1)

where:

k—gain, %/(dm3/h);
T—substitute time constant of the object, s;
τ—delay, s.

Equation (1) implies that the identification is reduced to determining the values of the
parameters ks, Ts, and τs. The adoption of Equation (1) to describe the dynamic properties
of the coal flotation process is appropriate due to the inertial characteristic of the course
of the ash content in the flotation tailings as a result of the step change in the amount of
reagent fed and the transport delay that occurs in this process (flotation IZ-5).

In the case of the coal flotation process, the identification experiment consists of a step
change in the flow rate of the flotation reagent dosed into the system (from an initial value
to a final value) and recording of the induced changes in the output signal (ash content of
the flotation tailings), while keeping the other input quantities constant throughout the
measurement experiment, as schematically shown in Figure 3. Due to the non-linearity
of the static characteristics [20–22], when using this method, linearization is carried out
when an object passes from one operating point to another as a result of a step change in
the input signal (intensity of the flotation reagent). This consists in reducing the value of
the excitation by its initial value and subtracting its initial value from the system response
value in successive steps.
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Owing to the discretely observed (every sampling period Ts) output signal, the dy-
namics of the object can be described by the equation:

y(i) = a× y(i− 1) + b× u(i−m) (2)

where:

i—sampling step i = t/Ts;
Ts—sampling period, s;
y(i)—output signal (ash content of flotation tailings) observed discretely every sampling
period y(i) = ao(i) − ao(0), %;
u(i)—input signal (flow rate of flotation reagent) u(i) = vo(i) − vo(0), dm3/h;
a, b—model coefficients;
m—parameter related to delay.

The relationship of coefficients a, b, and m with parameters k, T, and τ is expressed in
the equations:

T = − Ts

ln(a)
(3)

k =
b× e

Ts
T

e
Ts
T − 1

(4)

τ = m× Ts (5)

Estimation of model parameters (1) requires:

- Determination of coefficients a, b, and m;
- Calculation of parameters k, T, and τ with the use of Equations (3)–(5).

In the case of the method based on the Kalman filter, the determination of the time
delay measure in the form of parameter m requires parallel estimation of the coefficients a
and b, during the flotation process, with successive estimation starting every successive
sampling period. This means that for time t = 0 the calculation of the first values of model
parameters (2) begins, for time t = Ts the second, for time t = 2Ts the third, and so on. The
calculation ends when the steady state occurs. The best model is assumed to be the one
whose parameter values provide the best fit to the empirical data. Then, based on the
knowledge of the parameters a, b, and m, parameters k, T, and τ can be determined. The
principle of determining the delay τ and the model parameters with the use of Kalman
filter is illustrated in Figure 4.
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flotation process with the use of Kalman filter. 1—estimation of the coefficients of Equation (2) with
the use of Kalman algorithm, 2—block for converting the coefficients of Equation (2) into model
parameters (1), 3—block for determining the step response of the model, and 4—block for recording
the signal y during the measurement experiment.

In the case of the reference method, the method of least squares, the delay is determined
iteratively, whereby the data series must be complete and the calculations are carried out
after the data have been collected. The calculation starts with all the empirical data from
which the a and b values are determined. In the next iteration, the first sample of the step
response is removed and the calculation is repeated. In subsequent iterations, the course
of action is analogous. With this method, in each subsequent iteration, the step response
data are reduced by one sample (starting from the first) and the parameters a and b are
estimated. In this case, the delay measure m is the number of samples removed, and the
best model is taken to be the one that provides the best fit to the empirical data.

3. Estimation of Model Parameters
3.1. Application of the Kalman Filter for the Identification of a Dynamics Model

Suppose an object is given with a first-order inertial element structure described by
the equations [23,24]:

x(i) = a× x(i− 1) + b× u(i− 1) (6)

y(i) = x(i) + z(i) (7)

where:

a, b—unknown, sought parameters of the equation;
u—disturbance, which is a random variable with a normal distribution N(0,σz

2).
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The next moment (i + 1) in Equations (6) and (7) takes the form of:

x(i + 1) = a(i)× x(i) + b(i)× u(i) (8)

y(i + 1) = x(i + 1) + z(i + 1) (9)

By determining the state variable x(i) from Equation (7) and substituting into Equation (8)
we obtain:

x(i + 1) = a(i)× y(i)− a(i)× z(i) + b(i)× u(i) (10)

Then by inserting Equation (10) into Equation (9) the equation of output is obtained
as follows:

u(i + 1) = a(i)× y(i) + b(i)× u(i) + z(i + 1)− a(i)× z(i) (11)

Assuming that w(I + 1) = z(i + 1) − a(i)z(i) may be saved:

y(i + 1) = a(i)× y(i) + b(i)× u(i) + w(i + 1) (12)

With the assumption that the system is stationary, the parameters of equation a and b
have the same values at any time, i.e., there is a(0) = a(1) . . . = a(i − 1) = a(i) = a(i + 1) = . . .
and b(0) = b(1) . . . = b(i − 1) = b(i) = b(i + 1) = . . . . With the application of matrix notation

θ =
[
a b

]T (13)

and
V(i) =

[
y(i) u(i)

]
(14)

the following set of vector-matrix equations can be introduced:

θ(i + 1) = θ(i) (15)

y(i + 1) = V(i)× θ(i) + w(i) (16)

The parameters of the matrix are constant at all times, as it is a matrix containing the
sought values of the object model parameters (6) and (7), hence Equation (15) is legitimate.
Consequently, Equation (15) can be treated as the equation of state, and Equation (16) then
becomes the equation of exit. The estimation of the parameters θ̂(i + 1) can be done with
the use of Kalman filter equations, which take the following form:

θ̂(i + 1) = θ̂(i) + K(i + 1)×
(

y(i + 1)−VT(i)× θ̂(i)
)

(17)

K(i + 1) = P(i)×VT ×
(

V × P(i + 1|i)×VT + R
)−1

(18)

P(i + 1) = (I − K(i + 1)×V(i))× P(i) (19)

where:

P—error covariance matrix;
K—Kalman gain;
I—unit matrix.

As is visible in the Equations (11) and (12) disturbances at successive moments in
time are correlated with each other. The variance of the disturbance w(i + 1) is σ2

z ·
(
1 + a2).

Equation (18) shows that in order to calculate the Kalman gain K, it is necessary to know the
parameter a, which in turn is the quantity sought. Therefore, in the calculation algorithm,
the parameter a should be replaced by its estimate at time iTs:

R = σ2
z ·
(

1 + â2
1(i)

)
(20)
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The presented set of equations is a recursive Kalman filter that allows us to determine
the parameters of Equation (6). It is one of the recursive online identification methods.
Therefore, it can be used in real-time systems, e.g., for the selection of controller settings.
The values of the sought parameters are calculated at any time on the basis of a pair of
points (Equation (14)).

3.2. Least Squares Method

One of the batch methods, i.e., the method of least squares, was adopted as the
reference method. It requires the collection of complete measurement data and then the
calculation of the values of the sought-after coefficients of Equation (2) with the use of the
estimator [25]:

θ =
(

CTC
)−1

CTY (21)

where:

Y—object output observation matrix, Y = [y1, . . . , yN]T;
N—number of sampling points.

The matrix C contains both input and output quantities, which for the estimated
parameters of model (1) can be saved:

C =

 −y(0) u(0)
...

...
−y(N − 1) u(N − 1)

 (22)

4. Results of the Identification of the Dynamic Properties of the Coal Flotation Process
4.1. Research Results

The identification was carried out on the basis of data recorded during an experiment
at the industrial facility of a coal preparation plant of one of the Polish mines with a flotation
machine of the IZ-5 type. A schematic diagram of the flotation industrial facility is shown
in Figure 5.
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The industrial facility was equipped with a measurement system that allowed for real-
time measurement of the feed flow rate, the concentration of solids in the feed, and the
ash content of the flotation tailings. The individual quantities were measured using an
electromagnetic flow meter (qn), a radiometric density meter (kcs), and an optical ash meter
(ao), respectively. In the case of the experiment, recording was carried out with a sampling
period Ts of 30 s and the length of the recorded data series was 53, corresponding to a time
of 1590 s. The initial value of the reagent flow rate vo(0) was 1.5 dm3/h and was stepped up
to 7.5 dm3/h, meaning that the step increase in this quantity was u = 6 dm3/h. At the time
of the step change vo, the ash content of the flotation tailings (initial value ao (0)) was 53.8%.
During the measurement experiment, the feed parameters were monitored. They were found
to be invariant over time, with values of qn = 513 ± 2 m3/h and kcs = 116.2 ± 1 kg/m3.
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The validity of the model was assessed using the mean-squared-error criterion ex-
pressed by the formula [26,27]:

MSE =
1
N

N

∑
i=1

(e)2 =
1
N

N

∑
i=1

(y− ŷ)2 (23)

where:

e—the rest of the model, %.

The value of the mean squared error is determined for the model identified by the
recursive method (the Kalman algorithm), and the least squares method, adopted as the
reference method. On the basis of the quantitative evaluation of criterion (23), the model
better fitted to the empirical data should be considered the one for which the value of the
mean squared error is smaller.

4.2. Identification Results

The results of the identification of dynamic models of the coal flotation process with one
control input in the form of the flow rate of the flotation reagent and one output—the ash
content in flotation tailings, obtained with the use of the Kalman algorithm, are summarized in
Table 1. Examples of the waveforms of the step response of the identified dynamic models and
the waveforms of the determined parameters of Equation (2) are shown in Figures 6 and 7.

Table 1. Results of the identification of the dynamic properties of the hard coal flotation process.

Method m a b τ
(s) k T

(s)
MSE
(%2)

KF

4 0.8925 0.3561 120 3.3126 263.8 10.79

5 0.8879 0.3600 150 3.2119 252.3 7.13

6 0.9004 0.3054 180 3.0674 286.1 2.69

7 0.8966 0.3535 210 3.4201 275.0 6.01

8 0.8292 0.5750 240 3.3665 160.2 12.35

9 0.7656 0.7721 270 3.2943 112.3 13.73

LS 7 0.8975 0.3087 210 3.0114 277.4 2.36

KF—recursive identification method with the use of the Kalman algorithm, LS—least squares method.

The step response waveforms presented in Figure 6, calculated on the basis of the
identified dynamic models, show that the use of an approximation using a first-order model
with a delay is justified, as it is clearly evident in the first moments that the object does not
respond (no change in the ash content of the flotation tailings) to an excitation signal in the
form of a step change in the amount of reagent dosed to the process.

In the waveforms of the estimation of the parameters of the dynamic model of
Equation (2) shown in Figure 7, one can see, in each case, the moment of the start of
the identification process resulting from the delay m (start 1, start 2, . . . from Figure 4). One
can also see there the determination of the values of the parameters a and b in the domi-
nant majority of cases. This shows that the time of recording and therefore of calculation
was sufficient.
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Figure 6. The response of the ash content of the flotation tailings to a step change in the flow rate of
the flotation reagent (from a value of 1.5 dm3/h to 7.5 dm3/h). 1—object output values determined on
the basis of identified dynamic models by the method with the use of Kalman filter and 2—measured
data for delay times (a) 120 s, (b) 150 s, (c) 210 s, and (d) 270 s.
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Figure 7. Parameters of dynamic models with step responses as in Figure 6 estimated by the Kalman
filter method for delay times (a) 120 s, (b) 150 s, (c) 210 s, and (d) 270 s.

The optimum values, in terms the adopted parameters m, a, and b, as the results
summarized in Table 1 show, were obtained for delay τ = 180 s. For this value of delay, the
calculated remaining parameters of the operator transmittance described by Equation (1)
in the form of the gain k and the equivalent time constant of the object T are 3.3 and 286 s,
respectively. Comparing the identification results of the method with the use of the Kalman
filter with the optimum model obtained for the reference method (LS), it can be seen that
both the estimated parameters and the values of the MSE criterion for both cases have
similar values. A graphical comparison of the response of both models to the step function
(Figure 8), i.e., determined by the least squares method and the Kalman algorithm, seems
to confirm the observation of a significant convergence of the obtained results. This shows
that the method with the use of the Kalman filter can be useful in modeling the dynamic
properties of flotation for the purpose of automating this process.
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Figure 8. Results of the identification of the dynamic properties of the coal flotation process in terms
of the response of the models to the step function (1) against empirical data (2), determined with the
use of (a) the Kalman filter and (b) the least squares method.

5. Discussion

The calculations carried out show that the approximation of the step response of the
coal flotation process using a first-order inertial element structure model with a delay gives
satisfactory results. On the basis of a comparative analysis of the obtained results, it can be
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concluded that the dynamic model calculated by the recursive method, using the Kalman
filter, shows a similar fit to the empirical data, in terms of the adopted index (MSE = 2.7),
as the model determined by the least squares method (MSE = 2.4). The parameters of
Equation (2), and therefore also of model (1) estimated by the KF method, have values
close to the results of identification by the least squares method. The experiment and
identification calculations resulted in coefficients of Equation (2) with values a = 0.9004,
b = 0.3054, and m = 6 for the Kalman filter method and a = 0.8975, b = 0.3087, and m = 7 for the
reference method, i.e., the least squares method. These coefficients correspond to parameter
values T = 286.1 s, k = 3.0674, and τ = 180 s for the KF method and T = 277.4 s, k = 3.0114, and
τ = 210 s for the least squares method. For the optimum, in the sense of Equation (23), of
the model determined by KF, the value of the time constant is about 9 s longer than for the
reference method, which is only about 3% of the value of T, determined by the LS method.
On the other hand, the static gain k estimated with the use of the KF method has a value
about 0.06 higher than the result of the identification with the LS method, which is about
2% of the value obtained with the reference method. The greatest difference in the value of
the model parameter (1) occurs for τ. The value of the delay determined with the use of
the Kalman filter is 30 s shorter than the value of this parameter estimated with the least
squares method (in an iterative manner), and this represents approximately 15% of the
reference value. This difference is due to the fact that the delay calculated by both methods
is a multiple of the sampling period, so in the case under consideration, the difference
in values calculated using the KF and LS methods corresponds to the smallest possible
deviation, i.e., the sampling period Ts.

Analysing the other results summarized in Table 1, one may see that for τ = 210 s
the difference in the values of the parameters a estimated using the Kalman filter—based
method and the reference method (LS)—is negligible. This translates directly into the
values of the time constants T, which are 275.0 s and 277.4 s, respectively. In this case,
however, the difference in the values of the parameter b is not negligible, as it leads to an
overestimation of the gain k to the disadvantage of the KF method. The waveforms of the
continuously identified coefficients a and b, shown in Figure 7c, (when τ = 210 s) show
that the values of these parameters have not settled. This may be indicative of insufficient
computation time, and hence experimental time, required to achieve the final result, which,
in turn, may have been the cause of the incorrect value of the coefficient k. It seems that
extending the experimental time in this otherwise isolated case could have had a beneficial
effect on the final result. However, it should be emphasized that this problem did not occur
in any of the other cases, and the identified parameters a and b with the use of the Kalman
filter have always reached the set values (Figure 7).

Evaluating the other results of the identification of the parameters of model (1) for
times τ shorter than 210 s, it can be concluded that the values of the gains k and the time
constants T are comparable. On the other hand, it is noted that the dynamic error (y− ŷ)2

occurring in the time interval corresponding to the three time constants, counting from the
time equal to the delay, is the larger the shorter τ is. On the other hand, for the cases of
estimated parameters of the model (1) with the KF method, when the delay is longer than
210 s, a shortening of the equivalent time constants is observed (the longer τ is, the shorter
T is), which directly translates into an increase in the value of the MSE criterion.

6. Conclusions

The results of the identification studies show that the dynamic properties of a coal
flotation object with one control input (vo) and one measurement output (ao) can be pre-
sented as first-order inertial element models with delay, regardless of the identification
method used (KF or LS). Based on a comparative analysis of the results, it can be concluded
that the application of the Kalman filter method for the identification of dynamic models
of a coal flotation object with one input vo and one output ao, yields results comparable to
those obtained by the least squares method. It should be noted that the values estimated
with both methods are similar and the step characteristics converge significantly (Figure 8).
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A slightly lower criterion value was obtained using the reference method (MSE = 2.4)
comparing to the KF method (MSE = 2.7). It is possible to conclude that, in terms of the
criterion adopted, the least squares method produced a slightly better model than the
method based on the Kalman filter. However, it should be noted that the reference method
is an off-line batch method, so in the case of the model identification (1), based on the step
response, it requires the collection of all data and iterative actions using the vector-matrix
Equation (21). In contrast, the dynamic model identification method with the use of the
Kalman filter offers the possibility of estimating the parameters of the dynamic models of
the flotation process on the on-going basis (in discrete moments of time). It is a recursive
algorithm, and therefore there is no need to store the full data series for recalculation at
each successive step. Due to the recursive nature of the Kalman filter method and the fact
that the method produces results very close to those of the reference method, it should
be emphasized that it is computationally advantageous. This is of particular importance
when the method is to be used in real time to select controller settings in an automatic
flotation process control situation. This is all the more so because, due to the non-linear
nature of coal flotation as a control object and the random disturbances of the changing
feed, the identification process has to be repeated periodically. Due to its advantages,
the Kalman filter identification method can be of application in the field of coal flotation
process identification for control purposes. The conducted research may indicate to other
researchers that it is beneficial to use the Kalman filter method to identify coal flotation for
highly sensorized systems controlling this process in processing plants in other countries.

A novelty is the use of the method based on the Kalman filter, which is a recursive
algorithm, and therefore does not require the storage of full data series for their conversion
in each subsequent step. Thus, it will not burden the control unit, and the identification
procedure itself may run periodically (repeated) for the purpose of checking the values of
the estimated model parameters, and consequently adjusting the controller settings. This
should be done after changing the feed parameters such as the solids concentration or the
feed flow rate.
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