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Abstract: Microgrids are becoming popular nowadays because they provide clean, efficient, and low-
cost energy. Microgrids require bulk storage capacity to use the stored energy in times of emergency
or peak loads. Since microgrids are the future of renewable energy, the energy storage technology
employed should be optimized to provide power balancing. Batteries play a variety of essential roles
in daily life. They are used at peak hours and during a time of emergency. There are different types
of batteries i.e., lithium-ion batteries, lead-acid batteries, etc. Optimal battery sizing of microgrids is a
challenging problem that limits modern technologies such as electric vehicles, etc. Therefore, it is
imperative to assess the optimal size of a battery for a particular system or microgrid according to its
requirements. The optimal size of a battery can be assessed based on the different battery features
such as battery life, battery throughput, battery autonomy, etc. In this work, the mixed-integer linear
programming (MILP) based newly generated dataset is studied for computing the optimal size of the
battery for microgrids in terms of the battery autonomy. In the considered dataset, each instance is
composed of 40 attributes of the battery. Furthermore, the Support Vector Regression (SVR) model is
used to predict the battery autonomy. The capability of input features to predict the battery autonomy
is of importance for the SVR model. Therefore, in this work, the relevant features are selected utilizing
the feature selection algorithms. The performance of six best-performing feature selection algorithms
is analyzed and compared. The experimental results show that the feature selection algorithms
improve the performance of the proposed methodology. The Ranker Search algorithm with SVR
attains the highest performance with a Spearman’s rank-ordered correlation constant of 0.9756, linear
correlation constant of 0.9452, Kendall correlation constant of 0.8488, and root mean squared error
of 0.0525.

Keywords: battery autonomy; battery size; feature selection

1. Introduction
1.1. Background

Microgrids refer to a generation-mix of two or more micro-power sources feeding a
local load. They can operate in both grid-connected and isolated modes. In both modes,
instant balancing power is certainly required from additional sources like Batteries. In
grid-connected mode, while the utility grid supplies the load in sharing with micro-power
sources, and it also provides the charging power to the batteries, which could later be used
for power balancing during isolated mode. The majority here points out how much the
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actual size of batteries should be to run the complete microgrid sustainably. In this context,
the optimal battery sizing is a worthy problem to work on [1].

The conventional energy systems such as fossil fuels being used are causing environ-
mental pollution and depletion of fossil fuels. Due to the increase in demand for electricity,
there is a need for a new energy distribution systems such as batteries. Microgrids can
supply load and provide backup when the main supply is insufficient with improved
power quality. The different modes of operating in a microgrid use energy storage systems
to meet the intermittent nature of load demand.

Battery sizing directly deals with the frame of total cost in a microgrid. The goal is
to minimize the size of the battery and regulate the constraints such as voltage, reliability,
and frequency to maintain the performance of the microgrid with a much smaller battery
bank. For developing an energy storage system in a microgrid, the high cost of batteries
is another key limiting factor [2]. Battery sizing should be considered to make the energy
storage system economical and affordable to any consumer. Since the role of batteries in
daily life is growing, importance is given to develop highly efficient and cost-effective
storage devices. Optimal battery sizing would require taking non-invasive measurements
of the battery in real time and analyzing the results [3].

Many techniques that aim to assess the optimal size of a battery have been proposed
in the literature. Most of these techniques are heuristic-based. In [4], a multiobjective
particle swarm optimization algorithm has been used to optimize the battery size using the
lifetime of the battery bank parameter, but this method does not follow a data-driven based
approach. A bi-level optimization problem based on the Karush–Kuhn–Tucker is proposed
in [5] for optimal battery sizing using binary particle swarm optimization. This method
is also not based on data-driven techniques. In [6], a multiple-cost function modeling is
performed to optimize the power flow in the non-interconnected zone in Columbia. The
flexibility of the proposed method is performed using three network topologies. In [7], a
multiobjective slap swarm optimization algorithm is used to optimize the integration of
hybrid renewable energy sources in a microgrid.

1.2. Research Problem Statement

The customer’s primary issue with installing batteries is the high cost, where batteries
produced by LG Cam, Tesla, and Trojan are the most well-known battery manufacturers,
and they have prices ranging between $148 to $158 per kWh. Batteries are more expensive
in comparison to distributed generation market demand models (DGENs), but they have a
faster response time when it comes to balancing. This offers a scenario for optimal battery
sizing in microgrids, where renewable energy (RE) penetration is higher than in traditional
grids. As a result, in most cases, a compromised joint venture of batteries and DGENs
is used. Although machine learning-based techniques have been proposed earlier yet,
to the best of the authors’ knowledge, no suitable datasets are available for studying the
problem of battery sizing in microgrids. Moreover, there is still room for improvement in
the performance of the machine learning based techniques, used to predict the optimal
battery size. Furthermore, the selection of relevant features for the prediction of optimal
battery size is imperative for optimal prediction of battery size. The proposed methodology
uses a new MILP based generated dataset which is suitable for studying the problem of
battery sizing in microgrids. The robust feature selection algorithms are employed for
mining the most relevant features, from the considered dataset. Onward, the selected
feature sets are processed with the SVR model for predicting the optimal battery size.

1.3. Related Works

Many studies have previously been investigated related to optimal battery sizing in
microgrids. Some of them have utilized the concept of MILP-based optimization techniques.
In addition, most researchers have introduced the concept of heuristic techniques for the
same problem. Certain researchers have been seen to involve the data-driven approach in
battery sizing. The detailed literature survey is as follows:
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The Techno-Economic Method for the optimization of the annual demand forecast and
the use of HOMER Pro allowed the researchers to analyze the advantages of renewable
systems as compared to conventional grid application [8]. The drawback of this work is
that it does not include future data and is only valid for one-year data of the plant at a rural
site. The pattern search technique for the optimization of the RE hybrid system is done
with the MATLAB Simulink Design Optimization with the help following algorithms Latin
Hypercube, GA, and Nelder–Mead. It was observed with the help of HOMER Pro software
that, following the Nelder–Mead Algorithm, decreases the optimal penetration of DG. The
energy consumption and the demand with time are not analyzed in detail. The long-term
demand forecasting and the habits of consumption are not analyzed.

The sizing and allocation of the BESS storage system in a microgrid help in regulating
the parameters of a microgrid. The PSCAD Grid Modelling Software is proposed by
Jagdesh Kumar in his research, where he used the software efficiently to predict the sizing
constraints of BESS in isolated Renewable Plants [9]. The sizing characteristics of the battery
bank were also analyzed with the help of simulations in MATLAB. The drawback of this
work is that the battery aging phenomenon which can be considered along with designing
strategies of BESS for future research is not considered. Hannan proposed methods and
algorithms based on the filter-based battery sizing method, the Discrete Fourier transform-
based ESS sizing method, and the Multiperiod decision-making model for optimum sizing.
Grey Wolf’s optimization algorithm and swarm optimization technique helped in achieving
optimization and sizing BESS. The model predictive control algorithm is also considered
by Hannan to address and explore the optimum sizing of BESS [10]. The work proposes
battery sizing for the efficient and cost-effective functionality of microgrids. El-Bidari
proposed the Grey Wolf optimizer approach for optimal battery sizing and regulating the
constraints in a microgrid by reducing the battery size [11]. The Optimizer approach along
with the GWO algorithm is used as an efficient tool for battery sizing. GWO provided a
high level of robustness and a meta-heuristic algorithm to deal with the issue of frequency
deviation. Digsilent/POWERFACTORY software is used as a tool for simulation.

Yang et al. addressed the problem of battery sizing and fluctuations in the renewable
systems by using sodium sulphur (NAS) batteries for size optimization and reducing
the rate of fluctuations in the renewable system [12]. Yang also highlighted that Markov
Decision Processes can no longer address this problem of BESS; therefore, there is a need for
sensitivity-based optimization theory. An iterative optimization algorithm was developed.
Although the research was a big step toward renewables stability, there is still room for
many rapid and dynamic iterations to minimize the computational time of the system. Gao
performed optimal battery sizing based on algorithmic approaches [13]. A model based
on autoencoders and extreme learning machine is introduced for optimization of battery
size. The work also addressed the use of a single-layer-feed-forward neural network and
deep neural networks for optimization purposes. One drawback of the deep learning
algorithm is that it requires a large amount of training data. For CNN and RNN models,
this drawback of the deep learning algorithm may cause a decrease in training efficiency.

Boonluk in his work proposed GA and PSO for optimizing the size of the battery
bank to be used. Fourier Coefficients were used to be processed in the algorithms and
simulations were made accordingly on MATLAB and MATPOWER 7.0 [14]. It was also
highlighted by Boonluk that the lifetime of each algorithm GA and PSO was the same i.e.,
8.8 years. PSO in terms of objective function optimization was more efficient than GA.
Talent et al. used the MILP and GAMS along with the CPLEX Algorithm for the sizing of
the battery [15]. One drawback of the research is that it does not consider the temperature
profile of the batteries for the calculation of panel efficiencies. Optimal Battery Sizing was
done with the help of GA, PSO, and IEEE 30 Test System was used for the implementations
for optimal BESS [16]. OpenDNS with COM interfaced by the integration of IEEE 30 Test
System were used for optimization.

Gupta in his work proposed a technique for battery sizing where he designed a
MATLAB algorithm where all the constraints regarding the comfort and need of the user
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are entered [17]. The sizing considerations are calculated, and the output is taken from the
algorithm. Loss of Load Probability is also considered an important parameter. Higher
reliability factors and economic benefits are considered to be important constraints for
optimal battery sizing. In [18], a Genetic Algorithm (GA) was used for optimal sizing of
the battery [18]. The main objectives of this research were to decrease the Net Present
Cost (NPC) of the system and the consideration of the Equivalent Loss Factor for the index
amount of reliability. In [19], convex programming, which is a mathematical optimization
tool that helps in examining the problem of minimizing convex functions over convex sets,
and is used to formulate co-optimization of battery size, energy management, and battery
aging. The notion of battery modeling is explored; however, it had one flaw: the battery
model was inaccurate, and it ignored critical elements such as state of charge, etc. Peiman
Mirhoseini [20] has an MILP framework-based model to utilize and evaluate the operating
and trading costs of a battery charging station, which increases the system’s reliability.
However, because the model concentrates on installing a charging station as an MG and
delivering clean electricity to meet its demands, dispatchable units (diesel generators, fuel
cells, etc. are omitted.

Sampietro et al. [21] have studied the optimum sizing of batteries and supercapacitors
in automobiles to achieve the lowest possible total cost. Dynamic programming is used to
determine the best utilization of storage systems and fuel cells. This paper contributed to
the investigation of the relationship between battery size and cost. The Terzimehic et al. [22]
study is related to battery degradation, by using Support Vector Regression. The paper
described how data-driven techniques can be used for battery forecasting. The author
used data from various batteries operating at various temperatures and used that data
to validate the machine learning results. Wu et al. [23] have researched the Feedforward
neural network that is used to mimic the relationship between Remaining Useful Life and
the charge curve because of its simplicity and effectiveness. The assessment of RUL for the
battery under various charge current rates was neglected.

The operation plan entailed the Harmonious operation of fuel-powered generators
and batteries, multi-unit DGen operation constraints, and reserve capacity to limit the
number of hours the diesel generators are used. Sidra Kanwal et al. proposed [24] Linear
Support Vector Regression and Rational Quadratic are used to train L-SVR, Gaussian
Process Regression, and Rational Quadratic in this work. For qualitative examination of
trained models, the RMSE is utilized as a critical performance metric. The basic design
parameters of the battery are to be addressed to minimize the battery size to improve
charge storage capacity in less space—thus making the model much more compact.

Jayashree proposed the approach of Mixed Integer Programming (Mathematical Mod-
els) and professional tools like MATLAB for BESS (Battery Energy Storage System) opti-
mization [25]. Generic Algebraic Modelling System (GAMS) and CPLEX Optimization
Studio were used in the domain of BESS in the research of Jayashree. Decision-making and
multiple system simulations were considered the main part of the research to yield results
and minimize the size of the battery by regulating the same criteria for a microgrid. Apart
from the research done by Jayashree, there is still enough room available in this domain
to use more efficient tools and come up with system optimization of BESS and explore
multiple applications that include battery banks.

In support vector regression, integrated is used for photovoltaic renewable energy sys-
tem’s ideal size by lowering the Annualized Cost of the System [26]. In terms of prediction
accuracy, both hybrid SVR algorithms exceeded the single SVR method. Renewable energy
resources should be used as much as feasible when generators are running. They also
considered the unpredictability of wind speed and clearness index. Ahmed Elnozahy [27]
proposed weather unpredictability, a probabilistic technique based on an artificial neural
network is used. Complete eco-techno-economic optimization research is integrated with
the established choices and strategy. The proposed model to use batteries instead of parallel
generators in times of emergency reduces the overall pollution and number of emissions
affiliated with the previous 13 models. The aim is to design a model which proves to help
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balance the system and can act as a backup power source in times of emergency. In [28],
optimization of a large photovoltaic array for a single household has been performed while
considering various environmental factors and different municipal rules. In [29], a genetic
algorithm-based approach is used to assess the optimal size of a battery in an unbalanced
distribution system.

1.4. Contribution

The traditional way of calculating battery size is by using battery autonomy. Battery
autonomy is based on the energy provided by the battery in the given time interval. Since
data are required for the computation of battery autonomy, it makes sense to utilize data-
driven techniques to compute the battery size. Data-driven techniques are becoming
popular because they are flexible and incremental i.e., the battery size prediction model
can be updated with new data. Data-driven techniques employ data from a microgrid’s
home load to automatically compute the battery size. The solution involves taking non-
invasive measurements of the battery in real-time and combining these readings with
regression-based machine learning algorithms to provide an accurate estimate of battery
size without the use of any physical mechanism. A full dataset is utilized as an input to
generate correct estimations by employing the essential variables and applying machine
learning techniques. The proposed methodology can help in computing the optimal size of
the battery for cost-effective implementation and a reliable microgrid battery system that
can provide backup for a longer period.

To the best of the authors’ knowledge, there is no publicly available dataset for
assessing the optimal battery size in microgrids. Furthermore, the feature selection for
selecting the most relevant attributes for assessing the optimal battery size in microgrids in
a machine learning based-technique is not explored in a manner as presented in this study.
The major contributions of this work are:

• A dataset for the residential load of a microgrid with 24,000 instances and 40 attributes
per instance is generated using the mixed integer linear programming (MILP) tech-
nique. It permits to assess the optimal battery size in microgrids.

• The robust feature selection algorithms are utilized to identify the attributes that
are more relevant and have a higher impact on assessing the optimal battery sizing
in microgrids.

• A machine learning-based approach is used to process the selected features sets for an
automated decision of the optimal battery sizing in microgrids.

The remainder of the paper is structured as follows: Section 2 describes the MILP
technique and how the dataset is formulated. Section 3 describes the proposed feature
selection-based methodology for predicting the optimal battery size in microgrids. Evalua-
tion criteria and experimental results are presented on subjective IQA databases in Section 4
followed by conclusions in Section 5.

2. Dataset Generation Using Mixed Integer Linear Programming (MILP)

MILP is a linear optimization problem extensively used while solving optimal sizing
and selection problems of DERs and energy storage in microgrids. The problem is solved
by the power balance of different DERs and energy storage as compared to the total load.
Random sizes are entered into respective matrices to form a generation mix, and each
generation mix is then compared to fully satisfy the load demand. Mathematically, it can
be expressed as in [30],

N

∑
i=1

Pi +
N

∑
j=1

Wj = ∑ PL, (1)

where P is the power in kW extracted from ith DER, and W is the instantaneous power
extracted from the jth energy storage at any instant. PL corresponds to the total load
demand obtained using MILP.
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Figure 1 shows the microgrid model under consideration. The data set for a residential
microgrid with 24,000 samples and 40 parameters has been self-extracted using a MILP-
based microgrid model as presented in [31]. The extracted parameters and their description
is presented in Appendix A. The dataset has also been made available online.

DC/AC , AC/DC

Converter

AC Bus DC Bus

Grid

BESS

Priority Load

Deferrable Load

136 kWh/d , 141

kW peak

PV
Diesel

Generator

Figure 1. Micro grid model under consideration.

3. Proposed Methodology

Figure 2 shows the two-step methodology proposed for optimal battery sizing of
microgrids. The input to the system is power generation source factors and external
parameters. In the first step, a feature selection algorithm is applied to the input to select
the most relevant factors and parameters for optimal battery sizing in microgrids. The
feature selection is performed using various search methods that try to navigate different
combinations of attributes in the dataset to arrive at a shortlist of chosen features by keeping
battery parameters as the target value. Many feature selection algorithms were evaluated
but six top-performing search methods are considered here, which include ranker search,
harmony search, evolutionary search, PSO search, genetic search, and linear forward search.
In the second step, the selected features by the respective feature selection algorithm are
given as input to the support vector regression (SVR) to predict the battery autonomy.
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Figure 2. Proposed methodology for optimum performance.

3.1. Feature Selection

The input features are subjected to feature selection. Various feature selection algo-
rithms were analyzed, but the performance of only six top feature selection algorithms is
reported in this work. Feature selection algorithms select the most relevant features for
optimal battery sizing. The details of each feature selection algorithm are given below.

3.1.1. Harmony Search (HS)

Harmony Search (HS) is an optimization algorithm that utilizes the metaheuristic
method. HS offers the advantage of search efficiency, algorithm simplicity, and it con-
verges quickly to the optimal solution. The resolution time for the method is generally
low [32]. HS has been used on numerous engineering problems and has shown great
application adaptations leading to the different versions of the algorithm being adopted.
In most engineering optimization problems, there is consideration for the nonlinear and
in some cases nonconvex functions that have intense equality. This has led to the increas-
ing difficulties that arise from the solving of optimization problems using the traditional
methods. HS is better suited for complex optimization problems. The HS method tries to
search for the perfect harmony that is analogous to the optimal solution. This has led to
harmonious improvisation:

xnew = xbold + bω, (2)

where xnew is the new harmony vector, xbold is the old harmony vector, and bω is a constant.
The random walk adjustment from the pitch can be illustrated in,

xnew = xold + b(2ε− 1), (3)

where xold is the fixed variable for the pitch, and b is constant for the pitch displacement.

3.1.2. Evolutionary Search (ES)

Evolutionary search utilizes the mechanisms that are inspired by nature for the solution
of various problems through processes that emulate the various behaviors of living things.
The mechanisms used for the development of the algorithm would therefore use biological
terms and evolution like reproduction and recombination. The main working principle of
the algorithm is the use of solutions that eliminate the weakest links and preserve the strong
links i.e., the Darwin-based model. This helps in achieving a more viable solution [33]. The
major benefits of the algorithm include increased flexibility, better optimization bandwidth,
and unlimited solutions:

pri =
F(ki)

∑M
i=1 F(ki)

, (4)

where F(ki) is a function of random variables.

3.1.3. Genetic Search (GS)

The algorithm uses a set of terms named fitness function, initial population, mutation,
selection, and crossover. The algorithm uses Darwin’s model with genetic operators that
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form a key part of the problem-solution finding [34]. Some of the key benefits of the
algorithm are the complex problems solving approach and its parallelism application. The
diversification of the optimization is able to deal with functions that are stationary. It can
also deal with random noise. The ability of the algorithm to investigate various directions
simultaneously in feature space makes it appropriate for the scientific field [32]. However,
given its dynamism, the algorithm is widely used in optimization that involves nonlinear
data computations. The genetic search algorithm can be considered as a probability function
for the chosen selector operator. In the case of chromosome, (C), the algorithm would be

P =

∣∣∣∣∣ f (C)

∑N
i=1 f (C)

∣∣∣∣∣, (5)

where f (C) is the function for the chromosome, and (N) is the total number of outcomes
which depict the nominal value.

3.1.4. Linear Forward Search

The method would use the sequential method that is key for finding the desired
element in the list from a group. Upon the successful location of the searched item, the
index would often be returned. The movement is in the forward direction when the search
is performed [25]. The application for the linear search is mainly for the discrete values of
data that would involve many elements. In n models, the function for the linear standard
regression model can be written as

y = Qθ + ε, (6)

where Q is the regression constant, and θ is the variable for the regression. The error ε is
used to make up for the second-order differential equation. The main assumption is that
the variance (σ2) is additive. This means we can obtain the parameter, θ, through the least
square method [25].

3.1.5. Particle Swarm Optimization (PSO)

This is an optimization tool used for finding the optimal solutions to the specific
parameters for a design requirement with a consideration of the lowest possible cost,
optimization. The application is vast in various scientific fields. Since its introduction in
1995, the method has quickly gained several useful applications in various fields [8]. The
adoption of the algorithm was based on social behavior, especially the bees and insects that
move in a swarm (group). In nature, it is a stochastic novel-based population and is key in
solving complex nonlinear optimization problems [9]. PSO uses three parameters i.e., the
number of dimensions, and lower and upper boundaries. The function can be elaborated
as a function, where the minimum function can be seen below:

Min, f (x), x = (x1, x2, . . . , xN), (7)

where (f (x)) is the function for the variable (x), subject to several inequalities.

Subj = gm(x) ≤ 0 for values of m = 1, 2, 3 . . . , ng (8)

where gm is the inequality function.

hm(x) = 0 for m = ng + 1, ng + 2 . . . , ng + nh, (9)

where nh is the final value of equality. The algorithm mainly adopts five main principles.
First, proximity means the ability for the space and time computational adjustments in-
corporated into the model. Next, the quality refers to the swarm’s ability to sense the
changing quality of the environment and hence an appropriate response. Thirdly, the
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diverse response is the ability of the swarm to change considerably and not in a narrow
manner. Stability refers to the swarm not being able to change with all aspects of change
but rather a controlled environment. Finally, adaptability refers to the change that is most
suitable and hence the worthy adjustment [9].

3.1.6. Ranker Search

This is a search algorithm that uses the evaluation metrics to be able to retrieve the
information mainly from various data sources. For instance, Google uses a ranger search
algorithm; PageRank ranks the various URL pages depending on the importance of the
various web pages. Thus, the main function is the frequency that is considered by the
search algorithm for the ranking of the web pages. The case study into the Google search
engine can be used as the benchmark of the operations of the ranker search algorithm.

The algorithm would work in the three-stage process namely crawling, indexing, and
serving. In the crawling stage, the use of other information gathering techniques like the
bots will be used to obtain the updated changes to the various URL. Next, at the indexing
stage, the categorical ranking of the various web pages is based on the content of either
the images or the various texts. This is done by the identification of the various headers
and the tags. Finally, at the serving stage also known as the ranking stage, the various URL
will be listed based on the most relevant to the search parameter that is obtained for the
search. The use of a similar concept is adopted by the various search engines with a few
minor adjustments to the attributes of search like the price in some cases or the frequency
of visits in some (inbound traffic) [10]. In the case of the ranker algorithm, the basic ranker
search can be formulated as

PR(A) =
PR(B)
L(B)

+
PR(C)
L(C)

+
PR(D)

L(D)
, (10)

where A, B, and C and web pages that are lined together, and L() is the outbound link.
The various probability functions of the pages can be used. The overall function would
define PR,

PR(U) = ∑
∀∈Bu

PR(v)
L(v)

, (11)

The notation Bu is the set that contains all links to the URL page u, and L(v) the
number of links to URL v. the damping factor is also considered for the algorithm.

The SVR uses tools like sparse solution [26]. The use of the SVR will consider a
Hyperplane; this is a separation that aids in the prediction of the target value. The Kernel
in an SVR model would be a function that would be suitable for the mapping of the data
points into a higher dimension. The commonly used kernels are the sigmoidal, polynomial,
and Gaussian radial basis function kernels. Finally, the boundary line margin that separates
the hyperplane for the data points [26]. The illustration can be seen below for the SVR. The
normal vector’s magnitude relative to the surface can be estimated as

Minw 0.5||w||2 (12)

where w are the weights, and the error is compensated in the constraints by constraints,

|yi −WiXi| ≤ ε (13)

where yi is the initial y constraints for the variable, and xi is the initial x constraints for
the variable.

4. Experimental Results and Discussion
4.1. Data Set and Evaluations’ Parameters

The dataset is one of the basic requirements for the quantitative evaluation of a
system. The data set is of the residential load of a microgrid. It is self-developed by using
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MILP. The data set has 24,000 samples and 40 features. The 40 features are presented in
Appendix A. Each row in the data set presents generation sources, external factors, and
battery parameters. Add some details about the time, duration topology, etc.

4.1.1. Spearman Ranked Correlation Coefficient (SROCC)

This is a nonparametric measure of the strength and direction of association that can be
established between two variables. The assumptions used for SROCC are mainly three. The
first assumption is that the two variables under study should be measured on an ordinal,
interval, or ratio scale. The second assumption is that the two variables should present
paired observation-based criteria. The last assumption is that there should be a monotonic
relationship between the two variables [11]. The SROCC score is given as

SROCC =
∑i((xi − x̄)− (yi − ȳ))√
∑i(xi − x̄)2(∑i(yi − ȳ))

(14)

where xi is the ith value of x, x̄ is the mean value of x, yi is the ith value of y, and
ȳ is the mean value of y. A value close to 1 for SROCC signifies better performance
and represents that the predicted battery autonomy using the proposed model is close
to the original battery autonomy, whereas a value close to 0 for SROCC signifies poor
performance and represents that the predicted battery autonomy does not match the
original battery autonomy.

4.1.2. Kendal Correlation Constant

The KCC is used for the measurement of the ordinal association between two measured
quantities. The correlation would test for the similarities in the ordering of data when it is
ranked by quantities. The coefficient value of 1 means that the elements in the two sets are
ordered in a similar manner i.e., high correlation. The coefficient value being −1 (τ = −1)
means that the two sets are ordered oppositely. Finally, when τ = 0, it means there is no
relationship between the two sets [12]. The rank correlation can be expressed by

τ =
nc − nd

n(n− 1)
, (15)

where nc is the number of concordant pairs, nd is the number of discordant pairs, and
n is the total number of pairs. A value close to 1 for KCC signifies better performance
and represents the fact that the predicted battery autonomy using the proposed model
is close to the original battery autonomy. However, a value close to 0 for KCC signifies
poor performance and represents that the predicted battery autonomy does not match the
original battery autonomy.

4.1.3. LCC: Linear Correlation Constant

LCC is a measure of the strength of the linear relationship between two variables. The
LCC values, rxy, show the strength of the relationship between two variables. A value
close to 1 for LCC signifies better performance and represents that the predicted battery
autonomy using the proposed model is close to the original battery autonomy. However, a
value close to 0 for SROCC signifies poor performance and represents that the predicted
battery autonomy does not match the original battery autonomy [35]. The formulation of
the linear coefficient can be seen below:

rxy =
n ∑n

i=1 xiyi −∑n
i=1 yi√

n ∑n
i=1 x2

i −∑n
i=1 x2

i

√
n ∑n

i=1 y2
i − (∑n

i=1 y2
i )

(16)

where xi is the ith values for the x variable, and yi is the ith value of the y variable.
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4.1.4. RMSE: Root Mean Square Error

The RMSE is a tool that is used for the prediction error (residual). The residuals are
the measure of how far predicted data points are from the original values [35]. The use
of the RMSE is vital for statistical data to illustrate data relationships and establish the
variation of the data. The RMSE can be formulated as follows:

RMSE =

√
∑(P−O)2

n
(17)

where P is the predicted value in the observations, and O is the observed value for the
observations with a sample size n. A value close to 0 for RMSE signifies better performance
and represents that the predicted battery autonomy using the proposed model is close
to the original battery autonomy. However, a high value for RMSE signifies poor perfor-
mance and represents that the predicted battery autonomy does not match the original
battery autonomy.

4.2. Performance Analysis

Table 1 shows the number of features selected by each feature selection algorithm. The
total number of features is 40. Ranker search selects 29 and particle swarm optimization
selects 14 features. However, six features are selected by linear forward selection and eight
features are selected by the harmony search algorithm. Evolutionary search and genetic
search algorithms select 12 and 11 features, respectively. It can be observed that the ranker
search feature selection algorithm selects the largest number of features i.e., 29, whereas
the linear forward features selection algorithm selects the least number of features i.e., 6,
particle swarm optimization algorithm selects the second largest number of features i.e., 14.
The third least number of features is selected by harmony search i.e., 8.

Table 1. Number of features selected by each feature selection algorithm.

Feature Selection Algorithm Number of Features Selected

All 40
Ranker search 29
Particle swarm optimization 14
Linear forward search 6
Harmony search 8
Evolutionary search 12
Genetic search 11

Figure 3 shows the comparison of all the feature selection algorithms in terms of
SROCC, LCC, KCC, and RMSE in the form of a bar graph. It can be observed that the
feature selection algorithms help in better prediction of battery autonomy and improve
the performance of the proposed methodology. Figure 3 shows that the battery autonomy
prediction capability of the proposed methodology improves greatly when feature selection
is applied, and it can be observed that the SROCC score is 0.2893, LCC score is 0.3760, KCC
score is 0.2165, and RMSE score is 0.2152 when all 40 features are utilized. Feature selection
helps in improving the capability of the system to predict the battery autonomy which is
depicted by an improvement in SROCC score to 0.9452, LCC score to 0.9756, KCC score
to 0.8488, and RMSE score to 0.0525 when the ranker search feature selection algorithm
is applied. Aforementioned values close to 1 for SROCC, LCC, and KCC signify that the
predicted battery autonomy correlates highly with the original battery autonomy, and
hence the predicted values of battery autonomy are close to the original values of battery
autonomy. Furthermore, the value of RMSE close to zero shows that the difference between
the values of predicted battery autonomy and original battery autonomy is minimal.
Hence, the feature selection algorithms have a significant impact on improving the battery
autonomy prediction capability of the proposed system. It can be observed that the height



Energies 2022, 15, 7865 12 of 22

of the bar graphs is lower when all the features and the height increases for all six feature
selection algorithms and when a subset of the most relevant and optimal features is used
for predicting the battery autonomy.

Figure 3. The performance comparison of feature selection algorithms in terms of LCC, SROCC, KCC,
and RMSE scores.

The results shown in Figure 3 can be verified using Table 2. The performance analysis
for the battery autonomy capability of the proposed methodology in terms of SROCC,
LCC, KCC, and RMSE is shown in Table 2. It can be observed that the performance
of the proposed methodology improves when feature selection algorithms are utilized.
The system shows a capacity for battery autonomy prediction when all the 40 features
are utilized in terms of SROCC, LCC, and KCC score to be 0.2893, 0.3764, and 0.2165,
respectively. The capacity for predicting battery autonomy in terms of SROCC, LCC,
and KCC increases to 0.9452, 0.9756, and 0.8488 when the ranker search feature selection
algorithm is applied. In terms of RMSE, a value close to 0 signifies better battery autonomy
prediction capability and, therefore, the performance in terms of RMSE improves from
0.2152 when all the features are utilized to 0.0525 when ranker search is used. Ranker
search is ranked at the top with an SROCC, LCC, KCC, and RMSE score of 0.9452, 0.9756,
0.8488, and 0.0525, respectively. PSO is ranked second with a SROCC, LCC, KCC, and
RMSE score of 0.9252, 0.9645, 0.7983, and 0.0608, respectively. Genetic search is ranked
third with a SROCC, LCC, KCC, and RMSE score of 0.9237, 0.9640, 0.7959, and 0.0613,
respectively. Evolutionary search is ranked fourth with a SROCC, LCC, KCC, and RMSE
score of 0.9229, 0.9639, 0.7954, and 0.0613, respectively. Harmony search is ranked fifth with
an SROCC, LCC, KCC, and RMSE score of 0.9076, 0.9528, 0.7685, and 0.0701, respectively.
Linear forward selection is ranked sixth with an SROCC, LCC, KCC, and RMSE score of
0.8846, 0.9443, 0.7369, and 0.07518, respectively.

Table 2. Performance comparison of feature selection algorithms.

Feature Selection Algorithm LCC SROCC KCC RMSE

All 0.3760 0.2893 0.2165 0.2152
Ranker 0.9756 0.9452 0.8488 0.0525
PSO 0.9645 0.9252 0.7983 0.0608
Linear forward 0.9443 0.8846 0.7369 0.07518
Harmony search 0.9528 0.9076 0.7685 0.0701
Evolutionary search 0.9639 0.9229 0.7954 0.0613
Genetic search 0.9640 0.9237 0.7959 0.0613
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Figure 4 shows the box plot of the SROCC scores over 1000 iterations for the proposed
methodology when using all features and utilizing the top-performing six feature selection
algorithms. A box plot shows the five-number summary of a set of data i.e., minimum,
first quartile, median, third quartile, and maximum. The interquartile range is defined as
the distance between the upper and lower quartiles. A larger interquartile range shows a
higher deviation in the data. A lower interquartile range is desirable for our case, which
indicates consistent results over the given iterations. The test and train samples are selected
at random for each iteration. It is ensured that the test and train sets for each iteration
are disjoint sets i.e., the training samples are not present in the test samples. It can be
observed that the median value for the box plot of ranker search is the largest, which shows
that it performs best. It can also be observed that the box plot for the ranker search is
more compact i.e., it has a lower interquartile range in comparison to when all the features
are utilized, evolutionary search, genetic search, and harmony search. This shows that
there is a lower standard deviation between SROCC values in the case of ranker search.
A lower value of standard deviation shows that the results are more consistent over the
1000 iterations.

Figure 4. Box plots for the performance comparison in terms SROCC score between six feature
selection algorithms for predicting battery autonomy.

The performance comparison of the proposed methodology in terms of RMSE with
state-of-the-art techniques in literature is shown in Table 3. A value close to zero for RMSE
exhibits better performance, whereas a higher value of RMSE represents poor performance.
The proposed methodology with ranker search has the least value of RMSE i.e., 0.0525
when compared to other state-of-the-art methods, i.e., it is ranked at the top, and it signifies
the better performance of the proposed methodology in comparison to state-of-the-art
methods. Support Vector Regression integrated with Harris–Hawks Optimization [27] is
ranked second with an RMSE score of 0.1961, K-means clustering [24] based technique
is ranked third with a RMSE score of 0.7170, which is much higher in comparison to the
proposed methodology.
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Table 3. Performance comparison of proposed methodology with state-of-the-art techniques.

Technique RMSE Score

Multi-Layer Perception [36] 6.3000
Linear Support Vector Regression [37] 2.4090
K-means clustering [24] 0.7170
Support Vector Regression integrated with Harris Hawks Optimization [27] 0.1961
Neural Network [26] 0.4240
Proposed method (Pranker) 0.0525

Figure 5 shows the scatter plots of the proposed methodology using all features and
with feature selection algorithms. The horizontal axis of each scatter plot represents the
original values of battery autonomy computed using MILP and the vertical axis represents
the predicted values of battery autonomy. The ideal case, i.e., the best result would be if
the data points of the scatter plot are aligned along the positive diagonal. Figure 5a shows
the scatter plot of the original vs. predicted values when all features are used. It can be
observed that the data points are not aligned along the diagonal, hence the performance
of the system is not optimal. Figure 5b shows the scatter plot of the original vs. predicted
values when an evolutionary search feature selection algorithm is used. It can be observed
that the data points are better aligned along the diagonal in comparison to when all features
are used. It is also validated by the higher SROCC score of 0.9639. Figure 5c shows the
scatter plot of the original vs. predicted values when the genetic search is used to select
features. It can be observed that the data points are better aligned along the diagonal in
comparison to when all features are used. It is also validated by the higher SROCC score of
0.9640. Figure 5d shows the scatter plot of the original vs. predicted values when harmony
search is used to select features. It can be observed that the data points are better aligned
along the diagonal in comparison to when all features are used. It is also validated by the
higher SROCC score of 0.9528. Figure 5e shows the scatter plot of the original vs. predicted
values when linear forward selection is used. It can be observed that the data points are
better aligned along the diagonal in comparison to when all features are used. It is also
validated by the higher SROCC score of 0.9443. Figure 5f shows the scatter plot of the
original vs. predicted values when particle swarm optimization is used to select features. It
can be observed that the data points are better aligned along the diagonal in comparison
to when all features are used. It is also validated by the higher SROCC score of 0.9645.
Figure 5g shows the scatter plot of the original vs. predicted values when ranker search
is used for feature selection. It can be observed that the data points here are best aligned
along the diagonal in comparison to all others. It is also validated by the highest SROCC
score of 0.9756.

The results from different feature selection algorithms affect the battery sizing in
microgrids or the performance. The feature selection algorithm with the least RMSE score
and the highest SROCC, LCC, and KCC score assess the optimal size of the battery. The
feature selection algorithm with the highest RMSE score and lowest SROCC, LCC, KCC
score does not effectively predict the optimal size of the battery.

Adding the event-driven techniques might enhance the performance of proposed
solution in terms of online computing efficiency, compression, and information manage-
ment [38–41]. Additionally, potential control and optimization mechanisms can be further
investigated in the context of battery management systems [2,3,42–59]. Future work con-
sidering these elements may be investigated.
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Figure 5. Scatter plots for the original vs. predicted battery autonomy scores (a) all features;
(b) evolutionary search; (c) genetic search; (d) harmony search; (e) linear forward seection; (f) particle
swarm optimization; (g) ranker search.

5. Conclusions

Microgrids are becoming more popular with each passing day, but microgrids require
bulk storage capacity to provide the stored energy in times of emergency or peak loads.
Mixed-integer linear programming (MILP) is an established technique for the integration
and optimization of different energy sources and parameters for optimal battery sizing. A
new MILP-based dataset is studied in this work. Furthermore, a machine learning-based
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approach using the Support Vector Regression (SVR) is evaluated in this work for optimal
battery sizing. Results have shown that the performance of the SVR, when all the features
of the MILP formation are used, requires improvement. Hence, feature selection algorithms
have been utilized that help in selecting the most relevant features that have a high impact
on battery sizing. The performance of six top-performing feature selection algorithms is
analyzed. The Ranker Search feature selection algorithm attained the highest performance
with SVR by securing a Spearman’s rank-ordered correlation constant of 0.9756, linear
correlation constant of 0.9452, Kendall correlation constant of 0.8488, and root mean squared
error of 0.0525. The particle swarm optimization achieved the second best performance,
genetic search is the third, evolutionary search is the fourth, harmony search is ranked fifth,
and linear forward selection is ranked sixth. The performance of the proposed approach
is compared with state-of-the-art counterparts. Results confirm a comparable or better
performance of the devised method. In the future, the performance of devised method will
be analyzed for other potential datasets and applications. Investigating the feasibility of
incorporating the other machine and deep learning based regression models is another axis
of future research.
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DGENs Distributed Generation market demand models
DERs Distributed Energy Resources
BESS Battery Energy Storage System
GAMS Generic Algebraic Modelling System
ELM Extreme Learning Machine
NPC Net Present Cost
L-SVR Linear Support Vector Regression
PV Photovoltaic
HS Harmony Search
ES Evolutionary Search
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PSO Particle Swarm Optimization
SVR Support Vector Regression
SROCC Spearman Ranked Correlation Coefficient
KCC Kendal Correlation Constant
LCC Linear Correlation Constant

Appendix A. Generation Techniques’ Factors and External Factors

Sr. No. Parameter Description

1. Photovoltaic (PV) It is the power made available by Photovoltaic cells
power generation

2. Distributed generation It is for the analysis of the factors that affect the future market
market demand (DGEN) demands for energy resources

3. Hoppecke 6 OPzS 300 It is a 300 Ah battery, with dimensions of about 147× 208× 420
mm, and weighs about 24.9 kg

4. Converter It is the typical rating of the power inversion of an operation
inverter.

5. Total Capital Cost (TCC) The project overhead costs and the running costs would sum up
the TCC

6. Unmet Load Fraction It is the proportion of the total annual electrical load that went
unserved because of insufficient generation for the system

7. Total net present cost It is an economic parameter used for decision-making when
(TNPC) doing a feasibility study on the power model

8. Total Emissions It is the volume of effluents that are released by a project into the
environment

9. Total annual capital cost it is the project lifetime cost of operations.
(TACC)

10. Total annual replacement cost It is the annual cost of the replacement for the various components
(TARC) that will be used for the grid system

11. Total operations & maintenance It is the annual cost of the operation and maintenance
cost (TOMC)

12. Total fuel cost (TFC) It is the cost of fuel, which can be fossil-based or gases

13. Total annual cost (TAC) It is the total annual cost of operations

14. Operating cost It is the cost of factors for production that are used for the
generation of the power for 1 year

15. Cost of energy (COE) It is the average cost per kWh of useful electrical energy

16. Photovoltaic (PV) Production It is the average projection of the photovoltaic cell power
production

17. Distributed generation production It is a tool is developed for the analysis of the factors that affect
(dGENP) the future market production of energy resources

18. Grid purchases (GP) It is the cost incurred for the acquisition of power into the grid this
is payable to the production companies

19. Grid net purchases (GNP) It is the cost minus the working expenses for the grid production
of power

20. Total electrical production It is the peak value of the power produced for the grid system
(TEP) that can be converted to useful power

21. AC primary Load Served It is the total amount of energy that can be used towards serving
(AC-PLS) the AC primary load(s) for a year

22. Deferrable load served (DLS) It is the electrical load that requires a certain amount of
energy for a given time

23. Renewable fraction (RF) It is the renewable fraction i.e., the ratio of the nonrenewable to
the total electrical energy served to a specified load

24. Capacity shortage (CS) It is the total amount of capacity energy shortage that occurs
throughout the year

25. Unmet load (UL) It is termed as the fraction for the proportion of the total
annual electrical load that arises from the insufficient generation

26. Unmet load fraction (ULF) It is the ratio of the working power load to the unmet load

27. Excess electricity (EE) It is the surplus power that is produced by a system based
on the estimated base loads for a given duration

28. Diesel It evaluates the volumetric consumption of diesel for a given
duration

29. Carbon dioxide It is the deposition of CO2 as effluent into the air in terms of
(CO2) Emissions weight per given duration

30. Carbon mono oxide It is the deposition of CO (carbon monoxide gas) as effluent
(CO) Emissions into the air in terms of weight per given duration
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Sr. No. Parameter Description

31. UHC Emissions It is the emission of the Unburned Hydrocarbons as effluent
into the air in terms of weight per given duration

32. Particulate matter It is a feature that investigates the emissions of the PM as effluent into
(PM) Emissions the air in terms of weight per given duration

33. Sulfur dioxide It is the deposition of SO2 gas as effluent into the air in terms
(SO2) Emissions of weight per given duration

34. Nitrogen oxide It is a feature that investigates the emissions of the Nitrogen Oxides
(NOx) Emissions (NOx) as effluent into the air in terms of weight per given duration

35. Distributed generation market It is a feature that evaluates the distributed generation of the fuel, and
demand (DGEN) model Fuel it is expressed as liters per year

36. Distributed generation market It evaluates the Distributed Generation in terms of active hours
demand (DGEN) model Hours to produce electricity for a given duration

37. Distributed generation market It analyzes the working statistics for the Distributed Generation
demand (DGEN) model starts/yr of the power system for a given year

38. Distributed generation market It analyzes the working life for the Distributed Generation of the
demand (DGEN) model Life power system for a given year

39. Battery Throughput It is the lifetime of the battery in years that is worked out by
dividing the energy level by the duration

40. Battery Life It is the estimated working life of the battery under which it can
operate.

The Ranker search algorithm selects 29 features i.e., the feature numbers corresponding
to Appendix A are 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40., Particle swarm optimization selects 14 features i.e., the feature
number corresponding to Appendix A are 3, 10, 15, 22, 23, 27, 31, 33, 34, 36, 37, 38, 39,
40. Linear forward selection selects six features i.e., the feature numbers corresponding
to Appendix A are 22, 27, 36, 37, 39, 40. Harmony search selects 8 features i.e, the feature
numbers corresponding to Appendix A are 15, 22, 27, 34, 36, 37, 39, 40. Evolutionary search
selects 12 features i.e., the feature numbers are 1, 6, 10, 15, 20, 27, 31, 36, 37, 38, 39, 40. The
Genetic search algorithm selects 11 features i.e., the feature numbers are 4, 15, 22, 23, 27, 30,
34, 36, 37, 39, 40. Feature numbers 12, 13, 14, 16, 17, 18, and 19 are selected by no feature
selection algorithm. Feature numbers 1, 2, 5, 7, 8, 9, 11, 20, 21, 24, 25, 26, 28, 29, 32, 35 are
selected by only one feature selection algorithm. Feature numbers 3, 4, 6, 31, and 33 are
selected by two feature selection algorithms. Feature numbers 10, 23, 30, and 38 are selected
by three feature selection algorithms. Feature numbers 15, 22, and 34 are selected by four
feature selection algorithms. Feature numbers 27, 36, 37, 39, and 40 are selected by all six
feature selection algorithms.

Ranker search shows the best performance and selects 29 features, so let us discuss the
importance of these features one by one. The first selected feature is distributed generation
market demand. It is important because the future market demands of energy affect battery
autonomy. The second selected feature is Hoppecke 6 OPzS 300. It defines the battery and
thus it is important for battery autonomy. The third feature is the converter, and it helps in
computing battery autonomy because it gives the power inversion of an operation inverter.
The fourth selected feature is total capital cost, and it is important because cost plays a vital
role in optimal battery sizing and computing battery autonomy. The fifth selected feature
is unmet load fraction, and it helps in battery sizing because it helps in determining the
portion of the total load that went unserved. The total net present cost is the sixth selected
feature, and it helps in battery sizing since the total net present cost has a significant impact
on the size of the battery to be utilized. The seventh selected feature is the total emissions,
and they impact the battery size because the allowable emissions will help in determining
the battery size. Total annual capital cost is the next selected feature and the total annual
cost will help in determining the size of the battery to be used. The tenth selected feature is
total operations and maintenance cost and since the batteries may require maintenance so
it is important for determining the battery size. The next selected feature is AC primary
load served, and it helps in battery sizing because the size of the battery also depends
on the AC load to be served. The twelfth selected feature is the renewable factor and
knowing the fraction of load being served by the renewable energy will impact the battery
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size. The next selected feature is a capacity shortage and knowing the energy capacity
shortage can help us in determining the size of the battery to reduce the capacity shortage.
The fourteenth and fifteenth selected features are unmet load and unmet load fraction,
respectively, and they can help in determining the size of the battery to minimize the effects
of insufficient generation. Excess electricity is the next selected feature, and it can help in
battery sizing because the excess power may be stored in batteries for use at a later time
when more energy is required. The seventeenth selected feature is diesel and the volumetric
use of diesel in a system has an impact on the size of the battery to be used in the system.
The next three selected features are carbon dioxide, carbon mono oxide, and unburned
hydrocarbons emissions, respectively, and, with global warming, checks are being put
in place for carbon emissions. The limit of allowable carbon emissions for a system will
impact the size of the battery being utilized. The next three selected features are particulate
matter, sulfur dioxide, and nitrogen oxide emissions as effluent into the air, respectively,
and, since they can cause serious health issues, therefore we would want these emissions
to be minimized and an appropriate battery size can help in doing so; therefore, these
emissions will impact the battery size. The next selected feature is distributed generation
market demand fuel and, since the distributed generation of fuel for a system is affected
by the battery size, thus, vice versa, the battery size will be affected by the distributed
generation fuel. The next selected feature is distributed generation market demand hours,
and the battery size will be affected by the number of hours the distributed generation
model is active. If it remains active for a longer time, we may require larger batteries,
and, if it remains active for a shorter time, we may require smaller batteries. Distributed
generation market demand model stats/years is the next selected feature, and, since it
gives the statistics of the system, it will help in determining the size of the battery. The next
selected feature is distributed generation market demand model life, and, since it analyzes
the working life of the distributed generation power system, it may therefore be used to
determine the size of the battery. The next selected feature is battery throughput, which is
the lifetime of a battery in years, and it directly affects the battery size because, if a lifetime
is smaller for a battery, we will require a larger battery and, if the lifetime is larger, we
may require a smaller battery. The last selected feature of the battery is battery life, which
defines the estimated working life of a battery, and, since it is a direct parameter of the
battery, it will affect the battery size. It can be observed that excess electricity, distributed
generation market demand model hours, distributed generation market demand model life,
battery throughput, and battery life are selected by all the six feature selection algorithms,
whereas operating cost, deferrable load served, and nitrogen oxide emissions are selected
by four feature selection algorithms each. The total annual replacement cost, renewable
fraction, carbon mono oxide emissions, and distributed generation market demand model
life are selected by three feature selection algorithms each.
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