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Abstract: Formaldehyde (HCHO), a carcinogenic carbonyl compound and precursor of tropospheric
ozone, can be found in vehicle exhaust. Even though the continuous monitoring of HCHO has
been recommended, the real-world emissions from the road transport sector are not commonly
available. The main reason for this knowledge gap has been the difficulty to measure HCHO in
real-time and during real-world testing. This, for instance, increases the uncertainty of the O3

simulated by air quality models. The present study investigates real-time HCHO measurements
comparing three Fourier Transform InfraRed spectrometers (FTIRs) and one Quantum Cascade Laser
InfraRed spectrometer (QCL-IR) directly sampling from the exhaust of one gasoline passenger car,
one Diesel commercial vehicle and one Diesel heavy-duty vehicle, all meeting recent European
emission standards (Euro 6/VI). Non-negligible emissions of HCHO were measured from the Diesel
light-duty vehicle, with emissions increasing as temperature decreased. Relatively low emissions
were measured for the gasoline car and the Diesel heavy-duty vehicle. The results showed a good
correlation between the different instruments under all the conditions tested (in most cases R2 > 0.9).
Moreover, it was shown that HCHO can be accurately measured during on-road and real-world-like
tests using instruments based on FTIR and QCL-IR technologies.

Keywords: transport emissions; HCHO; FTIR; QCL-IR; on-road testing; laboratory testing

1. Introduction

Formaldehyde (HCHO) is a highly toxic carbonyl compound that has been categorized
as carcinogenic group 1 (i.e., carcinogenic to humans) by the IARC [1]. The Commission
adopted a Binding Occupational Exposure Limit (OEL) for formaldehyde (inhalation) of
0.3 ppm as the 8 h Time-Weighted Average and 0.6 ppm as the Short-Term Exposure Limit
(STEL) (15 min) in 2019 [2]. In addition to negatively impacting air quality, HCHO is also
a precursor of tropospheric ozone and peroxyacetyl nitrates (PAN) [3–5]. The transport
sector is an important source of HCHO. HCHO is found in vehicle exhaust as a result
of incomplete combustion of fuels [6]. HCHO emissions from transport have been often
associated with the use of methanol or CNG as fuel [7,8]. Nonetheless, some recent studies
have also shown non-negligible emissions of HCHO coming from Diesel vehicles [9]. It has
been suggested that in Diesel-fuelled engines HCHO is largely formed in the combustion
process from fuel fragments produced in the initial oxidative combustion of the fuel [9].

While some HCHO vehicle emission factors have been reported [6–10], the overall
contribution from the transport sector remains poorly understood. This is mainly due to
the difficulty to measure real-time and real-world emissions of HCHO. In fact, vehicular
HCHO emissions are commonly quantified using off-line techniques (namely high-pressure
liquid chromatography (HPLC) coupled with ultraviolet diode array detector (UV-DAD))
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on samples extracted during tests performed in the laboratory over a driving cycle [6].
This methodology, described in CARB Method 1004 and the UNECE Global Technical
Regulation No15, provides an overall picture of the emissions of a vehicle over the full
test, but it does not allow to assess its real-time emissions. This leads to large discrepancies
on the HCHO emission factors reported by the different studies [10]. In turn, this results
in high uncertainty in the actual HCHO emissions, decreasing the reliability of the O3
simulated by air quality models [11].

In a previous study, we addressed this knowledge gap by investigating real-time
measurement techniques that measured HCHO in the laboratory [12]. The study showed
that FTIR and proton transfer reaction mass spectrometry (PTR-MS) can accurately measure
HCHO from diluted exhaust sampled from a constant volume sampler (CVS). The mea-
surements were in good agreement with the reference method CARB Method 1004. Geng
et al. [8] also suggested using FTIR for vehicle emission applications during laboratory
testing.

The introduction of Portable Emission Measurement Systems (PEMS) during type-
approval and in-service conformity of heavy-duty and light-duty vehicles shows a clear
tendency to move from pure laboratory testing towards real-time real-world tailpipe
emission measurement. When compared to a laboratory diluted measurement from a CVS,
measuring directly from the vehicle’s tailpipe comes with a series of challenges, the most
important of which is for the instruments to accurately measure the target compounds at
higher water concentrations from very dynamic exhaust flow [13].

In a recent study, Zhu et al. [10] presented a portable system to measure HCHO with
a limit of detection as low as 25 ppmv for a 10 min measurement under typical sampling
conditions. However, the time resolution was approximately 100 s. In order to properly
quantify the emissions, a current EU (European Union) regulation [14] requires that PEMS
presents a measurement rate of at least 1 Hz and rise times lower than 3 s. This allows a
reasonable alignment of the vehicle exhaust flow and the measured concentration.

The present study compares the real-time HCHO measurements at different ambient
conditions of three Fourier Transform InfraRed spectrometers (FTIRs) and one Quantum
Cascade Laser InfraRed spectrometer (QCL-IR) sampling from the tailpipe of one gasoline
passenger car, one Diesel light-duty commercial vehicle and a Diesel heavy-duty vehicle, all
meeting recent EU emission standards (i.e., Euro 6 and Euro VI). Finally, we characterized
real-time real-world emissions of HCHO measuring on the road with the QCL-IR.

2. Methods

Three vehicles were tested at the Vehicle Emissions Laboratories (VELA) of the Joint
Research Centre (JRC) in Ispra, Italy, including one gasoline passenger car (hereinafter
GV), one Diesel light-duty commercial vehicle (DV) and one N3 heavy-duty Diesel vehicle
(hereinafter HDV). The specifications of the three vehicles can be found in Table 1. The
vehicles met recent emission standards. Thus, the GV and the DV were Euro 6d and the
HDV was a Euro VI-E. DV and HDV were tested using B7 commercial fuel and the GV
used commercial E10. It must be noted that the GV was equipped with a pristine (i.e., not
degreened) three-way catalyst (TWC).

The GV and the DV were tested at VELA2 over the type-approval Worldwide har-
monised Light-duty vehicles Test Cycle (WLTC) at 23 ◦C and 0 ◦C. For the tests with the GV
and the DV the road load coefficients were estimated to be F0 = 35.64 N, F1= 0.449 N (km/h)
and F2 = 0.0311 N/(km/h)2 (inertia 1334 kg) and F0 = 51.2 N, F1 = 0.169 N (km/h) and
F2 = 0.0533 N/(km/h)2 (inertia 2116 kg), respectively. Moreover, the DV was also tested
on the road following the Real Driving Emissions (RDE) procedure [14]. On the other
hand, the HDV was tested at VELA7 over the World Harmonised Heavy-duty Vehicle
Cycle (WHVC). The WHVC is a transposition on the chassis dyno of the homologation
type-approval cycle of the heavy-duty engines (WHTC—World Harmonized Transient
Cycle). Due to the presence inside the test cell of devices sensitive to cold temperatures, the
minimum temperature that was possible to reach with the HDV was 5 ◦C. Thus, the HDV
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was tested over the WHVC at 23 ◦C and 5 ◦C. Furthermore, the HDV was also tested in
the laboratory over a cycle that mimics a real-world on-road test (hereinafter RWT). This
real-world test was previously performed with a vehicle presenting similar features, and
during the test the vehicle speed and the road grade were recorded. This information was
then inserted in the in-house automation software of the test cell, which allowed replicating
the real-world route parameters in the laboratory. Figure 1 illustrates the speed and altitude
(when relevant) profiles for each test performed, namely: WLTC, RDE, WHVC and the
RWT.

Table 1. Summary of vehicles tested.

Vehicle ID GV DV HDV

Fuel Gasoline Diesel Diesel
Injection PF DI DI

ICE displacement (cm3) 1398 1968 12,800
Emission control system TWC EGR, DOC, DPF, SCR, ASC EGR, DOC, cDPF, SCR, ASC

Registration 2019 2019 2021
Mileage (km) ~35,000 ~52,000 ~22,000

Vehicle category M1 N1 Class III N3
Euro standard Euro 6d-TEMP Euro 6d-TEMP-EVAP-ISC Euro VI step E

ICE: internal combustion engine, PF: port fuel, DI: direct injection, TWC: three-way catalyst, EGR: exhaust gas
recirculation, DOC: diesel oxidation catalyst, DPF: diesel particulate filter, cDPF: catalysed diesel particulate filter,
SCR: selective catalytic reduction, ASC: ammonia slip catalyst.
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Figure 1. Speed profile of the different tests performed. Altitude profile is reported for the RDE test.

The road load coefficients for the HDV were estimated to be F0 = 1460 N and
F2 = 0.247 N/(km/h)2 for inertia of 29,000 kg, corresponding to ~59% of maximum pay-
load. The WLTC and WHVC were performed in cold- and hot-start conditions. Cold-start
tests should be understood as tests starting with the vehicle coolant temperature compara-
ble to the ambient one and hot-start tests as tests where the vehicle coolant temperature is
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>70 ◦C. Unless otherwise stated, duplicated tests were carried out over all the test cycles
and on the road and the emissions reported are the average of the tests performed.

Each laboratory was equipped with different FTIR instruments (Nicolet Antaris IGS
Analyzer—Thermo Electron Scientific Instruments LLC, Madison, WI, USA)—SESAM—
(SESAM FTIR v4—hereinafter FTIR-1—for VELA2, and SESAM i60 FT—hereinafter FTIR-
2—for VELA7) comprising a multipath gas cell with a 2 m optical path, downstream
sampling pump (6.5 L/min sampling rate), Michelson interferometer (spectral resolution:
0.5 cm−1, spectral range: 650–4000 cm−1), a liquid-nitrogen-cooled mercury cadmium
telluride detector, a sampling system consisting of heated pre-filter and PTFE sampling
line (191 ◦C). These instruments, sampling directly from the vehicles’ tailpipe, had an
acquisition frequency of 1 Hz, allowing for real-time measurement of HCHO emissions.
Although both instruments presented similar basic characteristics, the FTIR-2 was an
improved version of FTIR-1, with a better signal to noise ratio at its detector. For instance,
FTIR-2 had the same optical path but a newer optical bench controller board with an
improved digitizer to obtain better signal processing for cleaner quantification during
dynamic measurements. In addition, FTIR-2 had a shorter service life (i.e., total period of
use since its purchase) with respect to FTIR-1 and its components (source, detectors, etc.).
The FTIR-1 and FTIR-2 estimated LoDs, 3× standard deviation, of the instrument used in
this test were ~1.8 ppm and ~0.6 ppm, respectively, at an acquisition frequency of 1 Hz. All
the used FTIR instruments were specifically designed for vehicle emissions measurement
and include dedicated libraries for the components measured.

HCHO emissions of all the tests performed with the three vehicles were also mea-
sured using a dedicated laboratory-grade QCL-IR instrument (HORIBA XLA-13H, Horiba,
Kyoto, Japan —hereinafter QCL-IR). The QCL-IR implements Infrared Laser Absorption
Modulation (IRLAM) technology, which is based on infrared absorption spectroscopy, and
exploits a Quantum Cascade Laser (QCL) as a light source. More information can be found
in Shibuya et al. [15]. It was made of three main units—a sampling system, analyser and
PC (user interface). The sampling system consisted of a 6 m long heated line at 113 ◦C, to
ensure fast response time, low adsorption and no condensation and to prevent unnecessary
chemical reactions. It featured a polytetrafluoroethylene (PTFE) inner tube with an in-line
filter. The analyser was equipped with a compact gas sampling cell, called the Herriott
Cell, with an optical path length of 12.4 m and an internal volume of 250 cm3, which was
operated at 113 ◦C and 26 kPa. The wavelength of the QCL for measuring HCHO was
around 5.7 µm. The QCL modulates the wavelength over a range of about 0.5 cm−1 and
acquires an absorption signal with a spectral resolution of about 0.001 cm−1, corresponding
to the laser linewidth. It included a non-cooled InAsSb photovoltaic detector. A dedi-
cated pump provided a sampling flow rate of approximately 8 L/min. This system setup
was characterized by a measurement range between 0–100 ppm. The instrument used an
acquisition frequency of 10 z [16] and the estimated LoD, 3× standard deviation, of the
instrument used in this test was 0.1.

Although this is a laboratory-grade instrument, the QCL-IR was also used during the
tests performed on the road with the DV. The DV, being a light commercial vehicle, allowed
carrying the needed setup without problems of space or payload. The setup included
the QCL-IR and its heated filter, the heated sampling line and the power supply, which
comprised a set of batteries and two dedicated power inverters. The vehicle exhaust flow
was acquired using a Portable Emissions Measurement Systems (PEMS) AVL MOVE (AVL,
Graz, Austria). Before each on-road test the QCL-IR was conditioned using the grid to
optimize the minimize usage.

The tests performed with the HDV also included a third FTIR (SESAM i60 FT SII,
Nicolet Antaris IGS Analyzer—Thermo Electron Scientific Instruments LLC, Madison,
WI, USA—hereinafter FTIR-3). The FTIR-3 was based on the same spectrometer platform
of the FTIR-2 instrument, but with faster 5 Hz scan mode, multi-reflection gas cell with
3.2 m optical path length and a volume of 140 cm3 to ensure an 8 L/min sample flow rate
and analyser response time of 1.2 s at 80 kPa. The calibration range of the instrument
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was set to 0–500 ppm for HCHO to also cover pre-catalyst emission measurements. With
the use of multivariate classical least squares algorithm between 2600–2850 cm−1, the
spectra evaluation method could distinguish and quantify between formaldehyde and
acetaldehyde with an estimated LoD for HCHO of 0.3 ppm at 5 Hz concentration data
update frequency.

The four instruments (FTIR-1, FTIR-2, FTIR-3 and QCL-IR) were factory-calibrated. In
particular, FTIR-3 and QCL-IR were calibrated in their respective factories right before the
start of the experimental campaign.

The HCHO calibration function in the FTIR evaluation methods are proofed and
known to be linear, therefore FTIR-3 was checked and adjusted with a calibration gas
cylinder of 21 ppm with ±10% analytical uncertainty form Air Liquide (Paris, France) at
one calibration point. The formaldehyde compound is a reactive gas, and the reference
gas cylinder is available with a best measurement uncertainty of only ±10% from the gas
suppliers.

The relative high calibration stability of the FTIR technique was used to validate and
reject unstable HCHO gas cylinder standards in comparison with existing reference library
spectra. A pure fresh formaldehyde solution (wt. 37%) and a syringe pump vaporizer were
used to generate and calibrate higher concentration standard spectra between 50–500 ppm
in a nitrogen gas flow.

For the QCL-IR, a gas cylinder of 100 ppm HCHO from Air Liquide and manufactured
by Airgas (Radnor, PA, USA) was used to generate the calibration curve. With formaldehyde
being an unstable gas, to increase the stability, AirLiquide provide cylinders which undergo
a special treatment on the inside. Additionally, the absorption spectrum of the cylinder is
measured periodically by HORIBA to confirm the gas stability.

The FTIR-1 and the QCL-IR were used for test performed with the DV and the GV,
while the tests with the HDV were carried out with the FTIR-2, FTIR-3 and QCL-IR. The
instruments were zeroed daily, however, no further day-to-day calibration was conducted
during the experimental campaigns. This was due to the difficulties to obtain stable
calibration gas cylinders. Although studies indicate that HCHO gas mixtures in cylinders
showed stability, a threshold of <1% for 1 year [17], it was not possible to obtain a calibration
gas with at least 50 ppm of HCHO by the time the campaign was performed.

Emission rates (g/s) were calculated following the RDE regulation, hence, the data
were not filtered. In the case that the final emission was negative it was reported as zero.

For compounds such as HCHO it is common to see that a dedicated threshold is
applied to the concentration reading to eliminate the contribution of the background noise
to the emissions. In the case of the instruments used in the present study, these thresholds,
which correspond to 3× standard deviation of the concentrations measured during those
tests where HCHO was not present in the exhaust (e.g., hot tests), were QCL-IR: 0.2 ppm;
FTIR-1: 1.8 ppm; FTIR-2: 0.6 ppm and FTIR-3: 0.3 ppm. In order to evaluate the differences
resulting from this different data-processing approach, the calculations were also performed
using this approach.

Giving the good correlation obtained between the different instruments, and since the
QCL-IR was the only instrument present in all the tests performed, the emissions presented
in the next section are those obtained using this instrument. The HCHO masses used in the
discussion were obtained using the concentration as measured, i.e., without applying the
described threshold just mentioned.

3. Results and Discussion

Figure 2 shows the HCHO emission profiles of the DV and GV during the WLTC at 23
and 0 ◦C measured with the FTIR-1 and the QCL-IR. It illustrates that the initial HCHO
peak reaches ~25 ppm and ~80 ppm for the DV at 23 and 0 ◦C, respectively, and ~5 ppm
for the GV at both temperatures. Figure 3, on the other hand, shows the good correlation
(R2 > 0.9) of the HCHO concentrations measured by the QCL-IR and the FTIR-1 from the
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GV and the DV during the WLTC tests. The concentrations measured presented an ~8%
difference (based on the slope).
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Figure 3. Correlation of the HCHO concentrations measured by FTIR-1 and the QCL-IR from the DV
and the GV during the WLTC at 23 and 0 ◦C.

Although the instruments presented a very good correlation, it is clear from Figure 2,
and also for the hot tests shown in Figure 4, that the FTIR-1 presented a noisier signal
(approx. ±1.2 ppm) of the instruments used. This made it impossible to distinguish
between the FTIR-1 noise and the GV’s HCHO emissions reported by the QCL-IR at around
time ~50–200 s, right after the catalyst light-off. The noisier emission profile can be related
to a combination of reasons, including but not limited to the older FTIR instrument dated
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from 2007 with not up-to-date electronics and components compared to the current FTIR
spectrometer version to achieve low HCHO detection limits.
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Emissions of HCHO are linked to oxidation processes of unburned fuel on exhaust
after-treatment systems, TWC for gasoline vehicles and mainly the Diesel oxidation catalyst
(DOC) for Diesel vehicles. The extent of HCHO emissions will depend on the after-
treatment efficiency and light-off time. Figure 2 shows that, for the DV, colder ambient
temperature leads to higher emissions and for a longer period of time. Higher emissions of
unburned HC at sub-zero temperatures have been widely reported for both gasoline and
Diesel vehicles [18–21]. The reason for these higher emissions may be worse combustion
and less efficiency with longer light-off times of the after-treatment systems.

In addition to being very low (max peak ~5 ppm), the HCHO measured from the
GV presented some interesting features. The emissions did not increase when decreasing
the ambient temperature, which is a pattern commonly observed for gasoline vehicles
equipped with TWC [22,23]. This may be linked to the pristine (not degreened) TWC
mounted on the GV that ensured a higher oxidation efficiency of the unburned fuel gases.
Additionally, an interesting observation was the continuous presence of HCHO following
the cold-start peak and right after the catalyst light-off, between ~50–200 s, while for all
other hydrocarbons, these emissions are expected to be absent after the TWC light-off.
The HCHO was only noticed between ~50–200 s thanks to the low noise presented by the
QCL-IR.

The DV emitted 5 mg of HCHO over the entire WLTC at 23 ◦C. However, the emissions
increased to 56 mg when tested at 0 ◦C, 46 mg of which was released in the first 400 s.
As illustrated in the example provided in Figure 4, for the DG and the HDV, no HCHO
emissions were measured during hot operation. The figure also shows the different profiles
recorded with the QCL-IR and the FTIR-1 when measuring Diesel exhaust. The DV’s
HCHO emissions were at least one order of magnitude lower than those reported for a
series of 2012–2015 light-duty Diesel vehicles tested over the Federal Test Procedure (FTP)
using different fuel blends [24]. Nonetheless, the emissions were comparable with those
reported for Euro 6 Diesel vehicles [25,26].

During the real-world on-road tests performed, DV presented a similar emission
profile (see Figure 5) as the one measured during the laboratory testing at 0 ◦C. The
instrument did not show drift during the entire length of the tests, and the two on-road
tests performed showed consistent and comparable HCHO emissions. All this suggests
that, if scaled down to an appropriate dimension and weight, the instrument could also be
used for on-road applications with light-duty vehicles.
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Figure 5. Real-time HCHO emission concentrations measured using the QCL-IR from the DV during
two on-road tests. Right panel illustrates a close-up of the first 1000 s of the same tests and was
introduced for visualization purposes.

The on-road tests were performed at an ambient temperature of ~11 ◦C. As expected,
the maximum concentrations of HCHO (~68 ppm) fall within those obtained during the
tests performed in the laboratory at 0◦C and at 23 ◦C. The vehicle emitted 50 mg over the
~100 min of the on-road test (89 km), most of which (37 mg, i.e., 74% of the total) was
emitted in the first 400 s (~2.5 km).

The HCHO concentrations measured from the HDV during the WHVC at 5 ◦C and
23 ◦C were lower than those measured from the DV. As indicated in Section 2, during the
tests performed with the HDV, the emissions of HCHO were measured with two FTIR
systems (FTIR-2 and FTIR-3) and the QCL-IR. As shown in Figure 6 by the emission profile
illustrated and the example of the correlation plot, there is good agreement between the
FTIR-2, the FTIR-3 and the QCL-IR, even at these very low concentrations. Although a ~20%
average deviation from linearity was obtained when comparing the HCHO concentrations
from the FTIR-3 and the QCL-IR, the absolute difference is lower than 0.5 ppm. Comparing
the concentrations measured by FTIR-3 and the QCL-IR, we obtained an R2 > 0.9 R2 > 0.8,
achieved when the FTIR-3 and the QCL-IR were individually compared to the FTIR-2. A
comparable agreement was obtained in the RWT, in which similar emission concentrations
were recorded.
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Figure 6. (Left panel) HCHO emission profiles of the HDV during the WHVC at 5 ◦C. (Right panel)
Correlation of the HCHO concentrations measured by FTIR-3 and the QCL-IR from the HDV during
the first 450 s of the WHVC at 5 ◦C.

Overall, HCHO from the HDV was relatively low, in agreement with a previous study
on a heavy-duty Diesel Euro VII demonstrator [27] and ~50% lower than a 2010 Diesel
engine only equipped with DOC/DPF as after-treatment [28]. Nonetheless, although the
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concentrations measured from the HDV at 23 ◦C were lower than those measured from the
DV at the same ambient temperature, the total mass of HCHO emitted by the HDV during
the first 400 s (17 mg) was higher than the one of its light commercial counterpart (2 mg),
due to the higher exhaust flow of the HDV and its longer emitting period (about 400 s for
the HDV and less than 100 s for DV). As the ambient temperature decreased to 5 ◦C, the
emissions of the HDV during the first 450 s increased to 25 mg. As shown in Figure 7, most
of the HCHO measured during the RWT test performed at 5 ◦C also took place within the
first 400 s, reaching 20 mg. Interestingly, in this case the emissions of the HDV were lower
than those measured from the DV during the on-road test, even if the latter started at a
higher ambient temperature. During hot-start tests, no HCHO emissions were measured.
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Same data zoomed to 1800 s.

The three instruments presented a similar agreement during the RWT (Figure 7), and
as for the QCL-IR during the RDE test, none of them showed drift issues during this long
test. In line with what was observed during the RDE tests performed with the DV using the
QCL-IR, this suggests that similar systems could be used on heavy-duty vehicles during
analogous tests performed on the road without losing accuracy.

The RDE test procedure [14], which includes tailpipe measurement of pollutants,
prescribes all concentrations measured (including those with a negative sign) to be used
during the calculation of the emission factors. In the case that the obtained value is negative,
the emission factor is considered to be zero. In cases such as the HCHO, and as displayed
in Table 2, the noise of the measurement could artificially impact the final emitted mass
even for small values such as the one of the QCL-IR (0.2 ppm) if it is systematically positive
or negative. If the noise is systematically positive, it would add mass to the final result
(e.g., DV HOT QCL-IR 2 mg instead of 0 mg applying the threshold). Likewise, if it is
systematically negative, it would subtract mass from the final result (e.g., all HDV tests
when comparing total mass and the mass obtained during the first 400 s, which are shown
in brackets in Table 2). On the other hand, calculating the mass emitted using a threshold
value on the concentration would only consider actual emission peaks. However, it would
require the threshold value to be obtained for each individual instrument and often over
time, as this could change due to source aging, for instance. Moreover, if the applied
threshold is a large value, it could result in the underestimation of the final emissions.

Overall, the differences in the emission factors (units: mg/km or mg/kWh) obtained
across the four instruments used for all the tests performed were small, within 1 mg/km
(or mg/kWh).
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Table 2. Total HCHO emissions (mg) during the WLTC tests performed with GV and DV, the WHVC
tests performed with HDV and the RDE and RWT tests performed with DV and HDV, respectively.
The values in brackets correspond to the HCHO (mg) measured in the first 400 s of the tests for the
GV and the DV. Italic text is used to indicate the values that were calculated applying a threshold on
the measured concentrations corresponding (QCL-IR, 0.2 ppm; FTIR-1, 1.8 ppm; FTIR-2, 0.6 ppm and
FTIR-3, 0.3 ppm—see Section 2).

QCL-IR FTIR-1 FTIR-2 FTIR-3 QCL-IR * FTIR-1 * FTIR-2 * FTIR-3 *

GV 0 ◦C 5 (2) 0 (1) - - 4 0 - -
GV 23 ◦C 3 (2) 0 (1) - - 1 1 - -
DV 0 ◦C 56 (46) 41 (39) - - 52 38 - -
DV 23 ◦C 5 (3) 7 (3) - - 4 2 - -
DV HOT 2 0 - - 0 0 - -
DV RDE 50 (37) - - - 42 - - -

HDV 5 ◦C 11 (25) - 22 (29) 15 (33) 26 - 24 33
HDV 23 ◦C 0 (17) - 0 (15) - 9 - 6 -
HDV HOT 0 - 0 0 0 - 0 0
HDV RWT 12 (20) - 2 (21) 41 (31) 19 - 15 30

4. Conclusions

Real-time HCHO emissions were measured using three Fourier Transform InfraRed
spectrometers (FTIRs) and one Quantum Cascade Laser InfraRed spectrometer (QCL-IR)
from the exhaust of three vehicles, one gasoline passenger car (GV), one Diesel light-duty
commercial vehicle (DV) and one Diesel heavy-duty vehicle (HDV), all three meeting the
latest European emission standards (i.e., Euro 6d and Euro VI-E).

While emissions from the GV were low under all the studied conditions, non-negligible
emissions of HCHO were measured from the DV and HDV, mainly occurring in the first
400 s of operation. The DV and HDV yielded higher emissions when tested at colder
temperatures than 23 ◦C.

The concentrations of HCHO measured with the four instruments resulted in a good
correlation, in most cases with R2 > 0.9. The concentrations measured presented ~8%
deviation for the measurements carried out with the FTIR-1 and the QCL-IR on the DV and
the GV. In the case of the HDV, where the measurements were performed with the FTIR-2,
the FTIR-3 and the QCL-IR, the difference was 20% but in a 1–2 ppm range.

Both technologies, FTIR and QCL-IR, showed the capability to accurately measure
HCHO real-time emissions during real-world-like tests performed with heavy-duty vehi-
cles in the laboratory. Moreover, it was also shown that the QCL-IR can be used to measure
HCHO during on-road testing of light commercial vehicles that can accommodate this
laboratory-grade instrument and carry its weight. In order to be used in passenger cars, the
instrument would need to be downscaled and equipped with a dedicated power supply.
Such instruments would also need to be tested for vibrations and could need better thermal
protection for the wide ambient temperatures that can be encountered.
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