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Abstract: For CsPbBr3 perovskite materials, it is especially important to reduce interface defects,
suppress non-radiative recombination, and improve morphology to achieve highly efficient and
stable CsPbBr3 perovskite solar cells (PSCs). Herein, we reported a facile but highly efficient approach
in additive engineering for improving the efficiency and stability of CsPbBr3 PSCs. It was found that
phenethylammonium iodide can passivate interface defects, suppress non-radiative recombination,
and increase the grain sizes of CsPbBr3 films by optimizing crystal quality and interface contact. As
a result, a carbon-based CsPbBr3 PSC with power conversion efficiency > 8.51%, storage stability
> 340 days, and excellent harsh stability under high temperature and humidity, has been achieved.
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1. Introduction

Perovskite materials have shown enormous potential in photovoltaic power gen-
eration [1] due to their excellent characteristics, such as a tunable band gap, high light
absorption coefficient, high carrier mobility, and weak exciton binding energy [2]. The
power conversion efficiency (PCE) of perovskite solar cells (PSCs) has been improved from
3.8% to 25.7% in 11 years [3–5]. However, the long-term instability of organic–inorganic
hybrid perovskite materials upon exposure to moisture, oxygen, and heat caused by organic
cations [4] remains an issue. To improve the stability of perovskite materials, inorganic
cesium ion (Cs+) was introduced to replace the organic counterparts to make all-inorganic
perovskite materials, which was demonstrated to remarkably boost stability, especially in
full-brominated CsPbBr3 [6,7]. CsPbBr3 was first applied into PSCs in 2015, presenting
a PCE of 5.95% with outstanding moisture, oxygen, and thermal stability under harsh
conditions [8]. Then, in 2016, Liu’s group abandoned expensive Spiro-OMeTAD hole trans-
port layers (HTL) and Au/Ag electrodes, designed the carbon-based CsPbBr3 PSC, and
obtained a PCE of 6.7% [8–12]. In 2018, Tang’s group creatively put forward a multi-step
spin-coating method to improve the crystal quality and morphology of the CsPbBr3 active
layers, resulting in a certified PCE of 9.72% [8–13]. Recently, the PCE of CsPbBr3 PSCs
was further increased to over 10% via a doping process, interface modification, or spectra
engineering [8–12,14]. Although it improved rapidly, the performance of CsPbBr3 PSCs is
still unsatisfactory due to the wide band gap and severe carrier recombination of CsPbBr3
films, which will cause a decline in PCE and stability [10]. Furthermore, the wide band
gap of CsPbBr3 leads to a large optical absorption loss, which significantly hinders further
PCE improvements of CsPbBr3 PSCs [3,12]. A widely reported solution to this impasse
is partially substituting Br- with I- to reduce the band gap; however, the long-term stabil-
ity declines significantly after the substitution [12,15,16]. So, long-term stability is still a
problem for CsPbBr3 PSCs when widening optical absorption [11,15,17–19]. Regarding the
severe carrier recombination in CsPbBr3 PSCs, a mass of defects at the interface and grain
boundaries usually acts as non-radiative recombination centers. Furthermore, different
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from organic–inorganic hybrid perovskite materials, a higher annealing temperature over
200 ◦C is necessary for CsPbBr3 films, which leads to a rapid growth of crystals, resulting
in a poor crystal quality with lots of defects, uneven grain size, and large traps. Thus, for
the CsPbBr3 perovskite materials, it is especially important to reduce interface defects,
suppress non-radiative recombination, and improve morphology to achieve highly efficient
CsPbBr3 PSCs [11,20]. Recently, it has been widely reported that phenethylammonium
iodide (PEAI) can passivate interface defects, suppress non-radiative recombination [21,22],
and increase the grain sizes of organic–inorganic hybrid perovskites by doping into the
precursor solution [23]. However, the application of PEAI in the synthesis of CsPbBr3
perovskite film has never reported.

Herein, CsPbBr3 films were synthesized by a multi-step spin-coating method, and
PEAI was introduced into the CsPbBr3 films for the first time via doping into the PbBr2
precursor solution. It was found that PEAI can passivate interface defects, suppress non-
radiative recombination, and increase the grain sizes of CsPbBr3 films by optimizing crystal
quality and interface contact. As a result, a carbon-based CsPbBr3 PSC with a PCE > 8.51%,
storage stability > 340 days, and excellent harsh stability under high temperature and
humidity has been achieved. The whole preparation process of CsPbBr3 PSCs was carried
out in ambient air without humidity control.

2. Materials and Methods

We performed all experiments with the air at room temperature without humidity
and temperature control.

2.1. Substrate and Precursor Solutions Preparation

We cleaned the dioxide transparent conductive glass doped with fluoride (FTO) by
ultrasonic successively dipped in acetone, isopropanol, ethanol, deionized water, and
isopropanol for 15 min. Then, we cleaned the FTO substrates by plasma. After that, we
deposited the compact TiO2 (c-TiO2) from a solution of titanium tetraisopropoxide and
hydrochloric acid in anhydrous ethanol by spin-coating at 3000 rpm for 30 s. We annealed
the c-TiO2 layer at 500 ◦C for 30 min. We diluted mesoporous TiO2-layer (m-TiO2) pastes
(30 NR-D, Dyesol) in ethanol (1:4, weight ratio), then spin-coated at 5000 rpm for 45 s, and
finally annealed at 500 ◦C for 30 min, as described in our previous article [24]. We prepared
the PbBr2 precursor solution by dissolving 367 mg PbBr2 in 1 mL N,N-Dimethylformamide
(DMF) under active stirring for 12 h. We doped the PbBr2 precursor solutions of the
experimental groups by PEAI at concentrations of 5, 10, and 15 mg/mL.

2.2. Multi-Step Spin-Coating Process of CsPbBr3 Films

The multi-step spin-coating process of CsPbBr3 films is illustrated in Figure S1 in the
Supplementary Materials. We placed the FTO/c-TiO2/m-TiO2 substrates and the prepared
PbBr2 precursor solution on a 90 ◦C hot plate to preheat. We spin-coated the PbBr2 solution
on the substrates at a speed of 2000 rpm for 30 s. We placed the substrates with the spin-
coated PbBr2 solution on a hot plate at 90 ◦C and annealed for 30 min. Subsequently,
we spin-coated the 0.07 M CsBr solution on the PbBr2 layers 5 times. Each time, we
annealed those substrates on a hot plate at 250 ◦C for 5 min, which was also reported in
our previous article [25].

2.3. Device Fabrication

We scrapped the carbon electrode on the active layers. The area of each battery
electrode is 0.01 cm2. We obtained the solar cell devices after annealing 120 ◦C for 15 min.
Schematic structure of the carbon-based mesoscopic PSC is shown in Figure 1a.
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Figure 1. (a) Schematic structure of CsPbBr3 PSCs; (b) XRD patterns of CsPbBr3 films without and
with PEAI doping in different concentrations.

2.4. Characterization

We characterized the surface morphology of perovskite films by scanning electron
microscope (SEM). We tested the structure and components by X-ray diffraction technique
(XRD, D8 fucox) and X-ray photoelectron spectroscopy (XPS). We determined the light
absorbance spectra by UV–vis absorption spectra. We conducted Photoluminescence (PL)
and time-resolved photoluminescence (TRPL) spectra to characterize the carrier trans-
port properties. We measured dark J-V and space-charge limited-current (SCLC) curves
to analyze defect-related information. We conducted current density–voltage (J-V) and
monochromatic incident photon-to-electron conversion efficiency (EQE) experiments to
characterize the performance of PSCs.

3. Results and Discussion

XRD spectra of CsPbBr3 films without and with PEAI doping in different concentration
have been performed as shown in Figure 1b. The optical setup and scan parameters of
XRD scans for all the four samples are unified. Three characteristic peaks centered at
around 15.2◦, 21.7◦, 26.5◦, and 30.8◦ correspond to (100), (110), (111), and (200) planes of
CsPbBr3 phase, respectively. Obviously, all the four spectra exhibit almost identical peak
positions, indicating the introduction of PEAI does not change the crystal structure and
lattice constant of CsPbBr3 films. However, the (100) and (200) diffraction peaks of CsPbBr3
phase are dramatically enhanced after doping PEAI at 10 mg/mL. This is clear evidence
for the optimization of crystallinity by PEAI doping at 10 mg/mL [14,26]. Furthermore, the
appearance of the characteristic peaks of CsPb2Br5 and Cs4PbBr6 phases demonstrates that
there are residuals of PbBr and CsBr in the four CsPbBr3 films.

SEM has been introduced to characterize the surface morphology of CsPbBr3 films.
Figure 2a–d show top-view SEM images of CsPbBr3 films undoped and doped with PEAI
at 5, 10, and 15 mg/mL. We observed that the grain sizes of the undoped CsPbBr3 film are
small, and they increase with the further concentration of the PEAI additive. The grain
sizes of the CsPbBr3 films are undoped and doped with PEAI at 5, 10, and 15 mg/mL
are 0.45, 0.67, 1.11, and 1.13 µm, respectively, which are obtained by the “Nanomeasurer”
software. It is reported that most of these small crystal grains in the undoped CsPbBr3
film are the phase of CsPb2Br5, which agrees with our previous XRD results [1]. The
introduction of PEAI affects the kinetics of the crystallization process of CsPbBr3 films,
inhibits the formation of CsPb2Br5, and finally increases the grain size [9]. In addition, for
PEAI-doped CsPbBr3 films, it is obvious that two-dimensional (2D) perovskite material
has formed at the grain boundaries, which is reported to generate in the crystallization
process of CsPbBr3 and could passivate interface defects at the grain boundaries [26]. The
formation of 2D perovskite material caused by the addition of PEAI is not significantly
visible when the concentration of PEAI is low, such as at 5 mg/mL, as shown in Figure 2b.
However, by adding an excessive amount of PEAI, the 2D perovskite material is clearly
observable, as presented in Figure 2d. Figure 2e,f present the cross-sectional morphological
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properties of CsPbBr3 films undoped and doped with PEAI at 10 mg/mL, respectively.
The thickness of the CsPbBr3 film after PEAI doping is ~650 nm, the same as the undoped
film. We can see that the undoped CsPbBr3 film exhibits an uneven surface and obvious
pinholes. The extrusion of the grains against each other results in partial convex grains,
leaving notable pinholes between the substrate and CsPbBr3 film. On the contrary, the
PEAI-doped CsPbBr3 film presents uniform and full coverage. The increased grain size,
reduced interface defects, and uniform and full coverage of PEAI-doped CsPbBr3 films will
promote light capture and charge transportation.
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Figure 2. Top-view SEM images of CsPbBr3 films (a) undoped and doped with PEAI at (b) 5, (c) 10,
and (d) 15 mg/mL. Cross-sectional SEM images of CsPbBr3 films (e) undoped and (f) doped with
10 mg/mL PEAI.

Combined XRD and SEM results confirm that the optimal doping concentration of
PEAI is 10 mg/mL; therefore, CsPbBr3 films doped with PEAI at 10 mg/mL were used for
the following film characterization and PSC application.

To further verify the elemental composition and chemical structure of the CsPbBr3
films without and with PEAI doping, XPS has been performed. Figure 3a–c are the high-
resolution XPS spectra of Cs 3d, Pb 4f, and Br 3d, respectively. We can see that Pb and
Br peaks shift to higher binding energies upon doping PEAI into CsPbBr3 films, while
peaks of Cs 3d3/2 and Cs 3d5/2 present nearly no variations. It is known that large-radius
PEA+ cations play a supporting role in the perovskite crystallization process and promote
the oriented growth of PEAI-doped CsPbBr3 films [6,14], leading to the formation of 2D
perovskite material, which may cause the distortion of the PbBr6 octahedron and then
increase the electron density of Pb and Br atoms. Therefore, for PEAI-doped CsPbBr3 film,
the XPS spectra of Pb 4f and Br 3d present blue shifts. In addition, based on the Pb 4f and
Br 3d nuclear-energy-level spectra in Figure 3d, the Pb:X (X = Br) ratio of the undoped
CsPbBr3 film can be estimated to be 1:1.665 (calculated by Avantage software), indicating
that there is a serious lack of Br on the surface, which may lead to obvious point defects.
After the introduction of PEAI, the Pb:X (X = Br, I) ratio increased to 1:1.689, demonstrating
that the point defects on the perovskite surface have been partially passivated and the Br
vacancies are likely to be filled by a small amount of I− in PEAI [24].
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Figure 3. High-resolution XPS spectra of (a) Cs 3d, (b) Pb 4f, and (c) Br 3d. Pb 4f and Br 3d
core-energy-level spectra are compared in (d).

UV–vis absorbance spectra have been carried out, and the results are shown in
Figure 4a. Obviously, there is no change in the absorption edge of both perovskite films,
indicating that the PEAI doping does not affect the band gap of CsPbBr3 films [2,27]. In
addition, a slight increase in the optical absorption is observed for the PEAI-doped CsPbBr3
film, as shown in Figure 4a, which can be explained as follows: the uniform and full cover-
age of PEAI-doped CsPbBr3 film will promote light capture and lead to improved optical
absorption. Steady PL and TRPL measurements are presented in Figure 4a,b, respectively.
Here, the samples used for steady PL and TRPL tests are CsPbBr3 films directly deposited
on the Al2O3 substrates without an electron transport layer (ETL) or HTL. As a result,
light-induced carriers in an excited state cannot be extracted quickly, leading to radiation
recombination. Here, higher steady PL intensity and slower TRPL decay rates demonstrate
fewer traps or defects. We can see that the steady PL spectra of CsPbBr3 films undoped and
doped with PEAI exhibit an identical peak centered at about 532 nm, demonstrating that
the PEAI doping does not affect the crystal structure of CsPbBr3 films, which fully agrees
with the UV–vis results. In addition, the PEAI-doped perovskite film exhibits a remarkably
enhanced PL intensity compared with the undoped film, implying that the trap and defect
states in CsPbBr3 films are reduced. The TRPL spectra in Figure 4b can be well fitted by a
bi-exponential decay function [11,22], and the corresponding lifetimes τ1, τ2, and τave are
obtained. After PEAI treatment, both τ1, τ2, and τave increase greatly, from 15.12, 539.87,
and 514.68 ns to 61.54, 700.80, and 635.60 ns, respectively, which can be attributed to the
suppression of defect-related non-radiative recombination after PEAI doping, which is
consistent with the steady PL results.
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The dark J–V measurements have been conducted with the architecture of FTO/
c-TiO2/m-TiO2/CsPbBr3/carbon, and the corresponding results are shown in Figure 5. It
can be seen from Figure 5a that the dark current of the PEAI-doped device is about two
orders of magnitude lower than the undoped device, implying reduced charge carrier
recombination losses, which can be due to the reduced interface defects in the CsPbBr3
layer after PEAI doping, as shown in previous SEM and XPS results [20,28]. The SCLC
curves, which were measured with FTO/CsPbBr3/Au architectures under dark conditions,
are displayed in Figure 5b. The onset voltage of the trap-filled limit (VTFL) can be obtained
from the SCLC curves, and then we can calculate the trap state density (Nt) according to
the following equation [6]:

Nt =
2εrε0VTFL

qL2 (1)

In this equation, L is the thickness of perovskite films, εr is the relative dielectric con-
stant for CsPbBr3, and ε0 is the vacuum permittivity. From the SCLC curves in Figure 5b, the
VTLF of the undoped and PEAI-doped CsPbBr3 layers are 1.0727 and 0.7915 V, respectively.
Combined with Formula (1), the Nt of the undoped and PEAI-doped CsPbBr3 layers are
calculated to be 9.907 × 1015 and 7.310 × 1015 cm−3, respectively. It can be inferred that the
trap states that lead to carrier recombination are significantly reduced after PEAI treatment,
cross-checking the above-mentioned conclusion [6].
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(VTFL are obtained to be 1.061 and 0.776 V for the undoped and PEAI-doped devices, respectively).

A series of CsPbBr3 PSCs are fabricated with an architecture of FTO/compct-TiO2/
mesoporous-TiO2/CsPbBr3/carbon. The active area is 0.1 cm2, and the whole preparation
process of the PSCs was finished in ambient air. The dependences of photovoltaic perfor-
mances on PEAI concentrations are reflected by Figure S2 in the Supplementary Materials,
and the corresponding photovoltaic parameters are summarized in the inset of Figure S2,
which shows that the optimal doping concentration of PEAI is 10 mg/mL, consistent with
the XRD and SEM characterization above.

Figure 6a shows the characteristic J–V curves of PSCs based on CsPbBr3 films without
and with PEAI doping at 10 mg/mL, and the corresponding photovoltaic parameters,
short-circuit current density (JSC), open-circuit voltage (VOC), fill factor (FF), and PCE are
summarized in the inset of Figure 6a. Obviously, the photoelectric conversion capability of
devices has been tremendously improved upon PEAI doping, yielding a champion PCE of
8.51%. Specifically, VOC rises from 1.28 V to 1.39 V, JSC from 7.49 mA/cm2 to 8.22 mA/cm2,
FF from 68% to 74%, and the PCE is enhanced by 26.87% compared with 6.55% for the
undoped device. All the photovoltaic parameters increase notably, indicating that the total
series resistance of the entire device is reduced by PEAI doping, which can be attributed to
the reduced traps and defects, as confirmed above. From Figure 6a, we also noticed that a
smaller J–V hysteresis can be achieved in the PEAI-doped PSC under forward and reverse
scan directions. The hysteresis index [29], which is the ratio of PCE under reverse and
forward scan, is decreased from 1.21 to 1.11 after PEAI doping, implying the passivation
of interface defects in the PEAI-doped CsPbBr3 layer. It was reported that ion migration
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tended to occur at the defects/grain boundary in the active layer, which leads to J–V
hysteresis [23,27]. The IPCE spectrum of the champion device is shown in Figure 6b, from
which the integrated current density is calculated to be 7.68 mA/cm2, agreeing well with
the J–V result and confirming the accuracy of our measurement.
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Figure 6. Characteristic J–V curves of PSCs based on CsPbBr3 films without and with PEAI doping at
10 mg/mL, and (a) the inset shows corresponding photovoltaic parameters; (b) PCE spectrum of the
champion device; (c) storage stability in the ambient air without encapsulation; (d) stability under
harsh conditions.

As known, improving cell efficiency and reducing costs without sacrificing long-term
stability are necessary for future commercial applications [12]. To study the storage stability,
the PSC doped with PEAI at 10 mg/mL stored in ambient air (temperature: 10~20 ◦C,
relative humidity: 20~30%) without encapsulation was measured. As shown in Figure 6c,
for the device doped with PEAI, the PCE not only did not decline but increased after a few
months of storage. According to reports, the PCE enhancement of CsPbBr3 solar cells after
storage may be attributed to the improved crystal quality of CsPbBr3 film under the effect
of water molecules. Furthermore, it should be noted that the efficiency of PEAI-doped
PSC remained nearly unchanged for more than 11 months (340 days). For comparison,
the storage stability of the non-doped PSC was measured under the same conditions and
shown in Figure S3 in the Supplementary Materials. Obviously, the storage stability is
remarkably improved after PEAI doping. In addition to storage stability in ambient air,
stability under harsh conditions, such as high humidity and temperature, was also tested, as
shown in Figure 6d. We can see that the PCE of PEAI-doped PSCs has almost no reduction
under 80% humidity or at 80 ◦C without encapsulation within 30 or 14 days, while the
devices without PEAI doping declined rapidly. The improvement of device stability after
PEAI doping could also be attributed to the reduced traps and defects, which can lead to
the suppression of charge recombination and accumulation.
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4. Conclusions

In conclusion, to reduce interface defects, suppress non-radiative recombination, and
improve the morphology of the CsPbBr3 films to achieve highly efficient and stable CsPbBr3
PSCs, we reported a facile but highly efficient approach for additive engineering. CsPbBr3
films were synthesized by a multi-step spin-coating method, and PEAI was introduced into
the CsPbBr3 films for the first time via doping into the PbBr2 precursor solution. We found
that PEAI additive can passivate interface defects, suppress non-radiative recombination,
and increase the grain sizes of CsPbBr3 films by optimizing crystal quality and interface
contact. By virtue of PEAI doping, a carbon-based CsPbBr3 PSC with a PCE > 8.51%,
storage stability > 340 days, and excellent stability under high temperature and humidity,
has been achieved. Our work contributes to improving the performance of CsPbBr3 PSCs.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/en15207740/s1, Figure S1: Schematic diagram of multi-step spin-coating pro-
cess to prepare CsPbBr3 films; Figure S2: J–V characteristics of various CsPbBr3 PSCs under illumina-
tion (AM 1.5 G, 100 mW cm−2 ) undoped and doped with 5, 10 and 15 mg/mL PEAI, measured at
the maximum power point; Figure S3: Storage stability (in the ambient air, without encapsulation)
of CsPbBr3 PSCs without PEAI-doping; Figure S4: J–V characteristics and storage stability (in the
ambient air, without encapsulation) of CsPbBr3 PSCs with different electrode.
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