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Abstract: Lithology is one of the critical parameters influencing drilling operations and reservoir
production behavior. Well completion is another important area where facies type has a crucial
influence on fracture propagation. Geological formations are highly heterogeneous systems that
require extensive evaluation with sophisticated approaches. Classification of facies is a critical
approach to characterizing different depositional systems. Image classification is implemented as
a quick and easy method to detect different facies groups. Artificial intelligence (AI) algorithms
are efficiently used to categorize geological formations in a large dataset. This study involves the
classification of different facies with various supervised and unsupervised learning algorithms. The
dataset for training and testing was retrieved from a digital rock database published in the data brief.
The study showed that supervised algorithms provided more accurate results than unsupervised
algorithms. In this study, the extreme gradient boosted tree regressor was found to be the best
algorithm for facies classification for the synthetic digital rocks.

Keywords: supervised learning; unsupervised learning; classification

1. Introduction

Drilled lithology is among the most significant real-time factors influencing the de-
cision in drilling operations, useful for the prediction of drilling fluid lost circulation,
parameter optimization in drilling, reducing shale problem, and maintaining wellbore
stability. Lithology identification can be divided into direct and indirect measurements.
Logging while drilling (LWD) tools and surface measurements are directly measured to
optimize drilling operations. Surface measurements include analysis of cores and drilling
cuttings, which are time-consuming and expensive. Some drilling parameters such as the
rate of penetration (ROP), cuttings analysis, hook load, weight on bit (WOB), and surface
torque are used in intelligence models to estimate lithology indirectly.

LWD tools, placed 20–30 m above the drilling bit in the drill string, provide crucial
information about reservoir characteristics and downhole conditions. The most widely
used LWD tools are density, caliper, resistivity, and neutron log. They are attributed to
lithology types drilled in the wellbore. However, due to their place in the drill string,
LWD tools provide information about previously drilled lithology, which might not be
considered real-time lithology.

Surface measurement involves cutting analysis and drilling hydraulics. Similar to
LWD, cutting analysis provides slightly delayed information about real-time lithology.
Drilling hydraulics such as WOB, surface torque, and ROP information can be attributed
to drilled lithology in real-time. Machine learning techniques are useful in constructing
predictive models for lithology prediction from drilling data. Like the cutting analysis
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technique, the image process of core samples is used for lithology classification using core
CT images. The conventional CT image interpretation, such as direct visual inspections by
geologists, is time-consuming and a subjective interpretation that might lead to wrong clas-
sifications. In addition, the extraction of detailed core data requires high capital investment.
Therefore, machine learning algorithms are employed to identify lithology types quickly.
The authors of [1] used convolutional neural networks (CNN) to classify the lithology of
whole core CT scans. The proposed workflow for lithofacies classification is shown In
Figure 1. Reprocessing of 2D images is the first step of the workflow. The next step is
labeling images depending on identical geological descriptions. The CNN model uses
the labeled images for training. As a standard application, the data set is divided into
80 and 20% for training and testing, respectively. The trained model is then validated
against lithofacies, and the model classifies the lithofacies based on images. To increase the
performance of CNN, image augmentation is performed. As a similar working principle,
Ref. [1] classified the lithology of core CT scan images using a deep learning approach.
In this case, they used 3D information as inputs in CNN. The performance of the trained
classifier was evaluated with an untrained set of images to estimate formation. They used
sub-cubes instead of full three-dimensional images resulting in a higher amount of training
images; therefore, a smaller interval of the well is needed for model training. The prediction
results show that the classifier generalizes well, achieving an overall accuracy of 0.97. The
calibrated model showed good performance pixelwise and in terms of heterogeneity of
high resolution.
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Figure 1. Proposed workflow for lithofacies classification. Reprinted with permission from [1],
licensed under Creative Commons Attribution 4.0 International License. No changes were made to
the original image.

The interaction between drilling bits and formation is different for lithology types.
The authors of [2] used deep learning to classify drilled lithology in real-time. They used
surface-measured drilling parameters and LWD logs as inputs to classify lithology with
multilayer perceptron (MLP) models. They estimated four different lithologies: sandstone,
calcite cemented sandstones, muddy micaceous sandstone, and micaceous sandstones.
Since LWD measurements are not available in real-time, surface measurements were used
as an intermediate step to estimate virtual logs. The input parameters to estimate the
virtual logs were WOB, RPM, torque, hook load, and ROP. Poor results were obtained for
the caliper and resistivity log. The MLP model included five hidden layers, with 10 nodes
for each layer. The performance of the proposed model on the calcite cemented sandstone
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class was high because of its hardness, which made it easier to distinguish. The other three
lithologies showed similar characteristics, confusing the model (Figure 2).
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Figure 2. Confusion matrix for the test set, using a 1 m acceptance. Reprinted with permission
from [2], copyright Society of Petroleum Engineers (SPE), 2021.

Statistical and intelligence methods are applied in the well log to estimate lithology
during drilling. Ref. [3] used an artificial neural network (ANN) to identify 10 different
lithologies such as gypsum, siltstone, shale, claystone, salt, and anhydrite, marl, limestone,
sandstone, and dolomite (Figure 3). They used drilling data as inputs for ANN to estimate
lithology (Table 1). The model trained 2757 samples of a drilled well. The average absolute
error was 4.01%.
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Table 1. The range of data used for the lithology model.

Property Minimum Value Maximum Value

Depth (m) 4064 124
Rate of penetration (min/m) 61.86 0.42
Drilling mud flow rate (gal/min) 1150.16 286.91
Drill string rotation speed (r/min) 228.15 15.97
Weight on bit (Klb) 67.25 3
Standpipe pressure (psi) 3664.66 529.46
Total nozzle flow area (in2) 1.74 1.04
Bit size (in) 17.50 8.25

In mature oil and gas fields, drilling data of nearby wells can be used as supplementary
to new drilling data in real time to estimate real-time drilling lithology. Ref. [4] used drilling
parameters such as WOB, pump pressure, and ROP in an ANN to estimate real lithology.
They used 70% of the dataset for training, and the remaining data were used for testing and
verification. The model verification was tested with an R-squared value, which was 0.8742.

1.1. Machine Learning Applications in Fracturing Operations

Fracturing technology has been a common practice since the 1950s to improve produc-
tion in tight formations. Lithology is one of the critical parameters determining fracture
extent in the pay zone and the fracture geometry. Fracture growth through different layers
shows a great difference based on the formation’s characteristic properties. Therefore, it is
essential to identify facies and optimize treatment parameters accordingly. A considerable
amount of data has been generated from the fracturing operations conducted. Machine
learning approaches are good at analyzing, evaluating, and categorizing the data with their
strong learning and prediction capability. As the literature is reviewed, it was found that
most machine learning approaches are about parameter optimization during treatment. The
authors of [5] studied optimization of hydraulic fracturing design from several thousand of
multistage frac jobs with machine learning. The study focused on the gathering, cleaning,
and processing of the data. A similar fracturing optimization workflow was proposed
by [6]. They used three supervised algorithms which are K-nearest neighbor (KNN), radial
basis function (RBF), and multilayer perceptron (MLP) to associate fracture properties and
productivity of shales (Figure 4). RBF and MLP showed higher net present values (NPVs)
comparing to KNN in a proxy model.
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Logistic regression has been incorporated with RBF to improve the classification
performance of RBF neural network in the classification of hydraulic fracturing [7]. They
used binary classification to generalize multi-classification problems. The study reported
very good generalization properties in highly overlapping simulation data. Proppant
classification is the other part of hydraulic fracturing where machine learning algorithms are
employed. Ref. [8] designed an efficient proppant detection and classification program for
subsurface formations using machine learning. They applied the supervised ANN-based
classification workflow on the proppant distribution from the Permian basin. Validation
of ANN was carried out with K-fold. The classification algorithm detected calcite and
proppant particles (Figure 5).

Energies 2022, 15, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 4. Integrated framework of ML and intelligent optimization algorithm. Reprinted with per-
mission from [6], licensed under Creative Commons Attribution 4.0 International License. No 
changes were made to the original image. 

Logistic regression has been incorporated with RBF to improve the classification per-
formance of RBF neural network in the classification of hydraulic fracturing [7]. They used 
binary classification to generalize multi-classification problems. The study reported very 
good generalization properties in highly overlapping simulation data. Proppant classifi-
cation is the other part of hydraulic fracturing where machine learning algorithms are 
employed. Ref. [8] designed an efficient proppant detection and classification program for 
subsurface formations using machine learning. They applied the supervised ANN-based 
classification workflow on the proppant distribution from the Permian basin. Validation 
of ANN was carried out with K-fold. The classification algorithm detected calcite and 
proppant particles (Figure 5). 

 

 
Figure 5. Proppant (subplots a, b, c, & d) and natural calcite (subplots e,f,g,& h) particles highlighted 
with results from classifier applications. Reprinted with permission from [8], copyright Debotyam 
Maity and Jordan Ciezobka, 2019. 

Nonlinearity and the multi-dimensional characteristics of log data increase the chal-
lenges for accurate estimation of lithology. That is why the traditional statistical methods 
such as histogram plotting provide poor results. Researchers have applied unsupervised 
learning methods in the last decades. To illustrate, Ref. [9] combined principal component 
analysis (PCA) and cross plot to obtain information about lithology identification. Ref. 
[10] used a modified K-means clustering technique to classify lithology. Ref. [11] 

Figure 5. Proppant (subplots (a–d)) and natural calcite (subplots (e–h)) particles highlighted with
results from classifier applications. Reprinted with permission from [8], copyright Debotyam Maity
and Jordan Ciezobka, 2019.

Nonlinearity and the multi-dimensional characteristics of log data increase the chal-
lenges for accurate estimation of lithology. That is why the traditional statistical methods
such as histogram plotting provide poor results. Researchers have applied unsupervised
learning methods in the last decades. To illustrate, Ref. [9] combined principal component
analysis (PCA) and cross plot to obtain information about lithology identification. Ref. [10]
used a modified K-means clustering technique to classify lithology. Ref. [11] estimated
lithology type using PCA and wavelet analysis. The unsupervised learning approach
classifies formations depending on the data properties; however, the accuracy of the mod-
els is generally lower than supervised learning [12]. Ref. [13] compared results obtained
from unsupervised learning, supervised learning and neural network models for lithology
classification. The study showed that supervised methods provide better classification
results compared to other methods (Table 2).

Unsupervised classification algorithms classify the data into a certain number of
sets to best represent the provided data. The data are with no pre-interpretation for any
given group. Biasing the training data might provide interpreter control of the output.
Ref. [14] compared machine learning techniques such as k-means clustering, principal com-
ponent analysis (PCA), unsupervised Bayesian classification, and waveform classification
to classify facies in the Delaware Basin. They also used self-organizing maps, independent
component analysis (ICA), and generative topographic mapping. PCA is used to reduce
the dimension of the data and assumes a Gaussian distribution. The covariance matrix is
used to reduce the number of attributes.
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Table 2. Summary of the scores for different classifiers with optimum parameters. Results are
presented in %. Reprinted with permission from [13], copyright Society of Petroleum Engineers
(SPE), 2019.

Classifier Category Optimum
Parameter Cross-Validation Test Data Blind Well

F1-Score Adj. Facies
Accuracy F1-Score Adj. Facies

Accuracy

SVM Supervised Gamma = 100,
C = 0.01 66 84 49 89

KNN Supervised k = 68 65 86 46 89
Random Forest Supervised nestimator = 52 63 88 45 88

MLP Feed-Forward
Neural Network

2 Hidden Layers.
Neurons 150.25 64 88 42 86

k-Clusters
6 7 8 9

K-means Unsupervised Silhouette-Score 74 78 82 83

ICA divides multivariate data into independent parts. K-means clustering is one of
the easiest classification algorithms used to interpret seismic attributes. The clustering
algorithm begins with assigning at random k centroids, serving as centers of the groups to
form. The distance between each datum and centroid is calculated. Thus, the points are
classified according to this calculation process. Self-organizing maps create a seismic facies
map from various seismic interpretations with an unsupervised approach. The supervised
learning answers the questions defined; however, the unsupervised technique can classify
a group of undefined and distinct class, but it does not provide indications of what it
means geologically. The study showed that ICA provides more details than PCA. Ref. [15]
used ICA to classify seismic facies with the proposed workflow shown in Figure 6. The
study found that ICA is a robust method for reducing dimensionality and noise in multiple
seismic attributes.
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1.2. Machine Learning Applications in Fracturing Operations

An unsupervised map (UMAP) is a new technique providing low runtime while main-
taining the data structure [16]. In its simplest form, UMAP builds a high-dimensional plot
of data and then optimizes a low-dimensional graph with a similar structure. UMAP builds
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a complex fuzzy representing a weighted graph. Edge weights indicate two connected
points. A radius that extends outward from each point is used to test the connectedness of
the points. A small radius means small isolated clusters, and a too large radius causes the
connecting of all points together. Therefore, choosing an optimum radius is critical in this
process. UMAP uses the following methodology: a local radius is first selected considering
the distance from each data to its neighbor. Then, the likelihood of points’ connection
decreases as the radius grows. The two commonly used parameters to balance between
local and global structures are min_dist and n_neighbors (Figure 7). This study uses UMAP
as a remarkably simple tool to classify facies with the help of high dimensionality and good
scaling of the dataset.
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Drilling data include a broad of indication about lithology type. The supervised ap-
proach uses the data relating to estimating formation properties. However, unsupervised
methods group the parameters based on certain properties, even if there is no relation
between datasets. Ref. [17] proposed an adaptive unsupervised method to estimate forma-
tions by minimizing the entropy gradient of the characterizing measurement while drilling.
They conducted experiments on the mining data, involving the three major rock types
which are BIF, ore, and shale. As shown in Figure 8, the red section illustrates shale, the
blue represents BIF, the strongest rock, and the green shows ore with intermediate strength.

The lithology estimation from drilling surface data was studied by [18], as one of the
main aims of scientific drilling in Nankai through the Seismogenic Zone Experiment. They
first estimated drilling torque along the profile from the bottom of the well to the surface.
Then, the lithology was estimated from the surface drilling data with neural network
algorithms (Figure 9). The classification process was carried out on the sand, silt clay, and
volcanic ash by learning with two layers and an L1 regularization coefficient of 10. A high
goodness score (95%) was reported with the complex network.

https://github.com/PAIR-code/understanding-umap
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2. Materials and Methods

The geological process of rock formation has significant impact on the flow and
transport in porous media. Digital rock is used as an analogy to estimate the relation
between features of the flow system such as aperture, porosity, and permeability. This
study includes facies classification derived by grouping facies based on corresponding
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features such as porosity and permeability. The data samples were retrieved from digital
rock samples created by [19]. Digital rock images represent the complexity of rock systems.
The source of digital rock is either an image of actual rock and soil or based on geostatistical
and stochastic models. A regular grid or meshing operation is commonly applied to use
digital images in numerical simulations. A 3D binary geometry in a standardized format
was used to show the variety of geological features representing different depositional
systems and diagenetically processes. The dataset was stored in 66 folders involving
different synthetic facies classes in “. mat” files format. The data were then converted
into .csv format before using in the simulations. It is important to note that most images
have “256” pixels. Therefore, images with “256” resolution were kept, while images with
“480” were removed from the data sample. Figure 10 shows a digital rock with 256 and
480 samples. The porosity of the image with 256 samples was 0.36, and it was 0.362
for the image with 480 samples. Figure 11 represents a digital rock with 44 and 22mm
fracture apertures.
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of 44 (b) fractal exponent equal 2.5 and mean aperture of 22 [19].

In this study, we have used supervised and unsupervised machine learning algorithms
to classify facies. The main distinction between the two approaches is the use of labeled
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data. Supervised learning uses labeled and output data, while unsupervised learning
does not. The workflow for the unsupervised model is shown in Figure 12. The data was
handled as numerical and image variables for the preparation and cleaning process. Various
learning algorithms were employed for training operations, such as anomaly detection,
double median absolute deviation, local outliers, and baseline image models.
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Median absolute deviation (MAD) algorithm is a frequently used algorithm for
anomaly clustering. The median of all the time series at one time shows normal behavior
for all the time series at that time. The anomalous are detected from large deviations from
each individual time series and median. The main challenge with anomaly detection is
reducing the number of false positives and noisy alerts. MAD algorithm overcomes this
issue by monitoring the outputs at a specified window. As the individual series output
reaches a specified percentage of anomalous points, the series is classified as anomalous.

Image baseline model can flag anomalous images that are not encountered in a baseline
of images used for training. The baseline model shows which feature is important for
prediction and which is not. The first step is score calculations, and then feature engineering
of the dataset is applied. The addition of a new feature to the model is monitored with the
score of baseline machine learning. A better score means the success of the new feature
for predictions.

An isolation forest works like random forest models. It recognizes anomalies by
detecting points called “few and different”. The algorithm trains the data with an ensemble
of binary decision trees and generates isolation trees based on randomly selected features.

The local outlier factor (LOF) algorithm is an unsupervised outlier detection method
computing the local density deviation of a given data point with respect to its neighbors.
The outlier samples are detected based on their lower density than that of neighbors.

The supervised algorithms used in this study were eXtreme Gradient Boosted Trees,
Keras Slim Residual Neural Network, Elastic-Net Regressor, and Keras Deep Residual
Neural Network. The supervised model workflow is shown in Figure 13.
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The gradient boosting (GB) technique is used in both regression and classification
tasks. XGBoost a type of GB, usually provides higher accuracy than a single decision tree.
XGBoost uses a second-order Taylor approximation in the loss function.

A residual neural network is a neural network consisting of residual building blocks.
RNN has gained popularity with its impressive image classification performance. A skip
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connection added to weighted layers allows information to pass more freely and the
gradient to be more realistic. The residual unit uses convolution, batch normalization,
and rectified linear unit to learn the residual mapping function [20]. The deep residual
neural network has a similar working principle but provides many network layers, which
is favorable for capturing the complex statistics of digital images.

The elastic net regression model is a form of regularized optimization for linear
regression. It is used to learn compact projection matrices and to enlarge the margins of
different classes, which is essential for classification tasks [21].

3. Results and Discussions

The comparative performance of unsupervised models for best anomaly detection is
shown in Table 3. Double median absolute deviation showed the best accuracy compared
to other unsupervised models. As Table 4 shows, among the supervised learning models,
the eXtreme gradient boosted trees regressor showed better validation than other learning
techniques. It was also found that the supervised validation (0.85) was better than that of
unsupervised validation, which was 0.80. The image classification of supervised learning
methods is more accurate than unsupervised ones.

Table 3. Unsupervised models for best model anomaly detection.

Model Validation Cross Validation

Double Median Absolute
Deviation Anomaly Detection

with Calibration
(DMADADC)

0.8022 0.8078

Baseline Image Model 0.6624 0.7172

Anomaly Detection with
Supervised Learning (XGB)

and Calibration
0.6080 0.6131

Isolation Forest Anomaly
Detection with Calibration 0.6140 0.6084

Local Outlier Factor Anomaly
Detection with Calibration 0.594 0.5875

Table 4. Image prediction classification with supervised model.

Model Validation Cross Validation

eXtreme Gradient Boosted Trees Regressor
(learning rate = 0.075) (xgboost) 0.8585 0.8201

Random Forest Regressor 0.8381 0.7565

Keras Slim Residual Neural Network Regressor using Adaptive
Training Schedule (1 Layer: 64 Units) 0.8391 0.6925

Elastic-Net Regressor (mixing alpha =1 × 10−5/Least-Squares Loss) 0.7137 0.6871

Keras Deep Residual Neural Network Regressor using Training
Schedule (2 Layers: 512, 512 Units) 0.6595 0.6034

Activation maps are a simple technique for obtaining the discriminative image regions
to identify a specific class in the image. They enable us to identify which regions in the
image were relevant to the class. In this study, we tried to capture discriminative image
regions with unsupervised and supervised learning approaches (as illustrated in Figure 14).
The latter technique (as illustrated in Figures 15 and 16) identified the relevant regions
better than the former. Anomaly score decreased with the increase in the number of facies
in the simulations. Therefore, image classification with supervised learning (as illustrated
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in Figure 17) outperforms that obtained with unsupervised learning (as illustrated in
Figure 18).
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4. Conclusions

In this study, we tried to classify facies groups with unsupervised and supervised
learning methods. The study captured approximately four facies groups. The grouping may
improve with more images across the different classes. Specifically, more 480 resolutions
across all classes. The grouping may be impacted by the type of images in the training
process. The predictive accuracy of facies type was reasonable (>80%). Including more
images per class may improve the overall accuracy. Image embedding can visually pinpoint
the characteristics that drive the prediction. Providing more distinct images per class would
improve the overall predictive workflow. Adding features by facies class could add to
the predictive power of models (supervised and unsupervised). Supervised learning
outperformed unsupervised learning, compared in terms of validation score.
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