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Abstract: The demand for energy is increasing at an abrupt pace, which has highly strained the
power system, especially with high share of power generation from renewable energy sources (RES).
This increasing strain needs to be effectively managed for a continuous and smooth operation of the
power system network. Generation and demand exhibit a strong correlation that directly creates
an impact on the power system frequency. Fluctuations and disruptions in load frequency can
manifest themselves as over-voltages and physical damages in the power grid and, in the worst
case, can lead to blackouts. Thus, this paper proposed an effective solution to mitigate the load
frequency problem(s), which is initiated by the changing load demand under high penetration of RES.
This paper presented an improved cascaded structure, the proportional integral with a fractional
operator coupled with proportional derivative (PI− (FOP + PD)). The proposed FOP + PD modifies
the (1+PD) controller by introducing fractional properties that improve its tracking efficiency and
mitigate frequency fluctuations taking minimal time. The introduction of FOP (β) diversifies its
tracking and overall controlling ability, which translates it as a significant controller. The controller
optimal parameters are extracted by deploying a dragonfly search algorithm (DSA). The study of the
results illustrates that the proposed design displays efficient performance under any disturbance or
uncertainty in the power system.

Keywords: load frequency control; modified cascade controller; dragonfly search algorithm; fractional
operator; renewable energy resources

1. Introduction

In the desire to handle the soaring challenges of the power system, the advancement
in technology is very crucial. Sustainable energy growth has been a need of the hour for
progressive development in the power sector. Environment-friendly power production is
always a major concern; nowadays, to extract energy from natural sources, a dramatic shift
has been devoted toward renewable energy resources (RES) such as photovoltaic (PV), wind,
hydro, geothermal, etc. [1–3]. Consequently, the impact of RES is conspicuous on the energy
generation; however, these RES enforce several challenges on the power system that result in
stability issue [4,5]. In addition, the mismatch in generation and demand engenders stability
issue, which affects the frequency of the power system (mainly on a frequency regulatory
unit). The frequency disruption can be restored to its nominal operation by load frequency
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control (LFC) [6]. The paper [7] emphasized the need for improved LFC design in complex
power system contexts and a complete examination of numerous LFC structures in a variety
of power system topologies, including single-area, multi-area, and multistage configurations.
The authors of [8] proposed a method for mitigating low-frequency oscillations in power
systems through the optimal technique of a power system stabilizer using an Ant-Lion
optimization algorithm, and compared this method with existing conventional systems in
order to achieve greater efficiency under a variety of load levels.

The major theme of LFC is to preserve the demand and generation synchronization to
maintain the frequency within limits for a successful operation of the hybrid interconnected
energy system. To counter such challenges of the power system, several articles have devoted
their research on an efficient design of the control system to restrain frequency. Designing an
efficient controller is always in focus to encounter the aforementioned challenges of the power
system. Moreover, the microgrid stability is preserved by maintaining a zero steady-state error
by the controller [9,10]. Considering the wake effect in a wind power plant, a coordinated wind
power plant control for frequency support has been proposed in [11]. A data management
functionality that enables data-driven update of settings and constraints (such as voltage,
frequency, etc.) of the technique behind smart grid applications has been proposed in [12].
In order to support online frequency control from renewable power stations, an evaluation
of the influence of communication and the associated factors has been presented in [13]. The
authors of [13] also provided the relevance of the transmission system operator insights, and
several communication factors such as infrastructure for general service communication and
collaboration between wind power plants (WPPs), specifically primary frequency control
management from WPPs for future power systems. Similarly, the study in [14] provided a
distributed coordination technique using inverter-based resources to improve the running costs
of microgrid systems, where the control strategy is proven to achieve optimum process and
frequency even in the presence of communication failures. Multiple hierarchical techniques
to power system control for single or multi-area microgrids have been recently developed.
Typically, the proportional integral (PI)/proportional integral derivative (PID) controller for
interconnected power grids is developed with high penetration RES in consideration [15,16].

A firefly algorithm (FA) and a genetic algorithm (GA) are used as optimizing algo-
rithms to obtain optimum parameters for the PI controller; these controllers are deployed
on a PV connected thermal system; however, it has shown sluggish reaction in achieving
steady-state response [17]. Other evolutionary controllers such as particle swarm optimiza-
tion (PSO) [18], cuckoo search (CS) technique [19], ant colony optimization (ACO) [20], and
butterfly algorithmic technique implementation for LFC are deployed for optimizing the
parameters required by the controller for its optimal operation [21].

Moreover, different development of PI/PID controllers is constructed to mitigate the ef-
fect of frequency fluctuation. Modified cascaded controllers are developed in order to improve
the efficiency of the existing controllers. In a cascaded controller design, the effectiveness
of the controller is improved by using a flower pollination algorithm (FPA), and to control
the operation under a certain load change [22], hybrid stochastic fractal search and pattern
search (hSFS-PS) [23], bat algorithm (BA) [24], and sine–cosine [25] tuned PI-PD controllers
are designed. The cascaded structure PID+DD is developed, which utilizes the property of
the multiverse optimizing technique for an interconnected hybrid system [26].

The PI-(1+PD) controller is applied with the help of a grasshopper optimizing algo-
rithm (GOA) for the maritime microgrid [27]. Moreover, a fractional-order PID controller
is enhanced by utilizing the dragonfly method to obtain optimal controller values, hence
enhancing the controller’s control operation [28]. The FOPID controller for automatic
generation control (AGC) is implemented for multi-area power systems [29]. Another
modified form of FOPI-FOPD is used to resolve the LFC problem, and the reliability of the
cascaded controller is enhanced with the help of DSA [30].

In light of the aforementioned discussion, the response of the controllers suggests that
there is a room for improvement in the cascade structure, which can further enhance the
controlling ability of the cascaded design. Moreover, under high complexity, the effective
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functioning of the power system is essential, and for this reason, the optimal operation of the
controller is required to handle the rising problems posed by interconnected power systems.

Novelty and Contribution

In view of the literature review, certain sections can be identified that require further
improvement, and the proposed methodology has invested its utility in the same direction
to improve the ability of the cascaded design. The inspiration of this work is as follows:

1. The aim of the proposed research was to improve the ability of the existing cas-
caded controller to highlight rapid response under load perturbation to deal with
frequency fluctuations.

2. The existing cascaded controller design PI-(1+PD) is modified to improve its efficiency.
In PI-(1+PD), the factor one (1) is altered in the proposed design to achieve fast
convergence. The factor one (1) in PI-(1+PD) is translated in terms of a fractional
operator based on the input signal that helps to expedite the controller performance
with low complexity. The tunable parameters of the proposed controller are extracted
from DSA, and the proposed controller design is translated as PI-(FO_P+PD).

3. The testation of the proposed controller is scrutinized keeping a high penetration level
of RES along with the energy storage system (ESS), where comparative performance
assessment is evaluated through state-of-the-art control techniques.

The outcome and substantial contributions of this work are given below:

1. Developing a multi-area hybrid interconnected area including PV, wind, flywheel,
battery ESS, and thermal system.

2. Hierarchy for PI-(FO_P+PD) is designed to counter the LFC problem.
3. The proposed controller is investigated by applying changing load and time delay in

the power system.
4. The optimum parameters for the PI-(FO_P+PD) controller are extracted from DSA.

The paper is organized as follows. Section 2 provides the design and modeling of the
PV, wind, thermal systems, and ESS. Section 3 provides details about the design of the
PI-(FO_P+PD)-based controller. Section 4 describes the obtained results and discussions.
Finally, Section 5 is dedicated for the conclusion and future work.

2. System Modeling

An interconnected two-area model is implemented to investigate the efficiency of a
suggested controller. The model includes photovoltaic, wind, and thermal power plants, as
well as a centralized ESS grid system. Each region consists of photovoltaic, wind, thermal
power plant, and an ESS. Figure 1 illustrates the microgrid concept with interconnections.
Each particular power plant system is described in depth in the previous subsections.
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2.1. Thermal System Design

The thermal system contains a turbine governor that collectively converts the energy
into a mechanical rotation. The thermal unit plays a key part in deciding the overall system
frequency due to its rotating component and its major impact in the power system. The
variance in the generator speed is governed by the droop, which directly controls the
prime mover [31]. The governor output power ∆Pgi(s), which is the difference of frequency
change and reference power change, is specified in Equation (1):

∆Pgi(s) = ∆Pref(s)−
1
R

∆fi(s) (1)

where 1
R denotes the droop. The governor transfer function is given by [32]

G(s)Gov =
1

Tgs + 1
(2)

where Tg is the time of governor constant. Similarly, the turbine transfer function can be
written as (3) [28]

G(s)turbine =
1

Tts + 1
(3)

In Equation (4), the ACE is enunciated as

ACEi = Bi∆fi + ∆Ptie ij i 6= j (4)

Bi denotes the frequency bias factor parameter.
Gp(s) = 1

Mis+Di
is the generator output.

2.2. Photovoltaic Model

The increasing trend of renewable energy sources cannot be ignored, especially that of
the photovoltaic (PV). The transfer function for the PV model is given by (5) [33]:

Gpv(s) =
∆PPV(s)
∆PP(s)

=
KPV

TPVs + 1
(5)

TPV and KPV signify the PV time and gain constant, respectively.

2.3. Wind Turbine Generator Model

The perforation of wind energy into the grid further deteriorates the frequency. The
modeling and designing of the wind turbine generator (WTG) for LFC issue are carried
out [32]. The wind power system design is summarized as a transfer function in Equation (6):

GWT(s) =
∆PWT(s)
∆Pw(s)

=
KWT

TWTs + 1
(6)

where KWT is the WT output gain constant, and TWT is the WT time constant equal to the
change from the output power to input power.

2.4. Battery Energy Storage System

The transfer function for the BESS can be attained from [33] and is given as Equation (7):

GBESS(s) =
∆PBESS(s)
∆PBE(s)

=
KBESS

T(BESS)s + 1
(7)

where TBESS is the BESS time constant, and KBESS is the BESS gain constant.
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2.5. Flywheel for Energy Storage System

The transfer function for the FESS can be extracted from [33] and is given in Equation (8):

GFESS(s) =
∆PFESS(s)
∆PFE(s)

=
1

T(FESS)s + 1
(8)

where TFESS is the FESS time constant. The discussed system is summarized in Figure 2
from where the complete idea can be visualized.
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3. Proposed Cascaded Design

The proposed cascade structure proportional integral combined with fractional op-
erator sums with proportional derivative (PI-(FOP+PD)) is showcased in Figure 3. The
design is an advanced form of (PI-(1+PD)) that modifies the (1+PD) part of the cascaded
controller. The modified design helps to counter the LFC problem that generates due to the
divergence in load and generation. In the proposed controller, the tunable parameters are
optimized with the help of the dragonfly search algorithm (DSA) that generates optimal
parameters for the proposed controller. The comparison analysis justifies the modified
controller’s effectiveness under various load scenarios.
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The controller expression for the output can be written as

output =
(

Kp +
KI

s

)
×
(

sβ + KPi + sKD

)
(9)

where Kp, KI, β, KPi, and KD represent the proportional gain, integral gain, operational
factor, proportional gain for stage two, and derivative gain, respectively.

The expression of the ITAE for the two-area power system is shown in Equation (10):

ITAE =

∞∫
0

t(|∆f1|+ |∆f2|+ |∆Ptie|)dt (10)

The ITAE is the objective function utilized for the algorithm to minimize it. ∆f1, ∆f2,
and ∆Ptie are the change in frequency in area-1, change in frequency in area-2, and tie-line
power change between the two areas.

The DSA is used to minimize the Js in the equation subject to (3):

Kmin
P ≤ KP ≤ Kmax

P
Kmin

Pi ≤ KPi ≤ Kmax
Pi

Kmin
I ≤ KI ≤ Kmax

I
Kmin

D ≤ KD ≤ Kmax
D

βmin ≤ β ≤ βmax

(11)

The range of gains for the proposed controller is between 0 and −8, whereas the
β parameter is set in between 0 and 1 for the proposed controller.

Dragonfly Search Algorithm

The dragonfly search algorithm (DSF) is a stochastic-based search algorithm that was
proposed by Seyedali [33]. As the name implies, the DSF searches food and elusion from
enemies. Dragonflies exist in nymph mostly for their lifetime, and then they switch their
adult lives by metamorphosis. An image of a real dragonfly is shown in Figure 4 from
where the idea of dragonfly can be conceived.
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The intelligence design is constructed on the basis of five factors: (1) separation,
(2) alignment, (3) cohesion, (4) desire for food, and (5) distraction from enemy. The
separation phenomenon is illustrated in Equation (12):

Si = −
N

∑
j=1

X− Xj (12)

where X− Xj defines the current position of an individual and the jth individual in the
closing. N is the number of individuals in the field. The second factor alignment comes
through Equation (13):

Ai =
∑N

j=1 Vj

N
(13)

Furthermore, the expression for cohesion can be achieved using Equation (14):

Ci =
∑N

j=1 Xj

N
− X (14)

Extraction of food and distraction from enemy are modeled in Equations (15) and (16),
respectively.

Fi = X+ − X (15)

Ei = X− + X (16)

In Equations (15) and (16), X+ and X− define the position of food source and position
of enemy. The position of dragonflies is updated by Equation (17):

Xt+1 = Xt + ∆Xt+1 (17)

The step vector described in Equation (16) is similar to the velocity factor in PSO:

∆Xt+1 = (sSi + aAi + cCi + fFi + eEi) + w∆Xt (18)

where s, a, c, f, and e are the swarming factors that form the swarming behavior of a
dragonfly. If there is no closing dragonfly, the DSA can use Levy flight in a search space for
a random and stochastic walk. If this case happens, the position is illustrated as

Xt+1 = Xt + Levy(d)·Xt (19)

where d denotes the dimension of position vectors, and the function Levy (.) is calculated
as Equation (20):

Levy(d) = 0.01· r1·σ

|r2|
1
β

(20)
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r1, r2 are randomly generated, and their value lies in the range [0, 1]; β is a constant equal to
1.5, and σ is a variable. The utilization of the DSA is due to its simple and easy operations
for implementation and required few control parameters, and it is found that the DSA deals
better between the exploration and exploitation concept than its peers. The comprehensive
detail procedure to extract controller gains is represented in Figure 5. The desired five
parameters are optimized for the proposed controller, so the dragonfly is stated as

dragonfly = [KP, KI, KD, Kpi, β] (21)
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The initializing parameters of the DSA are defined in Table 1.

Table 1. DSA initializing parameters.

DSA

Max-iteration 100

Dragonflies population (X) 20

Step vector (∆X) 10

The parameter values for various controllers are demonstrated in Table 2.
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Table 2. Controllers’ parameters after 100 iterations.

Controller Parameters FA−PI [7] GWO: PI−PD [19] DSA−FOPID [20] Proposed Controller

Area-1 KP = −0.5821
KI = −0.8179

KP1 = −2.8771
KI = −2.7874
KP2 = −3.004
KD = −2.0146

KP = 2.09
KI = 4.344

KD = 1.1487
λ = 0.988
µ = 0.81

KP1 = −4.98
KI = −5.812

KP2 = −1.805
KD = −1.215

β = 0.75

Area-2 KP = −0.8869
KI = −0.7257

KP1 = −4.2809
KI = −2.0014

KP2 = −2.9084
KD = −1.2979

KP = 2.32
KI = 4.941
KD = 1.910
λ = 0.983
µ = 0.80

KP1 = −3.178
KI = −6.847

KP2 = −0.580
KD = −0.23
β = 0.77

4. Results and Discussion

The proposed (DSA: PI-(FOp+PD) is tested under step load changes of 1% and 2.5%.
Initially, the effectiveness of the proposed technique is verified under 1% load change for
area-1 and area-2 as displayed in Figures 6 and 7, where the (DSA: PI-(FOp+PD) controller
mitigates the frequency fluctuation in less than 4 sec when analyzed with other controllers.
The distribution of power between interconnected areas is presented in Figure 8. From the
result, it is evident that the controller with high efficiency can handle the power sharing in
a more robust way.
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Correspondingly, the competency of Figures 9 and 10 exhibit the frequency response
of the multi-area controller when subjected to a 2.5% load shift, whereas Figure 11 depicts
the power exchange between the areas. The suggested controller outperforms conventional
techniques in terms of rapid settling time and minimal oscillations.
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All the results are compiled in Table 3, where a better understanding about the
achieved results can be observed.

Table 3. Response of controllers in area-1 and area-2 at 1% and 2.5%.

Controllers
Area-1 Area-2

1% 2.5% 1% 2.5%
S.T (s) U.S (Hz) O.S (Hz) S.T (s) U.S (Hz) O.S (Hz) S.T (s) U.S (Hz) O.S (Hz) S.T (s) U.S (Hz) O.S (Hz)

Proposed 2.82 0 0.042 4.120 0.046 0.063 3.13 0 0.093 3.608 0.144 0.054
DSA-FOPID [20] 3.02 0 0.188 4.331 0.141 0.180 5.08 0 1.833 4.423 0.186 0.175
GWO: PI-PD [19] 6.240 0 0.045 6.031 0.035 0.061 6.731 0 0.092 6.325 0.103 0.031

FA-PI [7] 21.6 0 0.89 18.361 0.346 0.850 21.31 0 0.83 19.631 0.332 0.822

The designed controller is further tested by applying varying step load change and effi-
cacy of the controller for area-1 and area-2, and their interconnected power-sharing response
is evaluated and discussed. The changing load profile is presented in Figure 12, and the
response of the frequency is visualized against the applied load profile in Figures 13–15.
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It is apparent from the results that the designed controller is effectively mitigating the
frequency fluctuation in a minimal response time as compared with other controllers. The
modified cascaded design with an addition of factor (β) expedites the tracking ability by
expanding its controlling range.

The power sharing between the interconnected multihybrid power areas is displayed
in Figure 15.

Furthermore, the results are compiled in Table 4 at 7% load change, which is the worst-case
scenario occurring at 60 s at which a power system can experience a load change.

Table 4. Performance of controllers in Area-1 and Area-2 at 7% load change.

Area-1 Area-2
Controllers S.T (s) U.S (Hz) O.S (Hz) S.T (s) U.S (Hz) O.S (Hz)

DSA: PI-(FOp+PD) 1.465 0.0362 0 1.501 0.107 0
DSA-FOPID [20] 4.721 0.1780 0 4.809 0.168 0.002
GWO: PI-PD [19] 6.213 0.0215 0 3.989 0.087 0

FA-PI [7] 19.391 0.511 0.121 20.504 0.569 0.108

Further investigation about the performance of the designed controller is tested by
introducing a communication time delay in the system at the input side of the controller.
The response of the DSA: PI−

(
FOp + PD

)
is exhibited in Figures 16–18 that proclaim the

optimal performance of the system by fast convergence to the reference frequency with
minimum oscillations.
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The results are compiled in Table 5 at 7% load change, which is the worst-case scenario
occurring at 60 s at which a power system can experience a load change.

Table 5. Communication delay performance of controllers in Area-1 and Area-2 at 7% load change.

Area-1 Area-2
Controllers S.T (s) U.S (Hz) O.S (Hz) S.T (s) U.S (Hz) O.S (Hz)

DSA: PI-(FOp+PD) 3.379 0.0451 0 2.213 0.151 0
DSA-FOPID [20] 5.181 0.185 0 5.629 0.171 0
GWO: PI-PD [19] 6.601 0.0221 0 3.995 0.089 0

FA-PI [7] 19.801 0.546 0.118 20.634 0.570 0.131

Furthermore, the performance of the proposed controller is compared with other
cutting-edge controllers, i.e., DSA-FOPID, GWO: PI-PD, and FA-PI, in terms of the per-
formance ITAE (objective function) by utilizing Equation (10). The performance of the
algorithm is statistically summarized in Table 6.

Table 6. Performance analysis of different controllers.

ITAE
Controllers ITAEmax ITAEmin ITAEavg ITAEstd Tave (s)

DSA: PI-(FOp+PD) 0.0072 0.0012 0.0023 0.0013 703.28
DSA-FOPID [20] 0.0093 0.0019 0.0038 0.0021 752.80
GWO: PI-PD [19] 0.0082 0.0015 0.0025 0.0018 729.01

FA-PI [7] 0.0869 0.0056 0.024 0.0245 879.22

5. Conclusions

The modified cascaded structure is designed for a hybrid power system, where the
proposed controller is modified in such a way that it mitigates the frequency oscillation with
least settling time with minimum oscillations. The proposed FOP+PD modifies the (1+PD)
controller by introducing fractional properties, which improves its tracking efficiency, and
the introduction of FOP (β) diversifies its tracking and overall controlling ability. The
results signify its robustness by showing abrupt response with minimum settling time.
The proposed controller is tested under practically a load-changing scenario where the
worst load changes up to 7%, and, under such a case, the designed controller has attained a
settling time of 1.465 s and 1.501 s for area-1 and area-2, respectively. Meanwhile, under
the communication time delay, the settling time of the proposed controller is 3.379 s and
2.213 s for area-1 and area-2, respectively.
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