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Abstract: The effects of varying modulation indices on the current and voltage harmonics of an
induction motor (IM) powered by a three-phase space vector pulse-width modulation (SVM) inverter
are presented in this research. The effects were examined using simulation and an experimental
setup. IMs can be governed by an SVM inverter drive or a phase-angle control drive for applications
that require varying speeds. The analysis of THD content in this study used the modulation index
(MI), whose modification affects the harmonic content, and voltage-oriented control (VOC) with
SVM in three-phase pulse-width modulation (PWM) inverters with fixed switching frequencies. The
control technique relies on two cascaded feedback loops, one controlling the grid current and the
other regulating the dc-link voltage to maintain the required level of dc-bus voltage. The control
strategy was developed to transform between stationary («—f3) and synchronously rotating (d-q)
coordinate systems. To test the viability of the suggested control technique, a 1-hp/3-phase/415-V
experimental prototype system built on the DSPACE DS1104 platform was created, and the outcomes
were evaluated with sinusoidal pulse-width modulation (SPWM).

Keywords: induction motor drive; dc-link voltage balancing; space vector modulation; switching
loss; total harmonic distortion

1. Introduction

Electric motors are used in many driving components worldwide, accounting for
40% to 50% of all electricity demand [1]. Seventy percent of the electricity needed to run
industrial loads is provided by three-phase IMs [2]. Due to their appealing qualities, such
as low cost, straightforward design, excellent reliability, and ease of maintenance, electric
motor sales have climbed to 85% [3-5]. Although direct current (DC) motors are frequently
seen in applications involving variable speed operations because of how simple it is to
control torque and field flux with armature and field current, these motors possess the
drawback of having a commutator and brushes that could cause corrosion and necessitate
regular maintenance [6]. Due to their high output power, toughness, robustness, efficiency,
affordability, capacity to tolerate hazardous or severe working situations, and ruggedness,
IMs do not experience DC motor difficulties [7]. The abrupt variation in load, which uses a
significant amount of electricity and raises the cost of energy, impacts the functioning of
three-phase IMs [8]. To regulate speed and preserve high efficiency, a variable speed drive
(VSD) may be employed [9]. Moreover, the controller and switching technique employed in
VSD significantly impact the achievability of high efficiency and reliability for IMs [10,11].
Pulse-width modulation (PWM) techniques are often used to control the switches of voltage
source inverters (VSIs), as well as the frequency and output voltage of IMs [12]. One of the
better approaches for VSI is the SVM switching approach, which has reduced switching
losses and the capacity to reduce the harmonic output signals generated by inverters [13].

Energies 2022, 15, 7916. https:/ /doi.org/10.3390/en15217916

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en15217916
https://doi.org/10.3390/en15217916
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5817-8889
https://orcid.org/0000-0003-0351-7761
https://orcid.org/0000-0001-9359-2436
https://doi.org/10.3390/en15217916
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15217916?type=check_update&version=1

Energies 2022, 15, 7916

2 of 21

Recent studies have proposed several control techniques for PWM rectifiers to en-
hance the input power factor and transform the input current into a sinusoidal waveform.
Numerous PWM modulation techniques are in use, including sinusoidal PWM and the
space vector method. Technically, the SVM methodology is the optimal modulation method
overall. Compared to the conventional PWM approach, the harmonic distortion of current
decreases with the SVM. The duty cycles of VSI switches have been determined via the
SVM, using the space vector concept. The only things to have been digitally implemented
are PWM modulators. The possibility of straightforward digital implementation and a
large linear modulation range for line-to-line voltages are the distinguishing features of
SVM. Despite the SVPWM technique’s benefits over PWM, new techniques are continually
being developed. The main objective [14] has been to find efficient methods to provide
output voltages with low harmonic rates and less switch-level loss.

The voltage-oriented control (VOC) algorithm, which is well known among indirect
power control algorithms that use current controllers and is equivalent to the field-oriented
control (FOC) of the IM, is able to generate high dynamic and static performance by using
internal current control loops and an outer voltage control loop. The basis of VOC is the
orientation of the rotating synchronous reference frame with respect to the grid line voltage
vector. The suggested VOC approach exhibits highly dynamic behavior, suitable output
voltage, and a low input current THD [15,16].

The proper operation of the control system has generally been hampered by the
hardware execution of the IM drive controller. Digital signal processors (DSPs) and field
programmable gate arrays (FPGAs) are two integrated circuits that have been used exten-
sively in control platforms [17,18]. Implementing a user-friendly control unit for online
supervision and monitoring is now possible due to the presence of a graphical object-
oriented package (Control Desk software) on a dSPACE system. The automation and
automotive sectors both use the dSPACE system, which is extremely popular among con-
trolling platforms. The development of PV standalone inverters uses the dSPACE system
as a control platform as an additional application area. In this study, the SVM control
method is demonstrated through a simulation to support actual inverter hardware. The
Simpowersystems and dSPACE DS1104 blockset libraries were used in the simulation,
performed in the Simulink/MATLAB environment.

The remaining sections of this article are organized as follows: A description of an IM
drive is given in Section 2. Section 3 explains the VOC control for a three-phase VSI. A VSI
using the SVM approach is introduced in Section 4. Section 5 contains the simulation and
experimental discussion. Section 6 summarizes the research and presents the findings.

2. Overview of the Induction Motor Drive

The squirrel-cage three-phase IM is an asynchronous AC motor that operates on
electromagnetic induction principles. The IM’s primary purpose is to convert electrical
energy into mechanical energy. A small air gap separates the stator and the rotor, the
two components that make up the IM. The three-phase squirrel-cage IM [19-21] is the one
most often used due to its insulated winding in both stator and rotor, which are formed of
cast and solid bars with high conductivity, as shown in Figure 1.

For the rotor to rotate at synchronous speed (ws; in rad/s), where wg;, = 271f (rad/s),
where f = synchronous frequency, three-phase voltages must first be applied to the stator
winding. The stator currents produce a revolving magnetic field in the magnetic circuit,
formed by the air gap between the stator and rotor cores. The number of poles (P) affects
the mechanical synchronous speed (wsy; in rad/s). This is how the synchronous speed is
determined [22].

2w
Wey = Ps €))
120

P



Energies 2022, 15, 7916 3 of 21

\mrm

Stator Orm
Rotor as - axis
Air - Gap

Figure 1. Three-phase IM cross-sectional model.

Modelling of the Induction Motor

To depict the physical systems, the computer models the mathematical model of
the three-phase IM and its driving system [4]. The control parameters of the models
are highlighted in this three-phase IM modelling. For the three-phase IM, the magnetic
connection between the stator and rotor voltage equations can be expressed as follows [23].

. A . dA . dA

Vas = igsts + TZS} Vs = ipsts + Ttbs} Ves = dests + ths 3)
. A . daA ) dA

Vi = igtr + Wm; Vir = ip 1 + Tfr; Ver = ity + dt" 4)

where Vs, Vis, Vs = 3-@ stator voltages; Vyy, V., Ver = 3-¢ rotor voltages; igs, ips, ics = 3-@
stator currents; iy, iy, iy = 3-@ rotor currents; r; = stator resistance; r, = rotor resistance;
Aas, Aps, Acs = flux linkages of the stator; and A4, Ay, Aer = flux linkages of the rotor.

According to the winding currents and inductances, the flux linkages indicate the ma-
trix formed between the rotor and stator windings, as depicted in the following matrix [24].

AE) JLgbe pabe] [ie

o] = e 2] [ ®
where AZ=[Aas  Aps Acs] 8= [ins ivs ics]  AR=[Aar Ay Acr]Liffiar o ior]
and superscript T = transpose of the array; L = stator-to-stator winding inductance; L2
= rotor-to-rotor winding inductance; and L = stator-to-rotor mutual inductance, which
depends on the rotor angle 6,.

To solve and simplify the computation of the three-phase IM performance, contem-
porary research analyzes the transient and steady-state performance of three Ims with a
direct-quadrature-zero (dq0) stationary motor model [21,25,26]. As it can accurately repre-
sent the real-time motor model, a dg0 reference frame is chosen in this study to create the
motor simulation model. The relationship between the rotor d40 and the abc stator axes is
shown in Figure 2. The mechanical rotor speed is denoted by w;;, and the reference frame
speed is represented by w. The transformation from abc to dq0 is analyzed using stationary
and synchronously revolving frames. Similar to those typically used for supply networks,
the stationary rotating frame has a speed frame that produces a value of w = 0. When the
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synchronous reference frame revolves in the same direction as the rotor revolution, the
speed frame becomes w = w;. The matrix below contains their inverses and the transition
from the abc to the dq0 reference frame [27].

Xy 5 [cos (8)  cos (0—2F) cos (0+ %)) [xa Xq
x| =3 sin (0) sin (6 — %”) sin (0 + %") xXp | = [Xago(0)] | xp (6)
X0 % % % e e
Xa ’ cos (0) sin (0) 17 [x4 N
xp| = > |cos (0—F) sin(0—23) 1| |x| = [Xag0(0)] | xp 7)
Xc cos (0+2F) sin (0+2F) 1] [xo Xe

where variable x = the 3-¢ IM’s phase voltage, current, or flux linkage. The stator voltages
are converted to the dq0 voltages into a matrix form that includes flux linkages, currents,
and voltages of the dg0 reference frame to produce the dq0 voltages [28].

Ods a0 0 1 0 Ads d /\ds 1 00 ids
'qu — E 71 0 0 /\qs + E )\qs + rs 0 1 0 qu (8)
00s 0 0 0 /\05 )tos 0 0 1 iOs
fas Is XNis Xir y ’d’r_wl re iar
> AAA [000) [000) @ e AN b
+ =
Vds Xm Vdr
d- axis
Iqs rs Xis Xr (1] /q'r_ ek re T ﬁ'r
—
—AAN [600) [000) @ o AN
= +
Vgs Xm Vf]r

Zero sequence

Figure 2. Equivalent circuits of the three-phase IM’s dg0 stationary reference frames.

Similar to this, while transferring the voltages, currents, and flux linkages, the rotor
voltages are converted to the dgq0 frame into a matrix form that must be combined with
the mechanical rotor angle (6 — 6,) to become [X50(6 — 0)] in order to achieve the
subsequent equations shown below [29].

Odr do—o 0 1 0] [Ag d Ay 1 0 Of [ig
Ogr | = % —1 0 0f |Agr +E Agr| +1s|0 1 0f |ig 9)
Vor 0 0 0f|Ao Aor 0 0 1] [ior
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The stator abc flux linkage is transformed to produce the stator dq0 flux linkages, which
are stated as follows.

Ads Lis+ 3Lss 0 07 [igs 3Ly 0 0] [ig
/\qs = 0 Lis + %Lss 0 iqs + 0 %Lsr 0 iqr (10)
Aos 0 0 Lis| Lios 0 0 0] |io

The rotor dq0 flux linkages are produced in a similar manner to the rotor abc flux linkage.

Adr %Lsr 0 O |ias Ly + %er 0 0 Lay
Agr| =1 0 3Ly 0] |igs| + 0 Lip+ 3Ly 0 | |igr (11)
Aoy 0 0 0] |ios 0 0 Ly ] Lior

The stator and rotor dq0 flux linkage relations can be stated as in Equation (12) [25],
where )‘:iw /\"1, are the reference values on the stator side of the dg rotor flux linkages. This
is based on Equations (10) and (11); the referred values on the stator side of the dg rotor
currents are iy, ig,.

As Lis + Ly, 0 0 L 0 07 [igs
Aos| 0 0 L 0 0 0 | | ios 12)
AT L 0 0 L,+Ly O 01|,
/\flﬁ 0 Ly 0 0 L;r +Ly O il’V
AL 0 0 0 0 o L

The governing equations [27] are produced by converting the final dg0 reference
frame equations to the flux linkage, utilizing the formula ¢ = wsA, and the inductance into
reactance, using x = w;L.

1d w ,
Ogs = ;s Z;S + ;sﬂbqs + 7slgs (13)
1dpgs  w )
qu = JSW + ;s¢ds + rSqu (14:)
1d .
0ps = — :;L’t()s + *s1os (15)

S

r idlrb{ir + <(U_Wrm

Vi = ot )w,’,r + 1yl (16)

Ws

1 dy w—w
! qr rm / 137
vqr - aTS dt - < ws )lpdr + rrlqr (17)
1 dy) .
Ué)r = aTs d;]r + 1/’ 67 (18)
Pas X1 + Xm 0 0 Xm 0 0 ids
Pos _ 0 0 Xg 0 0 0 10s (19)
v, X 0 0 xf, +xm 0 ol
%r 0 Xm 0 0 xXj, +xn O ifi,
Al Lo 0 0 o o gl

The electromagnetic torque can manifest itself in the following ways:

_ 3 P ! /Al
Tem = 2 2w (lpdrlqr - lpqudr)
_ 3 P . .
= 272w, (quslds - lpdslqs) (20)
3 P . . . .
= 3 50 Xm lgrids — igyigs
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As depicted in Figure 2, the equivalent circuits of the dq0 stationary reference frames
are generated by introducing Equation (19) into Equation (13) to Equation (18).

3. Voltage-Oriented Control

The VOC technique for AC-DC converters is derived from FOC for IMs. FOC provides
a quick, dynamic reaction due to the utilization of current control loops. The theoretical
elements of the VOC approach used for grid-connected rectifiers have received extensive
coverage. The control system uses the PWM technique to ensure that the characteristics of
the VOC control scheme are modified. It is possible to reduce the impact of interference
(disturbances). By using the hysteresis pulse-width modulation approach, system solidity
can be achieved. Power switching is stressed as a result of the fluctuating switching
frequency, necessitating the use of an input filter at high-value parameters. To alleviate
harmonic issues, the proposed method utilizes the VOC principle to regulate charging
while maintaining low harmonic distortions to the grid. Figure 3 depicts VOC for AC-DC
line-side converters. VOC operates most frequently in the two-phase zero and dg0 domains,
where the Clarke and Park transformation matrices are employed.

1 1
Vea 5 I =3 =2 |[Va
Vip —ﬁ 0 B -V, (21)
1 1 1 V.
0 V2 \/E \/E sc
Vil [ sin(0)  cos(0)] [ Vsa )
Vel [—cos(8) sin(0)] [Vip
Rectifier Inverter
Three Three
Phase Phase
Voitage | Induction
Supply Motor
- AY
J
Solar PV
Emulator
Vac
Vsabc Fsabe
abc
af ap Ve, rer
Vsa Vsg isa isg
ap af
e dg Pl
isa‘, ref
I Y ) W
Isd 20

l;q, ref=0

Figure 3. Overall control structure of VOC of a PWM inverter [30].
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Note that Vi, Vg, and Vs = 3-¢ source voltages in the abc domain, while V,, Vsp,
and Vj = source voltages in the 0 domain. Vy, V,, and V) are source voltages of the
dq0 domain, and 6 = the operating phase of the power system. As shown in Figure 2, an
equivalent transformation procedure is used to transform the 3-¢ source current igp,.

Based on the following techniques, steady-state errors are easily reduced by the
proportional integral (PI) controllers by employing the transformation technique to convert
AC-side control variables into DC signals:

Ud,ref = Kp (isd,ref - isd) + Ki/(isd,ref - isd)dt (23)

Ogep = Kp (isgrer —isg) +Ki / (isgref — i )t (24)

where K;, and K; = gains of the PI controller, is4 and is; = source current in the dg0 domain,
and igg ror and iy o = reference signals for igy and isq, respectively. After obtaining the
reference voltages v4 . and v, s, the gate switching pulses S, which regulate the
operation of the VOC inverter, are derived using the PWM switching approach and the
inverse park transformation as given in Equation (25).

L I i ®

4. SVM Switching Techniques

The SVM approach, generally acknowledged as the optimum method for variable
speed drive applications, creates PWM control signals in the 3-¢ inverter. Compared to
other PWM systems, this method provides an enhanced means of achieving a high output
voltage, minimizing the harmonic output, and lowering switching losses. As a result, the
SVM technique is confirmed as the best approach for reducing harmonic distortion [31-33].

Vab 1 -1 0 S1
Vbc = Vdc 0 1 -1 53 (26)
Vea 1 0 1|]ss
Vah Vd 2 -1 -1 S1
Vie :?C -1 2 —1||s3 (27)
Vea -1 -1 2]]ss

Eight switch variables can be created using the inverter’s six IGBTs. Six switch
variables—V1, V, ..., V4, and the last two—are zero vectors chosen for the three upper
IGBT switches. The on and off patterns of the lower IGBT switches are the opposite of those
of the higher switches. Figure 4 displays the eight switching vectors of the SVM [34].

The output waveform of the inverter is split into six hexagonal sectors, according to
the SVM’s working principle. The sector angle is 60° apart, and every sector is between
two voltage space vectors (Figure 5) [35]. The SVM approach receives a 3-¢ voltage (V,, V3,
and V) with a 120° angle among the 2-¢ and transforms it into 2-¢ (V, and V) with a 90°
using Clark’s transformation (Figure 6a).

To make the study of three-phase voltage more straightforward, 2-¢ voltages (V, and
V) are used as part of a scientific transformation. The voltages are used to calculate the
hexagon’s voltage vector angle («) and the reference voltage vector’s magnitude (V). Vier
is assumed as the magnitude of the V,, and Vg voltages, while « is the frequency of V, and
Vg. Vi and « are situated among the two neighboring non-zero and zero vectors. The
following formulas can be used to calculate them [29].

- - V.
Vel 30 2 2|y,
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Vier| = \/ V2 + Vg (29)
V
a = tanilvi (30)

R 1 I ! ! | l
A A A A
B B B B
I~ C — © [ (C — C
: . { At ot
Vo0 (0,0,0) V1(1,0,0) V2 (1,1,0) V3 (0,1,0)
1 1 1 l 1 1 l 1
A A A A
B B B B
[ C e I C - C
A oAb o
Va(0,1,1) V5(0,0,1) Ve (1,0,1) V7 (1,1,1)

Figure 4. Eight switching states for the inverter voltage vectors (Vj to V7).

q axis A
Va(110)
v‘-.\/‘rcf Max
V(011) e >
Vo(000) Vi(100) g axis
VA1)
5

Ve(101)
Figure 5. Space vector diagram.

The relevant space vectors and time intervals (T4, Ty, and Ty) in sector 1 are depicted
in Figure 6b. The duration of Vref is calculated by multiplying the reference voltage by
the sampling time period, which is equivalent to the sum of the voltages times the time
interval of the space vectors in the specified sector [36].

Ts T Th+T, Ts _
/ V,opdt = / Vydt + / V,dt + / VodtTs = Ty + Ty + To 31)
0 0 T T1+T»

where Ts = switching time, which is calculated by Ts :J%S, and fs = switching frequency.
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V‘re f

Y

Y

<
Q

‘;Vl

(T1/TsHVy

(a) (b)
Figure 6. (a) Space vector diagram. (b) Space of sector-1 between V; and V5.

Equation (30) illustrates how Vj provides zero voltage to the output load. As a result,
the equation is:

TV = TiV1 + T2V (32)

When the values of V; and V; are substituted into the a frame and the voltage vectors are
evaluated, the results are as follows [37].

cos(a)| _ . 2 1 2 cos %
Ts Vref Lin(oc)] = TlBVdc {0] + T23Vdc Ling (33)
V in(Z
3 | Vref| sin(F —a)
T =Ts= 34
VT2 Ve sin(B) (34
1% .
T, = Ts§ ref | sin(w) (35)

2 Vg sin(§)

The relation between the magnitude of the reference voltage and the dc voltage value
represented by the following equation is known as the MI for the SVM [38].

Vre f

MI=1L -1
%Vdc

(36)

Equation (35) can be substituted into Equations (33) and (34) to determine the time
duration in the other sectors (1), and 60 degrees with o can be used for each sector to obtain

the result [39,40].
\/gTS Vref
T, = Tsm<§n—zx) (37)
T \@Ts Vref . n—1 18
2—%5171(0{—37[) (38)
To=Ts — (T1 + T2) (39)

Alternating the zero-vector sequence, the asymmetric sequence, the maximum current
not switched sequence, and the right aligned sequence are the four different types of
switching patterns. To reduce device switching frequency, all switching patterns must
fulfill the following two requirements. Merely two switches in the same inverter leg are
used to switch from one switching state to another. To minimize the switching frequency,
one of the switches must be turned off if the other is activated. The least amount of
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switching is necessary to move Vs from one sector to the next to minimize switching
losses. The optimum strategy, according to research, is the symmetric sequence method,
since it minimizes switching losses. The generation of the SVM signal and the inverter
output voltages and a comparison of the duty ratio waveform'’s three signals with the
triangle waveform is shown in Figure 7. This comparison assumes that S is ON if Vpyyratio
> Viriangle; Otherwise, S is OFF.

SVM Control Signals
T T T

0.27

0.275 0.28 0.285 0.29 0.295 0.3 0.305 0.31 0.315
Time (s)

Figure 7. SVM waves for a three-phase inverter.

Every switch in a bipolar switching scheme operates in opposition to the facing switch,
as seen in the example where the triangle waveform and the V5;pysyratio are compared to
produce the PWM signal for the IGBT1 and the opposing IGBT4 in leg 1, which is identical
to leg 2 and leg 3.

5. Results and Discussion
5.1. Simulation Results

In the simulation studies, several experiments were carried out to confirm the effec-
tiveness of the suggested VOC system. The DG capacities of the MG test system taken into
consideration in this work are as follows. The SPV system has a 400 V output voltage rating
with a 1 kW capacity. The load being considered is a three-phase, 1 hp squirrel cage IM
connected at 415 V and 50 Hz.

The voltage control has been set up to satisfy each of the following requirements:

(1) Decentralized control is achieved normally;
(2) Under diverse system situations, the whole MG closed-loop model is stable;
(38) All of the associated DGs follow the reference signal that the SVM algorithm provides.

Each controller must successfully uphold the three requirements mentioned earlier
and offer reliable control inside its application domain. The software platform MAT-
LAB/Simulink has been used to implement the entire system. The SVM method is used
to evaluate whether a PV system connected to a grid can improve power quality at the
consumer terminals. Figure 7 depicts the creation of the SVM signal. The voltage wave-
forms and the current waveform share some phase and are both sinusoidal, as shown in
Figure 8. Figure 9 illustrates how the speed of 1425 rpm was achieved while the load torque
remained constant at 3.0 N-m, as shown in Figure 10. In accordance with carrier frequencies
of 1 kHz and an MI of 0.9 (Figure 11), Figure 12 displays an FFT analysis of the current and
voltage in the system under consideration. The THD; and THDy, values were, respectively,
1.10% and 1.22%. Figure 13 depicts the voltage in the dc-link capacitor.
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Load Current labe (A)
|

| I | | |

0 0.05 0.1 0.15 0.2 0.25
Time (Sec)
(a)
Load Voltage Vabe (V)
400 [ ' ' '
200 - \]
0 i
=200
1 1 1 I |
0 0.05 0.1 0.15 0.2 0.25 0.3
Time (Sec)
(b)
Figure 8. (a) Current and (b) Voltage waveform of the IM with the VOC-based SVM Controller.
Speed (rpm)
T T T T T
1500 - =
1000 -
500 - .
“ —
1 | 1 | 1 | 1 | 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (Sec)
Figure 9. Speed of the Induction Motor when MI = 0.9.
Torque (N-m)
40 F T T T T =
20 - .
'] —
L 1 1 1 1 1 1 L 1
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (Sec)

Figure 10. Torque of the Induction Motor.
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0.1

Fundamental (60Hz) = 0.3328 , THD= 1.22%
T T T T T
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Time (s)

Figure 11. Modulation Index.

Fundamental (60Hz) = 0.3323 , THD= 1.10%
T T T T T T

T T T B T

o

o

o o o o o
&

w
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I
S
X}

o

200 300 400 500 600 700 800 900 1000
Frequency (Hz) Frequency (Hz)

Figure 12. FFT analysis of the voltage and current of the Induction Motor.

DC-Link Voltage (Vdc)
| |

] 0.05

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (Sec)

Figure 13. DC-Link voltage.

5.2. Experimental Verification of the Control Scheme

The efficiency of the suggested VOC-SVM control-based PI controller, shown in
Figure 3, has been tested using a suitable configuration. Its primary components are
a Fluke power quality analyzer, three-phase inverter, dSPACE kit, power analyzer, and
PV simulator. A PVS1010 PV emulator with dc programming is used to determine the
panel properties. A real-time dSPACE DS1104 controller interface controls the system by
conditioning each field signal. A dSPACE platform, shown in Figure 14, is used to integrate
the Simulink model with the external hardware. A D/A converter is used to interface the
inverter gating signals with dSPACE. A dSPACE DS1104 board is used to run Simulink,
which has been used to implement the simulated design modelling. The suggested control’s
main benefit is the ability to precisely adjust the THD and dc-link voltage. The testing
was carried out using the MATLAB/Simulink interfaced dSPACE platform to realize the
adequate performance of a VOC-SVM control-based grid-connected PV system.

For this reason, it was assumed that the grid phase voltage was 415 V with a frequency
of 50 Hz and dc-link voltages of 250 V. The practical response to a dc-link voltage and SVM
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switching pulse is illustrated in Figure 15. The test results clearly show that the SVM-based
VOC controller optimizes the dc-link voltage.

DC-Link
J \J

1

Host Computer
S

S &, /Y

Rectifier Input B ;\\g
3 ¢ Autotransformer 2 :

PV Emulator

Figure 14. Experimental Setup of the three-phase inverter with VOC control using dSpace.

Figure 15. SVM Switching Pulse and DC-Link Voltage.

According to the IEEE 519 standard and Figure 14, an SVM based on ripple control was
used to achieve reduced THD and described with the FFT spectrum of grid current under
steady-state and dynamic operating circumstances. The waveforms were observed using
a Fluke-43 spectrum analyzer with online numerical value illustration. The experimental
voltage and current waveform of an inverter with a THD; and THDy, for a modulation
index of 0.3 are shown in Figure 16a—d.

Figure 17 depicts the voltage and current waveform with an FFT analysis with an MI
of 0.6. Similarly, Figures 18 and 19 illustrate the voltage and current waveforms with FFT
analysis for an MI of 0.9 using SPWM and SVM inverters.

Figures 16-19 illustrate output current waveforms with various modulation indices
for comparison. It can be seen that when the Ml is fixed at 0.9, the output current waveform
is more sinusoidal. THD; and THD, results for various modulation indices are similarly
displayed. The optimum output signal is created by increasing the MI with the SVM
technique, as can be seen in Figure 20. It is also evident that increasing the MI results in
a decrease in current and voltage harmonics. Figure 21 shows the change in speed with
MI. The comparative analysis of the hybrid system with THDs with different modulation
indices is shown in Table 1.
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(MI =0.3).
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Figure 17. (a) Voltage THD (b) Current THD (c) Voltage (d) Current of a three-phase SVM inverter
(MI = 0.6).
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Figure 18. (a) Voltage THD (b) Current THD (c) Voltage (d) Current of a three-phase SPWM inverter
(MI = 0.9).
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Energies 2022, 15, 7916 17 of 21
0
18
16 ESPWM  BS5VM
-~ U
g
s 12
2 10
3
6
4
1 .
0
0.3 0.6 0.9
Modulation Index
Figure 20. Comparison of Current THDs for the SPWM and SVM techniques.
1600
1400
1200
Z 1000
£
= 800
o
@ 600
400
200
0
0.2 0.4 0.6 0.8 0.9
Modulation Index
Figure 21. Change in speed vs. ML
Table 1. Comparative analysis of THD with different modulation indices.
SPWM SVM
M.I THD; (%) THDy (%) THD; (%) THD, (%)  Speed tpm)
0.3 17.8 21.7 14.2 15.0 922
0.6 7.4 11.5 5.6 5.9 1138
0.9 3.7 7.1 1.6 1.7 1410

5.3. Power-Loss Analysis

Power loss is the most crucial factor when calculating an inverter’s efficiency. The
most power is lost at the power switches. Knowing the power loss and heat dissipation,
in addition to the inverter efficiency, is critical for constructing the proper heat sink. Total
power losses in semiconductor power switches are often classified as static or dynamic.
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The static loss includes conversion loss (on-state power losses) and cut-off loss. Failure to
switch on and turn off makes up for the dynamic loss. The switching loss (Psy), conduction
loss (Pong), and blocking 10ss (Ppjacking) are the three primary losses to calculate in power
switches. The blocking losses caused by leakage currents must be noted, though they are
usually overlooked. However, switching losses are insignificant. The huge reduction in
switching losses in VSI devices is the consequence of the on-and-off switch procedure
during one fundamental period [41]. The switching device used in the VSI is Si-MOSFET.

Pross = Psw + Peond + Pblocking (40)

5.3.1. Conduction Losses

The conduction power losses (P.y,4) of MOSFETs may be calculated using a MOSFET
approximation of the drain-to-source resistance (Rpsoy) [42].

Vps(ip) = Rpson(ip)-ip (41)

where Vpg, ip = root mean square of the drain-to-source voltage and the drain current.

Rpsen can be determined by reference to the MOSFET datasheet because it depends on the

gate-to-source voltage, the junction temperature (T}), and the drain current (Vs).
Equation (42) provides the instantaneous MOSFET conduction power.

Pe,moske (t) = Vps(t)ip(t) = Rpsonip (t) (42)
The following is an expression for the average conduction losses.
1 Ton
Pemosrer = 75— / Pe mosrer (t)dt (43)
SW J0+2

Ton = on-state period and ¢ = the phase angle.

2
Pc,mosrET = RpSontDrms (44)

It is also possible to determine a body diode’s (P4 giode) conduction loss using its
resistance dynamics (R giode) and diode threshold voltage (VT), as demonstrated below:

Peond diode = Vrlaog + Ron diodeIoms (45)

5.3.2. Switching Losses

Switching losses occur due to the slow transition from the on-state to the off-state and
vice versa. Significant instantaneous power losses arise due to current flow and voltage via
the switch becoming much more important than zero during the transition time [43].

During the turn-on interval, the energy dissipated.

t t
Esw MOSFET(on) = <Vchdc C(gn)> — (Ve = Von) Luc an) (46)

where f¢(on) = the turn-on crossover interval and Eg,(01) = energy dissipated during the
turn-on interval.
When the MOSFET was turned off, the energy dissipated.

t tC on
Esw mMoSFET(off) = (Vdcldc C(fo)> — Vonlac (3 ) (47)

The total energy during turn-on and -off is:

Esw,mosFET = Esw,m0sFET(on) + Esw,MOSFET(of f) (48)
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The switching losses had linear relations to the switching frequency and the switching
current. The general average losses from swapping can be expressed as follows.

1 Ton

Psw mosreT = Tow Joro Esw mosreTdt (49)

Figure 22 shows the power-loss analysis of the MOSFET-fed three-phase inverter.

~—> P
36.2% SCON

46.5%

Py

= Ppyy =2-15W
= Py, =0204W

Psw =6.33W
= Py, =4.93W

L5% o, Ppcon
Dy

Figure 22. Power-Loss Analysis of Inverter.

6. Conclusions

In this study, SVM employing a PI controller was evaluated after considering the
negative impacts of harmonics in a power system network. An SVM control technique was
devised to reduce current harmonics and increase power quality. Pollution-free electricity
generation via PV systems was prioritized along with improving power quality. This
research paper focused on the harmonic analysis of a three-phase PWM inverter that
supplies an IM using a variety of modulation indices. However, the work was limited,
since losses were higher at high switching frequencies. The motor’s speed can be controlled
by creating suitable controls and switching methods. Since it can reduce switching losses
and harmonic output signals, SVM is the ideal method for switching and regulating the
inverter. In MATLAB, the three-phase PWM inverter that supplies the IM was modelled.
An experimental setup was also created to validate the outcomes of the simulation. The
results indicated that the IEEE Standard 519 limit of 5% for harmonic content in voltage
and current was exceeded.

Additionally, it was found that THD declined as the MI rose. Future research could
use various PWM techniques to reduce harmonics while maintaining constant MIs. Finally,
the system was evaluated using a real-time scaled-down prototype based on dSPACE, and
the simulation results were confirmed. Each scenario’s harmonic analysis was adequately
adjusted to the IEEE-519 Standard’s limitations.
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