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Abstract: This paper proposes a dual-harmonic pole-changing (PC) motor with split permanent
magnet (PM) poles (DHPCM-SPMPs). By adopting a split PM pole structure, the amplitude of the
third PM flux density is increased greatly. Therefore, when a PC winding is adopted to couple
with the fundamental and third PM flux density components, respectively, the proposed motor can
work as a PC PM motor to satisfy operating demands of electric tractors. The design and effect of
the proposed split PM pole structure is introduced first. The winding topology is then designed
according to the slot vector diagrams of the two PM flux density components, and the PC operation
can be realized by electric switches. Aiming at a torque ratio design objective, the PM structure
parameters can be determined based on mathematical derivation, and the speed-widening capability
is proved based on the operation characteristic analysis. Finally, the electromagnetic performance of
the DHPCM-SPMPs is investigated and compared by finite element analysis, which shows the high
torque capability in eight-pole mode and the wide speed range in twenty-four-pole mode benefiting
from the PC operation.

Keywords: dual-harmonic; pole-changing; speed-widening capability; split permanent magnet poles

1. Introduction

Electric tractors (ETs) possess great potential in agriculture to replace diesel tractors
for the merits of non-pollution and low noise [1–3]. In order to achieve high-efficiency op-
eration, permanent magnet (PM) synchronous motors (PMSMs), which have been adopted
widely for electric vehicles, are the most competitive candidates for ETs because of the
characteristics of high torque density and high efficiency [4–8]. However, ETs, as a kind of
special electric vehicle, usually have two main operation modes, namely field operation
and road operation. The former requires high torque traction for ploughing or harvesting,
with a typical operation speed of 2–10 km/h, and the latter is in demand of a relatively
high speed, with a representative speed of 25–40 km/h. It is obvious that the torque and
speed requirements of these two operation modes are significantly different, which results
in difficulty regarding design of PM traction motor for ETs.

Pole-changing (PC), as a conventional method to widen speed range, has been adopted
in induction motors (IMs) for decades to obtain PC-IMs [9,10]. The PC armature wind-
ing of PC-IMs can be reconnected to generate armature fields with different pole-pair
numbers and then couple with different induced excitation fields to realize different op-
eration modes [11,12]. Electrical switches are used mainly to achieve winding connection
transformation [13,14]. Meanwhile, electronic switches can also be adopted to change
current phases and realize PC operation [15]. However, PC-IMs still suffer from inherent
drawbacks, such as low torque density and low efficiency.

PC methodology has also been used in PM motors. Since the excitation and armature
fields of PM motors are independent and must have the same pole-pair number to realize

Energies 2022, 15, 7716. https://doi.org/10.3390/en15207716 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15207716
https://doi.org/10.3390/en15207716
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9504-0202
https://doi.org/10.3390/en15207716
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15207716?type=check_update&version=1


Energies 2022, 15, 7716 2 of 14

effective coupling, the PM excitation field of a PC-PM motor should be able to change its
pole-pair number or have two kinds of harmonics with different pole-pair numbers to
couple with the armature field before and after PC. Correspondingly, two solutions can be
adopted. The first one is the PM memory motor (PMMM) [16,17], in which the magneti-
zation direction of the adopted low-coercivity-force PMs can be altered by magnetizing
current. Thus, the pole-pair number of PM excitation field can be changed [18,19]. The
second solution is adoption of hybrid rotors [20], in which two PM arrays with different
pole-pair numbers are arranged to produce two different PM fields, named dual-harmonic
field. In addition, PC operation can also be realized on field modulation PM motors, in
which armature winding can be wound according to different modulated harmonics. Then,
various operation modes can thus be obtained and the speed range widened [21,22].

In fact, there are harmonics in the PM field of conventional PM motors (CPMMs).
Therefore, CPMMs can work as PC-PM motors in theory when PC armature winding is
equipped. However, the amplitude of the PM field harmonics of CPMMs is usually much
lower than that of the fundamental one; thus, the output performance of the motor will
be greatly reduced when the armature winding is connected according to the pole-pair
number of one of the harmonics. Therefore, a split PM topology is employed in this paper
to propose a novel dual-harmonic PC motor with split PM poles (DHPCM-SPMPs) based
on a nine-slot/eight-pole CPMM. In Section 2, the design principle of the DHPCM-SPMPs
is introduced. In Section 3, the electromagnetic performances are analyzed by finite element
analysis (FEA), which shows that the proposed motor has advantages of high torque output
in the low-speed region and wide speed range based on PC operation.

2. Design Principle of DHPCM-SPMPs
2.1. Topology Design Principle

Figure 1a shows the topology of the 9-slot/8-pole CPMM. The corresponding structure
parameters are shown in Table 1. Eight pieces of surface-mounted PMs are alternately mag-
netized radially and evenly distributed circumferentially on the rotor. The corresponding
no-load air-gap flux density by finite element analysis (FEA) is shown in Figure 1b. The
amplitude of the 4-pole-pair fundamental component is about 1.23 T and is much higher
than those of the other harmonics. It means the PM field can be fully utilized to produce
the relatively high torque output when the winding pole-pair number is 4. However,
the no-load electromotive force (EMF), which is proportional to the speed, will be very
high when the motor works at a high-speed condition. Therefore, the operation speed
is usually limited by a determined DC-bus voltage, which leads to difficulty to adopt a
CPMM directly for ETs.
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Figure 1. 9-slot/8-pole conventional PM motor: (a) motor structure; (b) air-gap flux density waveform
and spectra.
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Table 1. Structure parameters of the two motors.

Parameters CPMM and DHPCM-SPMPs

Main tooth number 9
Rotor pole-pair number, PPM 4

Stator outer diameter, Dso, mm 120
Stator inner diameter, Dsi, mm 72

Air-gap length, g, mm 0.5
Magnet thickness, mm 4.3
Magnet volume, mm3 68,600

Stacking length, la 100
Winding turns per coil, Ncoil 35

Slot factor 0.65
Phase current, A 14

PM remanence, Br, T 1.3
Silicon steel sheet thickness, mm 0.35

It can be seen from Figure 1b that there is also a 12-pole-pair harmonic, namely the
3rd harmonic, in the PM field of the 9-slot/8-pole CPMM. Therefore, when the armature
winding is changed to connect according to the 12-pole-pair harmonic, the motor can
operate as a PC-PM motor and the no-load EMF can be reduced to obtain a wider speed
regulation range. However, the amplitude of the 12-pole-pair harmonic is only about 0.2 T,
so the torque output capability will be greatly reduced.

To increase the amplitude of the 3rd harmonic, the PM topology is developed. The
original evenly distributed PMs, taking the PM1 and PM2 as examples, as shown in Figure 2,
are split into two pieces first, respectively, and are offset from each center line to form the
split PM pole structure. Then, the proposed DHPCM-SPMPs can be obtained, as shown in
Figure 3. The magnetized directions of the split PMs remain the same with their original
ones, so the pole-pair number of the fundamental PM field is unchanged. The principle of
increasing the 3rd harmonic component is discussed as follows.
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Figure 3. Dual-harmonic PC motor with split PMs. (a) Motor structure. (b) Air-gap flux density
waveform and spectra.

The PM magnetomotive force (MMF) distributions of the CPMM and the proposed
DHPCM-SPMPs are shown in Figure 4.
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The PM MMF mathematical models in Figure 4a,b can also be expressed, respectively, as
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where Fag(θ) and Fag
′(θ) are the PM MMF of the CPMM and DHPCM-SPMPs, respectively,

Fagj and Fagj
′ are the amplitudes of the jth harmonic of the two motors, respectively, Fagm

and Fagm
′ are the amplitudes of the air-gap MMF of the two motors, respectively, θPM and

θPM
′ are the angles of each PM of the two motors, respectively, PPM is the PM pole-pair

number, θ1 is the angle between adjacent PMs of the CPMM, θ1
′ and θ2

′ are the angles
between adjacent PMs with the same and opposite magnetization directions, respectively,
of the DHPCM-SPMPs, θ is the mechanical angle, ωm is the mechanical angular speed and
t is time. Thus, the amplitude ratios of the 3rd harmonic to the 1st one of the two motors
can be obtained as
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It can be seen from (3) that κ2 is λ times κ1, and λ can also be expressed as
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where ξ is the pole-arc coefficient.
It can be figured out from (4) that λ is always greater than 1, which makes κ1 > κ2.

Therefore, the amplitude of the 3rd PM MMF harmonic can be increased by the split PM
pole design.

Meanwhile, the air-gap flux density can be expressed as{
CPMM : Bag(θ, t) = Fag(θ, t)Λ(θ)
DHPCM-SPMPs : Bag

′(θ, t) = Fag
′(θ, t)Λ(θ)

(5)

where Λ(θ) is the permeance function, which is the same for the two motors due to the
same rotor and stator structures. Therefore, the flux density amplitude of the 3rd harmonic
can be increased due to the increase in the amplitude of the 3rd PM MMF harmonic.

2.2. Winding Design

In the 9-slot/8-pole DHPCM-SPMPs, the pole-pair numbers of the fundamental com-
ponent and the 3rd harmonic of PM field are 4 and 12, respectively. The corresponding
slot vector diagrams are shown in Figure 5. Indeed, the slot vector diagrams of the two
harmonics are different. Meanwhile, the armature winding is always wound according
to the slot vector diagram, which means the armature winding can be connected and
reconnected based on these two different slot vector diagrams to achieve the PC operation,
as shown in Figure 6, in which a winding pitch of 1 is selected.
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Figure 6. Winding connection. (a) For the fundamental component, 8-pole mode. (b) For the 3rd
harmonic, 24-pole mode.

It can be seen from Figure 6a that, when the winding is wound according to the
fundamental component, U-phase winding contains coil [1~2], [8~9] and [1~9], V-phase
winding contains coil [4~5], [2~3] and [4~3], W-phase winding contains coil [5~6], [7~8]
and [7~6]. By reconnecting the winding, the winding is changed to be wound according
to the 3rd harmonic, where U-phase winding contains coil [1~2], [4~5] and [7~8], V-phase
winding contains coil [2~3], [5~6] and [8~9], W-phase winding contains coil [3~4], [6~7]
and [9~1]. The corresponding winding factors of the 8-pole and 24-pole modes are 0.945
and 0.866, respectively. In addition, winding reconnection can be realized by using electric
switches, which has been used for PC-IMs.

2.3. Split PM Design

First, the torques of the two modes of ETs mentioned in Section 1 are determined by
the torque outputs of the DHPCM-SPMPs, which can be expressed as{

TI =
3
2 PPMIψmI is

TI I =
3
2 PPMIIψmII is

(6)

where TI and TII are the torques of the 8-pole and 24-pole modes, respectively, PPMI = 4
and PPMII = 12 are the pole-pair numbers of the fundamental and 3rd harmonics of PM
field, ψmI and ψmII are the amplitude of the PM flux linkage when the winding is wound
according to the fundamental and the 3rd PM field component, respectively, is is the rated
current and the subscripts of I and II represent the 8-pole and 24-pole modes, respectively.
The ψmI and ψmII in (6) can be expressed as ψmI(t) =

2kdI kpI Nph larsi BImax
PPMI

cos
[

PPMI θτ
2 + θI(t)

]
ψmII(t) =

2kdI I kpI I Nph larsi BI Imax
PPMII

cos
[

PPMII θτ
2 + θI I(t)

] (7)

where kdI and kdII, kpI and kpII are the distribution and pitch factors in the 8-pole and 24-pole
modes, respectively, Nph is the turn number per phase, la is the stacking length, rsi is the
stator inner radius, BImax and BIImax, θI(t) and θII(t) are the flux density amplitudes and
phases of the 8-pole and 24-pole modes, respectively, and θτ is the pitch angle.

According to (3), (5), (6) and (7), the torque ratio can be expressed as

TI
TI I

=
3kdIkpI sin PPMθPM

′

2 cos PPM(θPM
′+θ2

′)
2

kdI IkpI I sin 3PPMθPM ′
2 cos 3PPM(θPM ′+θ2

′)
2

(8)

It can be seen that the torques of the two modes are related to θPM
′ and θ2. It means,

when the torque ratio of the ET is determined, the PM angle and the angle between adjacent
PMs with the same magnetization direction can be determined as well. When θPM

′ is first
determined, θ2 can be adjusted to satisfy the torque requirements of the ET.

The torques ratio TI/TII is designed as 2.5 in this paper, which is a reasonable choice
for the two-mode operation of ETs [23]. The pole-arc coefficient of the CPMM is 0.77, as
shown in Figure 1a. Therefore, θPM

′ can first be determined when the total PM volume and
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thickness in radial direction are unchanged. Then, θ2 can be determined according to the
torque ratio and (8).

As shown in Figure 3b, the air-gap flux density waveform of the DHPCM-SPMPs is
changed from a square wave to a saddle-shaped wave due to the split PM pole structure.
Therefore, the amplitude of the 3rd harmonic is increased to 0.64 T, which increases the
output performances of the DHPCM-SPMPs when the armature winding is connected
according to the 3rd harmonic. According to the corresponding parameters, λ is calculated
to be 4.17, and, according to the spectra in Figures 1 and 3, the simulated λ is calculated as
4.37. It can be seen that the calculated λ by (6) and simulated λ by (7) are different by 4.6%,
which shows the accuracy of the mathematical derivation and analysis.

The corresponding structure parameters of DHPCM-SPMPs are also shown in Table 1.
It can be seen that the main parameters of these two motors are the same, including PM
usage, except PM topology, which provides a fair comparison between the two motors in
Section 3.

2.4. Speed-Widening Capability

The purpose of the PC operation in this paper is to widen the speed range. Therefore,
speed-widening capability is discussed in this section.

In the d-q axis coordinate system, the speed-widening capability is related to the
relative position between the characteristic current and the current limit circle, in which the
current/voltage limit circle and the characteristic current can be expressed as

id
2 + iq

2 = is
2(

id +
ψm
Ld

)2
+ iq

2 =
(

Umax
ωe Ld

)2

ic =
ψm
id

(9)

where id and iq are the d-axis and q-axis currents, ψm is the amplitude of the PM flux linkage
per phase, Ld is the d-axis inductance, Umax is the maximum limiting voltage, ωe is the
electrical speed and ic is the characteristic current.

It can be seen from (9) that the characteristic current ic is related to the PM flux linkage
and winding inductance, so the PM flux linkage and winding inductance of DHPCM-
SPMPs are analyzed here.

First, the PM flux linkage of one coil can be expressed as

ψcoil = BimaxrsilaNcoil

∫ θ2

θ1

cos[iθ + θi(t)]dθ (10)

where Bimax and θi(t) are the amplitude and phase of the ith harmonic, respectively, Ncoil is
the turn number per coil, θ1 and θ2 are the angular positions of the two coil sides. According
to (10), the PM flux linkage amplitudes of the 8-pole and 24-pole modes can be calculated.

The winding inductance of the two modes can be calculated by the turn function and
winding function. The self-inductance Luu and the mutual-inductance Luv can be expressed
as {

Luu = µ0rgla
∫ 2π

0
Tu(θ)Wu(θ)

g0
dθ

Luv = µ0rgla
∫ 2π

0
Tu(θ)Wv(θ)

g0
dθ

(11)

where µ0 is the vacuum permeability, rg is the radius of air-gap, g0 is the air-gap length,
Tu(θ) is the turn function of U-phase, Wu(θ) and Wv(θ) are the winding functions of U-
phase and V-phase, respectively. According to (11), the turn and winding functions of
the two modes can be drawn as in Figure 7. The winding function waveforms of the
two phases in the 8-pole and 24-pole modes are Ncoil/9 and Ncoil/3 lower than the turn
function waveforms, respectively, due to the asymmetry of the armature MMF. Therefore,
the winding inductances of the two modes are different as well according to (11).
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The final calculated PM flux linkage amplitudes and winding inductances are shown
in Table 2. It can be seen that the PM flux linkage amplitudes of the two modes are different
due to PC. Meanwhile, the self- and mutual-inductances also have a change before and after
PC. Since the PM is surface-mounted on the rotor, the motor basically shows a non-salient
pole characteristic. Therefore, the d-axis inductance can be calculated as Luu − Luv. Finally,
the characteristic current ic can be expressed as ψm/(Luu − Luv) and calculated in Table 2.
It can be found that, since the PM flux linkage of 8-pole mode is much larger than that of
24-pole mode, the characteristic current of the former is significantly larger than that of the
latter, although the d-axis inductances of two modes are very close.

Table 2. Calculated PM flux linkage and winding inductances.

Parameters 8-Pole Mode 24-Pole Mode

PM flux linkage amplitude, Wb 0.182 0.025
Self-inductance, mH 2.3 2.1

Mutual-inductance, mH −0.53 −1.03
d-axis inductance, mH 2.83 3.13

Characteristic current, A 64.3 8

Then, the operation characteristic of the motor can be drawn as Figure 8. The charac-
teristic current points of 8-pole and 24-pole modes, A1 and A2, respectively, are outside
and inside the current limit circle.
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According to (9), the maximum speed of 8-pole mode at B3 can be expressed as

ωeI =
Umax

ψmI − LdI is
(12)
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The maximum speed of 8-pole mode is limited due to the large PM flux linkage.
On the other hand, it can be seen from Figure 7 that the voltage limit circle of 24-pole

mode can be infinitely small. According to (9), the speed can be infinite in theory, which
means the speed can be infinite theoretically by PC.

3. Electromagnetic Performance Analysis and Comparison

The meshed models of these two motors are shown in Figure 9. The mesh elements of
the DHCPM-SPMPs and CPMM are 33,034 and 34,786, respectively, which are very close
so as to ensure similar simulating accuracy.
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First, the simulated PM flux linkages of the two modes are shown in Figure 10.
Indeed, the amplitudes of the two modes are 0.178 Wb and 0.025 Wb, respectively, which
are basically consistent with the calculated ones in Table 2. Moreover, there is the third
harmonic in the PM flux linkage of eight-pole mode, of which the amplitude is about
0.018 Wb. On the other hand, the flux linkage waveform of 24-pole mode is very sinusoidal.
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Figure 10. PM flux linkage: (a) 8-pole mode; (b) 24-pole mode. Spectrum of: (c) 8-pole mode;
(d) 24-pole mode.

The simulated inductances of the two modes are shown in Table 3. The inductances by
FEA are basically consistent with the calculated ones in Table 2. The characteristic currents
of eight-pole mode and twenty-four-pole mode are close to the calculated ones, which
shows the accuracy of the calculation.
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Table 3. Inductances by FEA.

Parameters 8-Pole Mode 24-Pole Mode

Self-inductance, mH 2.2 2.4
Mutual-inductance, mH −1 −1.1
d-axis inductance, mH 3.15 3.45
q-axis inductance, mH 3.28 3.55

Characteristic current, A 56.5 7.2

The cogging torque of the DHPCM-SPMPs is shown in Figure 11, of which the peak-
to-peak value is about 1 Nm. The on-load torques of the two modes are shown in Figure 12
when the phase current of 14 A is fed by id = 0 control strategy. Evidently, the average
on-load torques of the two modes are about 15 Nm and 7.1 Nm, respectively. The torque
ripples of the two modes are about 7.3% and 11.3%. It should be mentioned that the
simulated torque ratio of the two modes is about 13% higher than the design objective
because the flux leakage is ignored in the magnetic circuit method.
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Figure 11. Cogging torque of DHPCM-SPMPs.
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Figure 12. On-load torque of two modes. (a) 8-pole mode. (b) 24-pole mode.

To verify the speed-widening capability of DHPCM-SPMPs, the torque–speed charac-
teristic is investigated by FEA when the bus voltage is 250 V. As shown in Figure 13, the
torque–speed curve of eight-pole mode owns a high torque output of 15 Nm, while the
maximum speed can only reach about 2750 rpm. The PC operation is carried out at the
intersection of the two curves. Then, the operation locus is changed to the 24-pole mode
one, and the maximum speed is increased to about 16,000 rpm. This speed is 8.9 times the
base speed and is about 5.8 times the maximum speed in eight-pole mode.
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Figure 13. The torque–speed curves.

The efficiency maps of the two modes are shown in Figure 14. The maximum efficiency
of eight-pole mode reaches 97.5%, while that of 24-pole mode is 91% because of the higher
iron loss caused by the higher magnetic field frequency. The high efficiency area (>80%),
which is the main operation region for PM motors, shows values of 89.9% and 43.4% in
eight-pole and twenty-four-pole modes, whose maximum speeds can reach 2700 rpm and
5300 rpm, respectively. The envelope curves of eight-pole and twenty-four-pole modes are
consistent with those in Figure 13.
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Figure 14. The efficiency maps of the two modes. (a) 8-pole mode. (b) 24-pole mode.

To indicate the fitness of the proposed motor on the ET, the operation parameters of the
motor and the ET are summarized in Table 4. It should be mentioned that the transmission
system is simplified as a fixed-ratio gearbox with a gear ratio of 30. The diameter of the
driving wheels is 0.5 m in this paper. The maximum speed of the tractor can be increased
from 17 km/h to 33 km/h by the PC operation when the motor works in high efficiency
areas. The final performance parameters are shown in Table 5.

Table 4. Operation parameters of DHPCM-SPMPs and ET.

Mode
Motor Tractor

Speed Range Maximum Efficiency Speed Range

8-pole 220–2700 rpm 97.5% 1.4–17 km/h

24-pole 630–5300 rpm 91% 4–33 km/h
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Table 5. Performance parameters of DHPCM-SPMPs.

Parameters
DHPCM-SPMPs

8-Pole Mode 24-Pole Mode

Average Torque, Nm 15 7.1
Torque per volume, kNm/m3 13.2 6.3

PM volume, mm3 68,600
Torque per PM, kNm/m3 218 103
Current density, A/mm3 5

Efficiency @250 V 97.5% 91%
Maximum speed @250 V, rpm 2750 16,000

To demonstrate the advantages of the proposed DHPCM-SPMPs, it is compared with
the CPMM in Figure 1a. As mentioned before, the main structure parameters of the two
motors except PM topology are the same to carry out a reasonable comparison.

First, the torque performance of the CPMM is calculated by FEA and shown in
Figure 15. It can be seen from Figure 15a that the peak-to-peak value of the cogging
torque is about 1.1 Nm, which is 0.1 Nm higher than that of DHPCM-SPMPs. The average
on-load torque shown in Figure 15b is about 17.1 Nm, which is 2.1 Nm higher than that
in eight-pole mode of DHPCM-SPMPs. This is due to the higher fundamental component
of PM flux density, which is about 1.2 T in Figure 1b, while the fundamental component
of PM flux density is reduced to about 1 T because of the adopted split PM pole design
in the DHPCM-SPMPs. However, the torque density in eight-pole mode of DHPCM-
SPMPs reaches 13.2 kNm/m3, as shown in Table 5, which is still high. The torque ripple
of the CPMM is about 9.4%, which is a little higher than that of eight-pole mode of the
proposed motor.
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Figure 15. Torque performance of CPMM. (a) Cogging torque. (b) On-load torque.

The efficiency map of the CPMM is shown in Figure 16. The maximum efficiency
of CPMM is 96.5%, which is lower than that of DHPCM-SPMPs in eight-pole mode, and
the high efficiency area (>80%) of CPMM is about 85%. Although the maximum torque
output of CPMM is higher, the speed range is limited. As can be seen in Figure 17, the
maximum speed of DHPCM-SPMPs can reach 16,000 rpm, which is about 5.8 times the
maximum speed of CPMM. Meanwhile, although the CPMM owns a high torque output
area as Region 1, DHPCM-SPMPs also has an extra area as Region 2, which is much larger
than the former. Region 2 benefiting from PC operation makes DHPCM-SPMPs own a
much wider speed range.
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4. Conclusions

In this paper, a novel nine-slot/eight-pole DHPCM-SPMPs is proposed. First, the
design principle of DHPCM-SPMPs is introduced. The split PM pole structure is adopted
so that the amplitude of the third harmonic of PM flux density is increased to improve the
output capability of 24-pole mode. Then, the electromagnetic performance of DHPCM-
SPMPs is analyzed by FEA, which demonstrates high torque capability in eight-pole mode
and wide speed range in twenty-four-pole mode. The efficiency maps show that the
maximum efficiencies of eight-pole and twenty-four-pole modes can reach 97.5% and 91%.
In addition, the operation parameters of the proposed motor and an ET are summarized,
which show the fitness of the motor on the ET. Finally, the DHPCM-SPMPs is compared with
the CPMM. The results show that the maximum speed of the proposed can be increased by
5.8 times by PC operation.
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