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Abstract: The present paper describes the research on the mechanism of inrush current formation
in a modern single-phase transformer, in which the insulation system must withstand the stresses
arising during these transient states. A complete and measurement-verified method for determining
the transformer inrush current waveforms and other signals (e.g., fluxes and voltages) is developed.
This method makes it possible to determine a steady state solution. However, on account of the
electromagnetic phenomena, the solving process is long. To analyze the transient dynamic response
of the tested transformer, a nonlinear model was assumed, from which the stiff differential equations
were derived. The simulation analyses were performed using dedicated software written in C#
with the original implementation of the five-stage Radau IIA algorithm selected from the known
variants of the Runge–Kutta implicit methods. The calculations were based on the measurement
waveforms recorded during transient (switch-on) and steady-state states when the transformer was
not loaded. The full magnetization curve of the core sheets of the tested transformer with an original
implementation of the polynomial fitting mechanism was applied. As a representative example and
for the purposes of experimental verification of numerical tests, the worst case scenario for switch-on
of an unloaded transformer was applied (switch-on is performed when the supplied voltage is
zero). Phenomena related to the obtained experimental results, such as saturation and hysteresis, are
discussed as well.

Keywords: stiff nonlinear ordinary differential equations; Runge–Kutta implicit methods; circuit
model of a single-phase transformer; hysteresis; parameter estimation; measurements; transient states

1. Introduction

Transformers undoubtedly play an important role in all electricity transmission and
distribution systems. They are of key importance in the processes of conversion and use of
electricity. For this reason, transformers and their design, properties, and parameters signif-
icantly affect the structure and computational complexity of models of power systems and
networks [1]. This statement applies to the analysis of both steady and transient operating
states of systems and networks. This applies in particular to situations where the analysis
of models should take into account nonlinearities occurring in their individual elements.

Due to the long technical history of practical application and its importance in the power
system and networks, the transformer is one of the best recognized and analyzed electrical
devices. This is because the principle of its operation covers both electrical and magnetic
issues, which additionally extend to the problems of nonlinear systems (resulting, among
others, from the hysteresis effect of the transformer core). Considerations and analyses of
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phenomena occurring in transformers become particularly complex when their dynamics
are taken into account. Continuous growth and development of the possibilities and tools of
numerical modeling of these phenomena demand corresponding progress in experimental
work. These phenomena are used to obtain measurement data to verify the initial conditions
and the results of numerical calculations in the outlined problem areas [2–4].

In operational practice, a transformer is often switched on in unloaded state. In such
states, dynamic phenomena of different nature and time scales take place within it.

Due to the complex interactions of electromagnetic and nonlinear hysteresis phenom-
ena, which result in thermal and electromechanical effects, the occurrence of most transient
phenomena can cause significant internal stresses in the transformer. The accompanying
overcurrents and overvoltages (with different time characteristics) may have a destructive
effect on both the transformer’s structural elements (windings, insulation system) and on
the devices cooperating with the transformer in the common electrical network. The effect
can then cause further disruptions, including ferroresonance, voltage dips, etc. [5–7].

The problem of modeling transient states accompanied by switching the transformer to
no-load operation remains open, and research in this area is being undertaken by research
groups around the world [8–10]. Both electrical and mechanical aspects as well as secondary
phenomena such as, e.g., ferroresonance, have been the subject of analyses and disserta-
tions [6,11–13]. For many years the latter problem has been the subject of investigations by
the authors [14–16]. The research problem addressed in this paper is an important element
in the ongoing study of dynamic and emergency states in the power system.

The differential equations describing the behavior of a transformer when it is switched
on without load belong to the so-called stiff problems. As shown in [17], this applies
especially to modern transformers due to improvements in the parameters of the materials
used for their production (e.g., an increase in the maximum permissible magnetic flux
density). Significant progress in the field of producing sheets for the transformer core has
resulted in a reduction in the values of core losses and no-load currents. This has resulted
in increased stiffness of the differential equations describing the changes in the magnetic
flux and current in these devices, as well as in the value of the current pulse itself when
the transformer is switched on. The transformer insulation system must be designed to
withstand the stresses created during these transients. Modeling of this phenomenon can
be used to predetermine these stresses, and the problem may become solvable through the
use of implicit Runge–Kutta methods in numerical calculations [18].

The present paper presents an original and experimentally verified methodology along
with results from calculating the dynamic states of a single-phase transformer switched
to no-load operation. The method enables the analysis of transients occurring in the
transformer and the steady state of no-load operation in the long run. The basis for the
verification of the calculations were measurements in both steady and transient states
made for several different single-phase transformers. This paper presents the results of the
analyses of one of them.

In Section 2, divided into subsections, the model of the transformer is described,
the equations describing the transient response are presented, and the nonlinear Iµ(Ψ)
dependency is introduced. In the final subsection of Section 2, an efficient obtainment of the
steady state is analyzed. Section 3 discusses the difficulties that arrive from the stiffness of
the differential equations. In Section 4, the original methodology for the computation of the
dynamics and the steady state is depicted through a detailed diagram. Section 5 discusses
the measurement side of the study. The computation results and error analysis are described
in Section 6. The conclusions are provided in Section 7. Finally, Appendix A contains the
manufacturing data of the studied transformer along with the symbol descriptions.

2. Single-Phase Transformer Model with Nonlinear Characteristics of the
Ferromagnetic Core

We have adopted the well-recognized and widely-known Steinmetz model (Figure 1) [19]
for this investigation. Its compliance with engineering standards and implementation pop-
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ularity are consistent with the general concept of developing an engineer-friendly method.
Moreover, this model is suitable for the current application while at the same time remaining
open to further scientific experiments, for instance, in terms of using alternative descrip-
tions of a ferromagnetic core coil, e.g., using the models described in [20]. The strong point
of the model is the possibility of updating the model parameters. Due to long-term opera-
tion, present-day transformer parameters may differ from those provided by manufacturer
(i.e., data from rating plates and sheet characteristics, including the dualism H(B) vs Iµ(Ψ)
in the magnetic description). Thanks to the model construction, unknown or uncertain
parameters can be estimated using a range of implemented numerical instruments.

Another and equally important point is that we have assumed that the measured and
recorded voltage and current waveforms of the transformer in its transient and steady
states constitute the basis for all calculations.
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Figure 1. Equivalent diagram of a single-phase transformer.

The standard symbols widely used in the literature are recalled in the presented
equations and applied in the transformer model (Figure 2). For details regarding the
nomenclature, see Table A1 in Appendix A.
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Figure 2. Scheme of the considered single-phase transformer.

The tested transformer is a single-phase unit with a rated power of 1600 VA and
voltages of 230/400 v/v. For the studied device, design data such as the geometrical
dimensions of the core, the transformer turn ratio, and the H(B) characteristic of the
sheets used in the core construction were known. Due to the fact that the device had been
in continuous operation for more than a year, there was a reasonable suspicion that its
parameters might show deviations from the catalog data. In order to avoid errors in the
research, an assumption was made as to the necessity of their experimental verification
and, in case of any discrepancies, the necessary correction.
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The manufacturer’s characteristics for the transformer laminations of the tested trans-
former [21] are shown in Figure 3. A list of the remaining manufacturer’s parameters and
their values is included in Table A2 in Appendix A.
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Figure 3. Manufacturer’s magnetization characteristic of the test transformer sheets.

Using the proposed method and due to the anticipated existence of a relationship
between the magnitude of the inrush current pulse and the internal impedance of the
power source [17], the power supply network was modeled as well. The network model
parameters were estimated on the basis of system data obtained from the Distribution
System Operator, then verified in the course of subsequent experiments.

2.1. Modeling of Unloaded Transformer Dynamics

The losses in the ferromagnetic core of the transformer for modeling the coil by a
resistor RFe can be written as

dΨ(t)
dt

= RFeiFe(t). (1)

Starting from Kirchhoff’s first law (Figure 1)

iFe(t) = i1(t)− iµ(t) (2)

and expressing the current iFe(t) by the derivative of the flux linkage, then considering the
nonlinear dependence of Iµ(Ψ), relation (1) takes the form

dΨ(t)
dt

= RFei1(t)− RFe Iµ(Ψ(t)). (3)

From the balance of voltages on the primary side of the transformer, the following
relation can be derived:

e(t)− (Ls + Ls1)
di1(t)

dt
− (Rs + Rs1)i1(t)−

dΨ(t)
dt

= 0. (4)

Equation (4) shows the state variables of a single-phase transformer under no-load
conditions

X(t) = [x1(t), x2(t)]T = [i1(t), Ψ(t)]T . (5)

The differential Equations (3) and (4) derived from the scheme in Figure 1 form the
basis for the study of the dynamics of a nonlinear transformer under no-load conditions.
Expressed in the normal form, they are provided by

dx2(t)
dt

= RFex1(t)− RFe Iµ(x2(t)) = f2(X(t), t) (6)
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dx1(t)
dt

=
1

Ls + Ls1
(−(Rs + Rs1)x1(t)− f2(X(t)) + e(t)) = f1(X(t), t). (7)

2.2. Modeling of Nonlinear Core Characteristics

Using relation (2), the core magnetizing current can be written as

iµ(t) = i1(t)− iFe(t). (8)

When modeling the magnetic circuit, which consists of transformer sheets with a given
magnetization curve H(B), a certain assembly inaccuracy of its core should be assumed;
this can be introduced into model equations as the air gap δ [19].

Taking inspiration from the general concept of Ampère’s circuital law, the magnetic
circuit of the transformer can be described in the following way:

H(
Φ(t)
sFe

)lFe +
Φ(t)
µ0sFe

δ = H(
Ψ(t)
z1sFe

)lFe +
Ψ(t)

z1µ0sFe
δ = z1iµ(t) (9)

Because of the numerical needs (integration of Equations (6) and (7)), approximation
using the polynomial [22] for the known characteristics of the transformer ferromagnetic
core in the form of the function H(B) is carried out as follows:

H(B) =
11

∑
k=1

akB2k−1 (10)

The relationship modeling the characteristics of Iµ(Ψ) takes the form

iµ(t) =
1
z1
(lFeH(

Ψ(t)
z1sFe

) + δ
Ψ(t)

z1µ0sFe
). def

= Iµ(Ψ(t)) (11)

Figure 4 shows a fragment of the non-linear characteristic of the ferromagnetic core of
the transformer under test, limited to the value of 30 A and calculated on the basis of the
manufacturer’s H(B) curve as well as the number of turns and the core geometry.

The polynomial approximation was executed using Formula (10); 11 carefully selected
points from H(B) curve (Figure 3) were used in the approximation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

10

20

30

Ψ , V s

Iµ, A

Figure 4. Iµ(Ψ) curve calculated on the basis of manufacturer’s data (H(B) curve), number of turns,
and core geometry).

2.3. Modeling of the No-Load Steady State Taking into Account the Non-Linear Magnetization
Characteristics of the Transformer Core

Achieving steady-state transformer operation with no load requires a relatively long
time, especially in relation to the time constants of dynamic events. Therefore, the over-
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all cost of calculating a solution for this device operation (integration of the differential
Equations (6) and (7)) is very high.

During the numerical experiment described in [17], it was shown that the result can be
achieved without integrating from zero initial conditions. Instead, a solution can be used
to find initial conditions that are close to the limit of the solution cycle.

We introduce a linear approximation of the magnetization curves of transformer sheets
(a linear approximation of the magnetizing current iµ(t) relative to the flux linkage Ψ(t)):

iµ(t) =
lFe
z1

H(
Ψ(t)
z1sFe

)
def
= Iµ(Ψ(t)) =

lFeΨ(t)
µpz2

1sFe
=

Ψ(t)
Lp

(12)

where

Lp =
z2

1
Rm

(13)

in which

Rm =
lFe

µpsFe
(14)

is the magnetic resistance of the magnetic circuit and

µp =
Bp

Hp
(15)

is the point on the magnetization curve before its knee.
The system of nonlinear Equations (6) and (7) is transformed into a system of linear

equations
dΨ̃(t)

dt
= RFe ĩp(t)−

RFe
Lp

Ψ̃(t) (16)

e(t)− (Ls + Ls1)
dĩp(t)

dt
+ (Rs + Rs1)ĩp(t) +

dΨ̃(t)
dt

= 0. (17)

The system of linear differential equations formulated in such a way already has an
analytical solution in the steady state. Using the complex number method, the system of
linear differential Equations (16) and (17) is transformed into an algebraic system with
the form

(jω +
RFeRm

z2
1

)Ψ− RFe Ip = 0 (18)

E− jωΨ + (R1 + jωLp)Ip = 0 (19)

where
E = Emejϕ0 (20)

The solution of the system of complex equations is provided by

Ψ =
E

jω + (R1 + jωLp)(
Rm
z2

1
+ jω 1

RFe
)
= Ψmejα (21)

Ip = (
Rm

z2
1
+ jω

1
RFe

)Ψ = Ipmejβ (22)

The initial conditions sought for the system of nonlinear Equations (6) and (7) take
the form

x1(0) = Ψ(0) = Ψ̃(0) = Im{Ψ}
x2(0) = ip(0) = ĩp(0) = Im

{
Ip

} (23)
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3. Stiffness Difficulties in Differential Equations

In Section 2.1 we derive differential Equations (6) and (7), which form the basis for the
study of the dynamics of an unloaded transformer. Taking into account the presence of the
non-linear relationship Iµ(Ψ), these equations may be assigned to the group of rigid problems.

The dilemma of solving stiff problems is constantly addressed in the literature when
solving advanced physical problems, mainly the dynamics of events running for a long
time [23–26]. Among the significant troubles accompanying their solution are problems
with stability, in particular in the form of false oscillations of the solution ultimately
leading to erroneous results (e.g., the trapezoidal method), insufficient accuracy requiring
maneuvering the integration step and thus extending the calculation time (e.g., the Euler
method), or the relationship between the loss of stability and the increase in the order of
the method (e.g., Backward Differentiation Formulae (BDF)/Numerical Differentiation
Formulae (NDF) methods) [17].

In the described research, the problem of the stiffness of differential equations surfaces
when solving (integrating) Equations (6) and (7) with zero initial conditions. The flux
linkage Ψ(t) = x1(t) has a constant component that decays very slowly in subsequent
periods of the supply voltage, with simultaneous large changes in the primary current.

The choice of a numerical tool for solving the problem of stiff differential equations
imposes requirements on the global stability of the method. Keeping these requirements in
mind, the globally stable Runge–Kutta implicit methods appear interesting. Their variants
based on Gauss–Legendre, Radau, and Lobatto quadrature approximation [27] allow for
obtaining high-order methods. Profound experience in this respect was provided by a
numerical experiment [17] consisting of checking (by simulations) which approximation is
the best one.

In the current calculations, a high-order variant of the Runge–Kutta implicit method
based on Radau IIA quadrature approximation was used. Although the numerical cost
of such a method is relatively high, it has a significant advantage with respect to the
requirements of large calculation tolerances with a much smaller number of iterations. The
selected algorithm is characterized by the presence of an inserted formula that allows the
local error of the solution to be tracked. The estimation of the integration error follows the
concept of Jacques J.B. de Swart and Gustaf Soderlind [28], where the error vector of the ith
iteration is calculated as the difference of the solution Xi+1 and the approximation X̃(1)

i+1:

Ei = Ei(ti + hi, hi) = Xi+1 − X̃(1)
i+1 (24)

which, when further developed, takes the form

Ei(ti + hi, hi) = [1− γhiJ(Xi+1, ti + hi)]
−1

[
m

∑
j=0

ejK
(i)
j − γhiF[Xi+1, ti + hi]]

(25)

where J(X, t) is the Jacobi matrix of the vector function F(X, t)).
Details related to the implementation of the method can be found in [17].

4. The Original Method for Calculating the Dynamics and Steady State of an
Unloaded Single-Phase Transformer

A flowchart (block diagram) of the developed method implementing the described
calculations is shown in Figure 5.
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Figure 5. Diagram of the methodology.

5. The Measurements

It was assumed that measurements must be fairly standard, commonly available
measuring instruments should be used, and technicians should be able to carry out the
tests at industrial sites.

The measurements of the tested transformer were made in two stages, namely, by
means of measurements in the steady state with the distinction of AC and DC measure-
ments, then in dynamic states when switching on the unloaded unit. The common feature
of the measurements was their form; only voltage and current waveforms were measured
and recorded, which was carried out in various configurations. Two signal recorders were
used for recording: the Sonel PQM 707 analyzer, commonly used in measurements in
industrial conditions (with a sampling frequency of approx 10 kHz) and a professional
Kared RZ1 disturbance recorder ( fs = 32 kHz).

In the steady state, the measurements were run in the no-load state and short-circuit
state (laboratory facilities).

The longitudinal and transverse parameters of the transformer equivalent diagram
(Figure 1) were determined on the basis of the values calculated from the waveforms
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recorded in the nominal steady states of no-load and short-circuit, respectively. The mea-
surements were made with a sinusoidal alternating current supply. No-load measurements
were run over a wide range of supply voltage (0–260 V). For the short-circuit condition, a
limit value of 1.1 times the primary rated current of the primary side of the transformer was
assumed. Using the waveforms instead of measuring the effective values directly increases
the accuracy [29] thanks to the harmonic content and the angular relations between the
quantities, as proven by the later harmonic analysis described in Section 6.2. The recording
of the waveforms allows the evolution of the so-called ’minor loops’ of the hysteresis to be
tracked, permits their analysis along the entire range of the transformer supply voltage [20],
and enables verification of the X/R relationship in the phase plane.

The winding resistance values of both sides of the transformer were determined
from AC measurements and verified by means of DC measurements. As part of separate
measurements, the windings were supplied from a regulated DC power supply with
currents corresponding to the effective values of sinusoidal alternating currents resulting
from the transformer power. DC methods are most important in measurements, as they
serve as a supplement and alternative to AC methods [30].

When estimating Xs1 of the primary side of transformer, the issues presented in the
works [31–34] were taken into account.

The recorded sinusoidal voltage waveforms in the entire available range were used to
calculate the flux linked with the primary winding. The estimated pairs of points i1–Ψ were
used to verify a fragment of the magnetization curve and to visualize the evolution of the
hysteresis of the tested transformer core. The model reconstruction of the characteristics in
the entire range (following the manufacturer’s model) was carried out using polynomial
approximation (10).

Transient measurements included the recording of the primary and secondary voltages
as well as the current and derivative current of the primary winding. This choice of
measured quantities resulted from the specific behavior of the transformer inrush current
and the measurement difficulties highlighted in the literature, e.g., resulting from drastic
amplitude fluctuations and their changes over time. Basic current measurement was
performed using a class 0.1 current transformer together with an event recorder. The
basic measurement was supplemented by the recording of the current derivative using
a Rogowski coil [35]. Due to the dependence of the transformer inrush current on the
initial phase of the supply voltage, a series of dynamic measurements was executed.
Each measurement consisted of switching the transformer on and subsequent recording.
Numerous results with different phase values were obtained.

The last stage of measurements was a 60-s recording of the process of formation of the
steady state in the transformer system from the moment of its activation to the complete
disappearance of the constant and aperiodic components.

6. Results of Calculations

All calculations were made with the use of original software written by the authors
in C#. This software works with a proprietary solver library containing classes equipped
with Runge–Kutta implicit methods designed for integration of systems of differential
equations [36,37].

The calculations were based on the measurement-verified data of the single-phase
transformer. Nonlinear characteristics of the transformer sheets were used in the calcu-
lations. These characteristics were previously positively verified as far as possible. The
coefficients of the function H(B) obtained from the solution of the estimation problem
based on the given points of the magnetization curve of the transformer sheet (Figure 3)
are presented in Table 1.
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Table 1. Function H(B) coefficients obtained from solving the estimation problem based on the
manufacturer’s data.

i ai

1 54.6566
2 −176.5693
3 579.0243
4 −1154.8992
5 1417.3425
6 −1092.5563
7 529.4832
8 −157.1268
9 26.7964
10 −2.3092
11 0.0777

In the calculations, a variant of the implicit Runge–Kutta method based on five-stage
approximation of the Radau IIA quadrature, found in [27], was used; this resulted in
a ninth-order method. This high order ensures full stability in the integration of rigid
equations of types (6) and (7). Calculations were carried out with automatic selection of
the integration step, as well as the preset absolute error εa = 1 × 10−7 and relative error
εr = 1 × 10−11.

6.1. Calculation of the Unloaded Transformer Dynamics at the Rated Supply Voltage

First, the dynamics resulting from switching on the voltage were analyzed in accor-
dance with (6) and (7). The following conditions were assumed for the calculations: zero
initial conditions, supply voltaged equal to E1RMS = 233 V, and an initial phase angle
ϕ0 = 0 deg, which are consistent with measurement conditions. The integration interval
was limited to two periods of the supply voltage. It should be emphasized that among the
numerous conducted experiments involving switching on the voltage, the case where the
supply voltage passes through zero e(t) = Emsin(ωt + ϕ0); ϕ0 = 0 corresponds to the most
critical state of transformer operation and to a very high stiffness of the differential equa-
tions describing it. For this reason, this variant was intentionally selected for presentation
in this paper.

Figures 6 and 7 present the computer simulation results and the recorded measurement
waveforms, both showing the complete dynamics of transformer start-up. The visualization
covers the waveforms of the state variables Ψ(t) and i1(t) as well as the quantities expressed
by their derivatives, i.e., the electromotive force induced in the primary winding dΨ/dt
and the supply voltage at the transformer terminals, which is the supply voltage minus the
voltage drop across the impedance of the power source.

The presented waveforms of the transformer electromagnetic quantities, particularly
the state variables verified by measurement and simulation, show the genesis and the
course of the dynamics of events in the device, notably the inrush current.

Starting with zero initial conditions and zero supply voltage, the magnetic flux Ψ(t)
linked with the coils z1 slowly increases with the increase in the supplied voltage e(t).
This is accompanied by a slight increase in the current i1(t) from zero to several hundred
milliamperes, although this is not visible for the time range 0–4 ms (Figure 6). However,
this current produces a magnetomotive force that generates the flux linkage Ψ(t), the
derivative of which is the electromotive force dΨ/dt induced in the primary coil, slightly
different from the supply voltage e(t), meaning that these two waveforms overlap to an
extent (Figure 6). After the 4-ms increase in the accompanying flux Ψ(t), the core gradually
becomes saturated. With a further increase in the current i1(t), there is a slight increase
in the flux, which reaches its maximum after a time. The derivative of this flux, i.e., the
electromotive force induced in the coil, decreases sharply during this time period, causing
the current i1(t) to rise sharply; it reaches a maximum of about 86 A when the flux Ψ(t)
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passes through its maximum. The current pulse occurring in this time interval produces
a very high electromotive force of self-induction across the leakage inductance of the
transformer and the equivalent inductance of the power source, which, with a decreasing
electromotive force of the coil, dΨ/dt is equal to the supply voltage. This process is repeated
in successive intervals of the supply voltage and disappears after several tens of periods.

0 5 10 15 20 25 30 35 40
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100
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300

t, ms

e(t),V

Ψ(t),Vs

u1(t),V

i1(t),A

1

ϑ

dΨ(t)

dt
,V

Figure 6. Waveforms of the state variables Ψ(t), i1(t) obtained from the model along with the
quantities expressed by their derivatives, i.e., the electromotive force induced in the secondary
winding dΨ/dt and the supply voltages e(t) and u1(t) at the transformer terminals. The scale of the
y-axis is common for the current (A), voltages (V), and flux (Vs).
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dΨ(t)
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Figure 7. Measurement waveforms of the instantaneous voltages and currents recorded when the
supply voltage crosses zero (ϕ0 = 0). The scale of the y-axis is common for the current (A) and
voltages (V).

The intense rise in the transformer supply current continues until the secondary side
voltage u2(t) passes through zero, when the current reaches its maximum. The maximum
of the considered current impulse (waveforms obtained from the model) is close to the
recorded value of 90 A (measured waveforms), and is over ten times greater than the rated
current value.
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The conducted experiment confirmed our assumptions that the size of the inrush
current pulse is strongly influenced by the internal impedance of the power source. It
should be noted that after a few milliseconds from the switch-on time instance, the voltage
at the transformer terminals u1(t) is lower than the supply voltage by the value of the
voltage drop across the internal impedance of the power source (Figures 6 and 7).

Figure 8 shows the decimal logarithm of the norm of the error vector estimated in the
computation process for the case shown in Figure 6.
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log10 ||E||

Figure 8. The decimal logarithm of the norm of the error vector estimated in the calculation process
according to Formula (25) for the case shown in Figure 6.

Figure 9 shows the phase plane of the state variables Ψ(i1) for the first fifteen integra-
tion periods of the system of differential Equations (6) and (7). In each integration period
there is a time interval in which the state variable Ψ(t) changes slightly with large changes
in i1(t). In contrast, at small currents i1(t), the flux linkage Ψ(t) changes rapidly.
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Figure 9. Phase plane Ψ(i1) of the state variables for fifteen integration periods of Equations (6) and (7).

The stiffness of the system of differential Equations (6) and (7) is proven by the
magnitudes of the current pulses in the primary current waveform i1(t) (Figures 6 and 7).
They depend on the initial phase ϕ0 of the supply voltage e(t) = Emsin(ωt + ϕ0) and reach
their maximum values for the zero initial phase ϕ0 = 0, which corresponds to the zero
initial value of the supply voltage e(0) = 0. To confirm this, the research was extended
to numerical experiments in which two additional taps were established for the tested
transformer with 280 and 344 turns, respectively. It is clear from Figure 10 that a greater
voltage per turn in the transformer leads to greater magnitude of the current pulses. The
value of this quantity determines the saturation point to which the transformer operating
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point may extend. This is equivalent to stating that higher magnetic saturation of the
transformer core leads to larger current pulses occurring when the transformer is turned on.

0 15 30 45 60 75 90
0

20

40

60

80

100

phase, deg

max
t

i1(t),A

Figure 10. Maximum values of current pulses max|i1(t)| (simulated values) on the primary side of
the transformer depending on the initial phase of the supply voltage; dashed line in the experiment
with a reduced number of turns (280), dotted line for the case of increasing the number of turns up to
344, computed example (310 turns, Appendix A, Table A2) as a solid line.

6.2. Calculation of the Steady State of the Transformer Resulting from Switching on the Rated
Supply Voltage

In the studies of the transient state of the transformer, in all calculation cases, and
especially for large integration time intervals, the algorithm maintained a given absolute
error in the calculation of state variables. The steady state can therefore be achieved by
integrating the differential Equations (6) and (7) within a few seconds. However, this can
be achieved initially as well, as shown in Section 2.3.

For the linear approximation of the system of Equations (16) and (17), the steady-state
solution (21) and (22) at the sinusoidal voltage excitation e(t) = Emsin(ωt + ϕ0) with a
complex value of E = Emejϕ0 can be expressed as follows:

Ψ̃(t) = Im
{

Ψejωt
}
= Ψmsin(ωt + α)

ĩp(t) = Im
{

ipejωt
}
= Ipmsin(ωt + β)

(26)

Because the phases of the current ĩ1(t) and the flux linkage Ψ̃(t) in the steady state are
generally different (α 6= β), these quantities may be represented by an ellipse in the range
of one period on the phase plane. As the non-linearity of the magnetization curve does
not significantly affect transformer’s operating state, we may expect the limit cycle for the
non-linear transformer model to introduce a certain deformation of this ellipse. This results
in an oval shape that is symmetrical with respect to the zero point of the coordinate system
(plane phase system). By selecting the initial condition of integration (23) for the system
of Equations (6) and (7) from the solution of the linear approximation of the system (16)
and (17), it is enough to carry out the computational process in the range of two periods to
achieve a steady state, which on the phase plane is the limit cycle shown in Figure 11. The
same figure shows the steady state limit cycle for the linear model of the transformer. The
initial condition (23) is a point on this limit cycle.
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Figure 11. Steady-state phase plane for linear and nonlinear model. The point located on the curve
indicates the limit cycle between the linear and nonlinear parts of the solution.

Figure 12 shows the course of changes in the absolute error value in the process of
integration of the system of Equations (6) and (7) from the solution of the linear approxi-
mation of the system (16) and (17). The integration process was carried out consistently
by means of the five-step method of Radau IIA with automatic selection of the integration
step at the given identical absolute error εa = 1 × 10−7 and relative error εr = 1 × 10−11.
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Figure 12. The decimal logarithm of the norm of the error vector estimated during the calculation
process for the solution shown in Figure 11.

In Figure 13, the measured and simulated waveforms of the steady-state current of the
transformer primary side at the rated no-load conditions are summarized.

The algorithm for determining the steady state of the transformer while taking into
account its non-linearity can be used to determine the rated operating point on the magneti-
zation curve of transformer sheets from the point of view of the content of higher harmonics
in the no-load current. For this purpose, the method allows integration to be performed
in the interval of one period with a constant integration step; this makes it possible to
execute a discrete Fourier transform [38,39]. Thus, it is possible to determine the higher
harmonics in the no-load current in the steady state for the non-linear transformer model,
depending on the operating point on the non-linear magnetization curve. For example, for
the calculations shown in Figure 13 as a final stable result of Figure 11, the content of higher
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harmonics in the no-load current is provided in Figure 14 and compiled for comparison
purposes with the measurement results in Table 2.
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Figure 13. Voltage and current records (measured and simulated) for the steady-state operation of
the unloaded transformer. The current is expressed in mA, and the scale of the y-axis is common for
the current (mA) and voltage (V).
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Figure 14. Summary of the harmonic content in the transformer no-load current at 233V supplied
voltage for measured and simulated waveforms.

Judging from the bar plot depicting the difference between the computed and mea-
surement harmonics, the difference can mainly be noticed for higher harmonics, while the
fundamental harmonic has close resemblance with very good accuracy.

Table 2. Harmonic content of the steady-state current of the unloaded transformer from measure-
ments and simulations.

I1RMS, A I1h, A I3h, A I5h, A

simulated 0.292 0.248 0.121 0.083
measured 0.290 0.249 0.140 0.045

7. Conclusions

The methodology presented in this paper led to several results, which may be summa-
rized as follows:
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- The applied variant of the Runge–Kutta implicit method based on high-order Radau
IIA quadrature approximation can be successfully used to solve stiff problems in the
analysis of the dynamics of an unloaded transformer.

- The proposed model described by stiff nonlinear ordinary differential equations
offers high accuracy of the obtained results and is an effective tool for comprehensive
analysis of transformer operation.

- Our calculation results are correct, as verified by measurements; this proves the
effectiveness of the selected (five-stage variant of the implicit Runge–Kutta method
based on the Council’s IIA quadrature approximation method of the 9th order). The
correctness of selecting this method is additionally confirmed by the analysis of the
behavior of the state variables Ψ(i1) in subsequent integration periods of the systems
of differential equations. The time functions of these quantities create attractors in the
phase plane.

- In each integration period, there is a time interval in which the state variable Ψ(t)
changes slightly with large changes of i1(t), or inversely, where small changes in the
current i1(t) are accompanied by rapid changes in the flux linkage Ψ(t). This shows
how stiff the problem is and how important it is to use the globally stable IIA Council
algorithm to integrate the system of nonlinear differential Equations (6) and (7).

- The stiffness of the system of differential Equations (6) and (7) is proven by the magni-
tudes of the current pulses in the primary current waveform i1(t). The magnitudes of
these current pulses depend on the initial phase ϕ0 of the supply voltage, and reach
their maximum values for its zero value.

- Greater magnitudes of the current pulses are connected to higher per-turn voltages
in the transformer. Thus, it can be concluded that higher magnetic saturation of the
transformer core leads to larger current pulses occurring when the transformer is
switched on. This is an important guideline for the transformer design process.

- The maximum current pulse recorded by measurement coincides with the value
reproduced by the model, and is more than ten times greater than the rated current
value. The conducted experiment confirmed that the internal impedance of the power
source has a large influence on the current impulse size.

- The steady state can be achieved computationally by selecting the initial integration
condition for the system of nonlinear differential Equations (6) and (7) from the
solution of the linear approximation of the system (16) and (17) in the form (23). In
this way, the result (reaching the steady state) can be obtained within two periods.

- The analysis of the error courses shown in Figures 8 and 12 proves the correctness of
selecting the algorithm of the five-stage Radau IIA method with automatic selection
of the integration step for investigating the transient state of the transformer. In all
the calculations, and especially for large integration time intervals, the algorithm
maintained the given absolute error.

- The algorithm used to determine the steady state of the transformer while taking into
account its nonlinearity can be used to determine the higher harmonics in the no-load
current depending on the operating point on the non-linear magnetization curve.

- In comparing the results of our numerical calculations with the measurement results
shown in Table 2, a slight difference in the harmonic values can be noted; this proves
that the approximate model of the transformer is effective in describing both transient
and steady states.

- The implementation of the integration process for long time intervals for the purpose
of calculating the steady state of the transformer is feasible, despite the stiffness of
the differential Equations (6) and (7), thanks to the absolute stability of the implicit
method used in the calculation process.

- The good resemblance of the measurements obtained through the simulated wave-
forms is apparent. Eventually, further improvements can be considered through
extensions of the model, e.g., the introduction of fractional calculus, as proposed
in [20,40] for ferromagnetic core coils.
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Appendix A

Table A1. Nomenclature.

u1 voltage at the terminals of the primary side of the transformer
u2 voltage at the terminals of the secondary side of the transformer
ϑ turns ratio of the transformer
Ψ flux linkage associated with the transformer’s primary coil, computed as Ψ(t) = z1Φ(t)
i1 transformer primary current
RFe equivalent resistance representing the iron core losses
iFe active component of the transformer’s idle current
iµ reactive component of the transformer’s no-load current
Rs equivalent resistance of the power grid (power source)
Ls equivalent inductance (reactance) of the power grid (power source)
Rs1 primary winding resistance
Ls1 leakage inductance of the primary winding
H magnetic field strength
Φ main flux leakage (effective value of the flux)
B magnetic induction
sFe cross-sectional area of the core of the transformer
lFe mean path length of the core
µ0 permeability of free space
δ length of the equivalent air gap
z1 number of turns in the primary windings
µFe permeability of the ferromagnetic substance
e sinusoidal supply voltage
ϕ0 phase of the initial supplied voltage
ω pulse

Table A2. Manufacturing data of the modeled Breve TUM 1600/A 230/400V transformer.

Quantity, unit Value

Transformer nominal supply voltage, V 230
Rated secondary side voltage, V 400

Rated primary current, A 6.95
Power loss in iron, W 16.75

Power loss in copper, W 42.58
No-load primary side current, A 0.286

Short-circuit voltage, V 47.97
Core cross-sections, m2 0.002025

Column length, m 0.175
Length of the yoke, m 0.085

Number of primary winding turns, N 310
Equivalent resistance of the network, Ω 0.1
Equivalent reactance of the network, Ω 0.5
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