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Abstract: In this paper, different mathematical expressions are derived to compute the residual
magnitude of voltage caused by faults along the line and on the bus. Symmetrical and unsymmetrical
faults are taken into consideration, and the consequences of the various fault distributions are
considered. A new way of assessing a sag is proposed that incorporates the method of fault position
and mathematical expression based on sequence currents and voltages. The fault impedance is
introduced to obtain a better result. A fast and efficient load flow analysis technique produces quick
computational results. In addition, the sag analysis is performed using the bivariate joint discrete
probability distribution method that gives a clear idea about the probability of occurrence of sag in a
meshed network. The suggested approach is applied in the IEEE 39-bus system and with an existing
real-time electrical power distribution system in India.

Keywords: fault position method; symmetrical and unsymmetrical fault; voltage sag assessment;
mathematical approach; bivariate joint probability distribution

1. Introduction

Among the different types of power quality problems, voltage sags are the most
important. Voltage sags are reductions in the RMS value of voltage for a short time. The
main reasons for sags are short-circuiting faults and the starting of large motors [1–4],
characterized by their magnitude of voltage and duration. The magnitude lies between
10% and 90%, and the sag duration lasts for between 10 ms and 1 min [5]. The magnitude
of sag is the residual voltage during the occurrence of an event. It depends upon various
parameters, namely, the fault types, the location of faults, the transformer connection, the
voltage before the fault, and the fault impedance. The sag source location is the most
important parameter, which directly affects the voltage for the bus [6–8]. Sag duration is
the duration for which the sag lasts or throughout which the root-mean-square value of
voltage persists at a lower magnitude than the granted nominal voltage. It is associated
with the time required to clear the relevant fault. Consequently, the sag interval can be
determined by analyzing different characteristics of the electrical protective equipment,
such as fuses, circuit breakers, and overcurrent relays.

Voltage sags cause critical issues as new manufacturing and control industries have
progressively been developed that incorporate sensitive types of equipment whose entire
process may stop due to severe voltage sag [9–12]. The disturbance in an industrial or
technical approach is due to supply interruption or sag, leading to considerable costs to
its operation [13]. Production processes have a price, extending up to millions of dollars
due to a single disturbance [14–16]. Sags or different power quality (PQ) issues should be
inspected as a concord disturbance between the power supply and the sensitive load at the
PCC (point of common coupling). This type of method needs to explain the predicted sag
performance, as well as provide an applicable explanation of a given load’s sensitivity to
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voltage sag in a network at the PCC. Therefore, it is necessary to know the performance of
the power system. At the given site, the performance of the power system can be analyzed
in terms of its characteristics and the predicted frequency of sags. The power system’s
performance can be determined by stochastic prediction or by monitoring the supply. A
monitoring method is an approach to collecting information about a system’s performance.
However, a long monitoring duration is essential for high accuracy. The alternative way
to get information about voltage sags is the process of stochastic prediction [17–19]. Two
approaches are available to analyze the stochastic forecasting of voltage sags. These are
the methods of fault position and critical distance. The easier way of forecasting sags can
be done by the process of critical distance, which is explained based on the theory of the
voltage divider rule. Commonly, this method of assessment is used in the radial system. In
the method of fault position, several probable fault positions are simulated simultaneously
using the typical theory of short-circuiting [2]. Each simulated fault position is a fault in a
specific portion of the considered system. The possibility of short-circuit faults is linked
with the fault rate of the buses and lines. Meanwhile, the voltage due to faults observed
on any bus is then analytically evaluated to obtain the characteristics of the sags of the
network [20].

The work is extended with a comparison to reference [3]. In the research article, the
fault impedance was not considered, and it was followed by the existing typical load
flow analysis technique. In the presented article, fault impedance is introduced, due to
which more voltage sags occur, which can be treated better so that the industrial consumer
will be prepared for this type of contingency. This article uses a fast and efficient load
flow analysis technique to produce fast results. Computational performance is enhanced.
Apart from that, the sag analysis is done by using the bivariate joint discrete probability
distribution method that uses a joint probability mass function, which gives a clear idea
about the probability of the occurrence of sag in a meshed network. These three things: (a)
introduction of fault impedance, (b) application of a fast and efficient load flow analysis
technique, and (c) use of bivariate joint discrete probability distribution, claim the novelty
of the proposed article. The proposed method is applied to the IEEE 39-bus system and an
existing distribution system in India.

2. Fault Position Approach and Methods

The method of fault position for calculating the frequency of sags was suggested by
Bollen [2]. It is a simple technique used to compute the probable frequency of voltage
sags in a meshed system. This method is robust and overcomes the shortcomings of the
critical distance method. The accuracy of the outcomes can be enhanced by increasing
the frequency of fault positions and splitting the whole system into small parts; the short
circuit inside one miniature part leads to voltage sags with identical features.

In the circuit model of the considered network, each small part is treated as a one-
fault position. The frequency of short circuits is determined for all the fault positions. By
using the electrical equivalent model of the considered network, the voltage sag features
are determined for all the fault positions. The outcomes from the two preceding steps
(frequency of occurrence and sag characteristics) are assembled to find data about the
frequency of sags with features within a certain definite extent stochastically. Figure 1
represents part of a power system. It is a 100-km line with eight fault positions representing
a short-circuit fault.
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Figure 1. Part of a network with fault positions.

The selection of the different fault positions is based on the characteristics of sag,
which are considered for the study of interest. Sag duration and magnitude are considered
in this example. Fault positions F1 (indicating faults on the bus bar in the substation) and
F2 (faults nearer to the bus bar) lead to the same magnitude of sag, but their fault-clearing
times are different. Hence, two fault positions have been selected. The fault positions (F2,
F3, F4, and F5) along the line have different magnitudes of sag but similar fault-clearing
times. Fault positions F6, F7, and F8 result in different durations of sag but the same
magnitude. For all fault positions, magnitude, duration, and frequency are determined. It
is noted that all the fault positions need not be an equal fraction of the distance along the
line. The length (x) between fault positions for any lines originating from the substation is
given by Equation (1) [2].

x =
Vnm

Z
√

3 I f lt

(
Vsag

1−Vsag

)
(1)

where Vnm is the nominal voltage (phase to phase), I f lt is the terminal fault current in the
feeder, Z is the impedance of feeder per unit length, and Vsag is the magnitude of the sag.
Pre-fault voltage is assumed as a unity per unit, and the load current is ignored for this
mathematical expression of Equation (1).

3. Suggested Mathematical Approach

This study focused on sag that occurred due to symmetrical and unsymmetrical
faults. The mathematical equation for the remaining phase voltages for symmetrical and
unsymmetrical faults observed along a random line is obtained to get the magnitude of the
dip.

3.1. Faults at the System Buses

Figure 2 describes various types of faults in the power system. Sags due to a fault
at any usual bus φ of the system and the voltages in terms of unsymmetrical sequence
components at bus Ψ are expressed in Equations (2)–(4) [3,21,22]:

V0
Ψ = 0− Z0

Ψφ I0
φ (2)

V1
Ψ = V1Pr f

Ψ − Z1
Ψφ I1

φ (3)

V2
Ψ = 0− Z2

Ψφ I2
φ (4)

Equations (2)–(4) can be expressed in terms of vector sequence components as shown
in Equation (5).

V012
Ψ = V012Pr f

Ψ −
[

Z012
Ψφ

]
I012
φ (5)

where V012
Ψ =

V0
Ψ

V1
Ψ

V2
Ψ

 and the terms V1
Ψ, V2

Ψ, and V0
Ψ are the positive, negative, and zero

vectors of sequence voltage at the usual bus bar Ψ, correspondingly.
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V012Pr f
Ψ =

V0Pr f
Ψ

V1Pr f
Ψ

V2Pr f
Ψ

 where V1Pr f
Ψ , V2Pr f

Ψ , and V0Pr f
Ψ are the positive, negative and zero

sequence vectors of pre-fault voltage, correspondingly.

Z012
Ψφ =

Z0
Ψφ 0 0
0 Z1

Ψφ 0
0 0 Z2

Ψφ

 where Z0
Ψφ, Z2

Ψφ, and Z0
Ψφ are the transfer sequence

impedance of the line that connects bus Ψ and φ. I012
φ =

I0
Ψ

I1
Ψ

I2
Ψ

 where the term I1
Ψ, I2

Ψ, and

I0
Ψ are the positive, negative and zero sequence fault current vectors at bus Ψ, respectively.

Equation (5) applies to the bus bar fault of the network. When there are occurrences of faults
along any arbitrary line of the network, the mathematical expressions must be continued.
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Figure 2. Occurrence of faults at bus g named as (a) Symmetrical fault; (b) Single line to ground fault
at phase-a; (c) Line-to-line fault at phase-b and phase-c; (d) Double line to ground fault at phase-a
and phase-b.

3.2. Voltage Sag Due to a Line Fault

We will now focus on a position of fault g that moves throughout a considered line,
joining buses B and C. As shown in Figure 3, the location of g is where the occurrence
of a fault is determined by the use of an introduced parametric quantity, δ. The value of
parametric quantity δ lies between 0 to 1 concerning the movement of the location of the
fault from bus B to C.
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Therefore, δ can be defined as shown in Equation (6) [3,18]

δ =
(

DBg/DBC
)

; 0 ≤ δ ≤ 1 (6)

where DBg indicates the distance between fault point g and bus B, and DBC represents the
distance between fault point bus B and bus C.

The driving point and transfer impedances of three sequence circuits can be repre-
sented employing positive (Z1), negative (Z2), and zero (Z0) sequence impedances and
parametric quantity δ. The sequence transfer impedances within the fault position g and
perceptive P-Q bus ψ can be mathematically expressed as shown in Equations (7)–(9) [3,16]:

Z0
Ψg= δZ0

ΨC+(1− δ) Z0
ΨB (7)

Z1
Ψg= δZ1

ΨC+(1− δ) Z1
ΨB (8)

Z2
Ψg= δZ2

ΨC+(1− δ) Z2
ΨB (9)

where Z0
ΨB, Z1

ΨB, and Z2
ΨB are the sequence transfer impedances related to buses Ψ and B,

and Z0
ΨC, Z1

ΨC, and Z2
ΨC are the sequence transfer impedances related to buses Ψ and C. At

the location of fault g, the sequence driving point impedance can be stated mathematically
in Equation (10):

Z0
gg

Z1
gg

Z2
gg

 =

(1− 2δ + δ2) 2δ(1− δ) δ2 δ(1− δ)(
1− 2δ + δ2) 2δ(1− δ) δ2 δ(1− δ)(
1− 2δ + δ2) 2δ(1− δ) δ2 δ(1− δ)




Z0
BB Z1

BB Z2
BB

Z0
BG Z1

BG Z2
BG

Z0
GG Z1

GG Z2
GG

Z0
l Z1

1 Z2
1

 (10)

where Z012
BB and Z012

CC are the sequence driving point impedances and Z012
BC are the sequence

transfer impedances at the shown buses B and C, respectively, and Z012
l are the sequence

impedances of the line between buses B and C. The voltage before the fault at the position
of fault g can furthermore be stated mathematically in Equation (11):

Vg = (1− δ)VB + δVC (11)

where VB and VC are the pre-fault voltages at buses B and C, correspondingly.
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3.3. Symmetrical Fault (Three-Phase Fault)

Zero and negative sequences are not considered here. When this balanced fault
occurred as shown in Figure 2 at the bus g, then the voltage remains in a bus Ψ is given in
Equation (12) [3,23]

V f lt
Ψ = VΨ(0)−

Z1
Ψg

Z1
gg

Vg(0) (12)

where Z1
Ψg is the positive sequence impedance between bus g and Ψ, and Z1

gg is the sequence
driving point impedance associated with bus g. VΨ(0) and Vg(0) are the voltages before

the fault in bus ψ and g. V f lt
Ψ refers to the voltage remains in bus ψ after the symmetrical

fault at bus g.

3.4. Single Line to Ground Fault (SLGF)

The mathematical expression of voltage remains in phase-a, b, and c, respectively,
of the bus ψ as a result of the occurrence of SLGF at bus g, which is given in Equations
(13)–(15) [3,18,23].

V f lt
a,Ψ = V1

Ψ(0)−Vg(0)

[
Z1

Ψg + Z2
Ψg + Z0

Ψg

3Z f lt + Z1
gg + Z2

gg + Z0
gg

]
(13)

V f lt
b,Ψ = V1

Ψ(0)−Vg(0)

[
α2Z1

Ψg + αZ2
Ψg + Z0

Ψg

3Z f lt + Z1
gg + Z2

gg + Z0
gg

]
(14)

V f lt
c,Ψ = V1

Ψ(0)−Vg(0)

[
αZ1

Ψg + α2Z2
Ψg + Z0

Ψg

3Z f lt + Z1
gg + Z2

gg + Z0
gg

]
(15)

where Z1
Ψg, Z2

Ψg, and Z0
Ψg are the positive, negative, and zero-sequence impedances

between buses g and Ψ, respectively. V f lt
a,Ψ, V f lt

b,Ψ, and V f lt
c,Ψ are the voltage remains after the

SLGF in phase-a, b, and c respectively of the bus Ψ. Z0
gg, Z1

gg, and Z2
gg are the sequence

driving point impedances of g axis of associated bus impedance matrix. And V1
Ψ(0) is

the positive sequence voltage at bus Ψ before the fault and Z f lt is the fault impedance
respectively.

3.5. Line to Line Fault (LLF)

The mathematical expression of voltage remains in phase-a, b, and c respectively of the
bus Ψ as a result of the occurrence of LLF at bus-g is given in Equations (16)–(18) [3,18,23].

V f lt
a,Ψ = V1

Ψ(0)−Vg(0)

[
Z1

Ψg − Z2
Ψg

Z f lt + Z1
gg + Z2

gg

]
(16)

V f lt
b,Ψ = α2V1

Ψ(0)−Vg(0)

[
α2Z1

Ψg − αZ2
Ψg

Z f lt + Z1
gg + Z2

gg

]
(17)

V f lt
c,Ψ = αV1

Ψ(0)−Vg(0)

[
αZ1

Ψg − α2Z2
Ψg

Z f lt + Z1
gg + Z2

gg

]
(18)

where Z1
Ψg, Z2

Ψg, and Z0
Ψg are the positive, negative, and zero sequence impedances between

bus g and Ψ respectively. V f lt
a,Ψ, V f lt

b,Ψ, and V f lt
c,Ψ are the voltage remains after the LLF in phase-

a, b, and c, correspondingly, of the bus Ψ.
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3.6. Double Line to Ground Fault (DLGF)

The mathematical expression of positive, negative, and zero-sequence of current that
occurred due to LLF as shown in Figure 2 and expressed in Equations (19)–(21) [3,18,23].

I1
g = Vg(0)/

Z1
gg +

Z2
gg

(
Z0

gg + 3Z f lt

)
Z2

gg + Z0
gg + 3Z f lt

 (19)

I2
g = −

Vg(0)− Z1
gg I1

g

Z2
gg

(20)

I0
g =

Vg(0)− Z1
gg I1

g

Z0
gg + 3Z f lt

(21)

where I1
g , I2

g , and I0
g are the positive, negative, and zero-sequence currents, correspondingly,

due to DLGF. Z1
gg, Z2

gg, and Z0
gg are the sequence driving point impedances of the g axis

of the associated bus impedance matrix, and Z f lt is the fault impedance. Simultaneously,
the sequence and phase voltage remains in different phases at the bus Ψ as a result of the
occurrence of the DLGF at bus g are expressed Equations (25)–(27).

V1
Ψ( f lt) = V1

Ψ(0)− Z1
Ψg I1

g (22)

V2
Ψ( f lt) = 0− Z2

Ψg I2
g (23)

V0
Ψ( f lt) = 0− Z0

Ψg I0
g (24)

V f lt
a,Ψ = V0

Ψ( f lt) + V1
Ψ( f lt) + V2

Ψ( f lt) (25)

V f lt
b,Ψ = V0

Ψ( f lt) + α2V1
Ψ( f lt) + αV2

Ψ( f lt) (26)

V f lt
c,Ψ = V0

Ψ( f lt) + αV1
Ψ( f lt) + α2V2

Ψ( f lt) (27)

where Z1
Ψg, Z2

Ψg, and Z0
Ψg are the positive-, negative-, and zero-sequence impedances

between buses g and Ψ, respectively. V0
Ψ( f lt), V1

Ψ( f lt), and V2
Ψ( f lt) are the zero-, positive-,

and negative-sequence currents, respectively, due to DLGF. V f lt
a,Ψ, V f lt

b,Ψ, and V f lt
c,Ψ are the

voltage remains after the DLGF in phase-a, b, and c, respectively, of bus ψ.

4. Sag Analysis Using Bivariate Discrete Probability Distribution

For the analysis, B and C consecutive buses were chosen in Figure 3. The fault may
occur between these two points, B and C. Due to this, line fault voltage sag occurs in
different buses. Let ‘W’ be the sag magnitude range parameter. For the analysis, the
magnitude ranges are categorized into a 0.1 p.u. gap, and the discrete sag frequency is
allocated in the associated range. Thus, it is taken as one discrete random variable. Symbol
‘K’ is taken as a fault parameter, which is also a discrete random variable whose discrete
value varies from 1 to 4 for the different types of faults (symmetrical, SLGF, LLF, and
DLGF).

The joint probability mass function of these two continuous random variables is shown
in Equations (28)–(32) [24].

Pprob
(
W = wi, K = k J

)
= (Prob)ij (28)

(Prob)ij ≥ 0 and (29)

m

∑
i=1

n

∑
j=1

(Prob)ij = 1 (30)
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where Pprob
(
W = wi, K = k J

)
is the probability mass function of W and K. Here, i is any

value from zero to the maximum distance between the buses B and C, and j value is 1 to 4.
The marginal probability mass function of W and K are shown in Equations (31)–(32).

Pprob(W = wi) = ∑
j
(Prob)ij = Pi1 + Pi2 + Pi3 + Pi4 (31)

Pprob
(
K = k j

)
= ∑

i
(Prob)ij = P1j + P1j + P1j + . . . (32)

5. Proposed Analytical Flow Chart for Determining the Frequency of Sag
5.1. Brief Explanation of the Flow Chart

1. Required data and assumptions are fed to the system.
2. Load flow analysis is performed to assess the pre-fault voltage with a fast and efficient

load flow analysis technique [25].
3. A fault is created along the line, and its effect in terms of voltage is noted at the buses

by using the Equations (12)–(27).
4. Then, the noted voltages are classified with respect to different ranges, and hence, a

total number of associated sags of any given bus.
5. Step 3 is repeated for all the lines and different types of faults (SLGF, DLGF, LLF, LLLF,

and LLLGF) of the tested system.
6. After that, the sag analysis is performed by using the bivariate joint discrete probability

distribution method that uses a joint probability mass function that gives a clear idea
about the probability of sag occurrence in different regions in a meshed network.

5.2. Flow Chart

The primary requirement of the study of sag assessment is to compute the probable
frequency of sags per annum for all buses in the considered network, expressed with a
specific limit of magnitude. For computing, the frequency of sags and the least magnitude
of all the 3-phase voltages are taken into account. The procedure for obtaining the frequency
of sags is shown in the flow chart in Figure 4. To obtain voltages before the fault magnitude,
the backward–forward method of load-flow analysis is executed [25]. After that, the Z-bus
is formed using the Z-bus building algorithm, which is used in creating the sequence
impedance matrix and fault analysis in the network.

Then, the random fault location is selected in an arbitrarily chosen line. The sequence
impedance matrix is formed to determine the post-fault voltage magnitudes in different
phases of the buses. Fault analysis is performed by creating symmetrical and unsymmetrical
faults for all the buses, and the residual magnitude of voltages is obtained along with the
duration. Sag magnitude Va

Ψ is determined for phase-a of bus Ψ from the list of voltage
magnitudes obtained after the fault. If VL ≤ Va

Ψ ≤ VU , then the corresponding upper and
lower fault positions δU , δL for the line BC and the probable chances of fault occurrence
between the lower fault position δL and the upper fault position δU are calculated. Then,
the total number of sags is summated for the line BC. This procedure is performed for
all types of unsymmetrical and symmetrical faults. The exact same process is carried out
for the remaining lines of the considered network. Then, the total frequency of sags at
any desired bus-Ψ is computed. After that, the results are processed for bivariate joint
probability distribution to find the probability of sag occurrence in different frequency
ranges with respect to the different types of faults.
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6. Case Study

Two networks (IEEE 39-bus reliability test system and an actual network of distribution
system) have been taken for the study and the outcomes are discussed in Sections 6.1 and 6.2.

6.1. IEEE RTS-39 Bus Reliability Test System

The suggested analytical approach was tested on the IEEE 39-bus system, as shown
in Figure 5. The test system data is given in [26]. The system contains 10 generators and
39 buses interlinked by 46 lines and 12 transformers. Various kinds of faults are taken into
consideration to demonstrate the ability of the suggested mathematical approach to cope
with symmetrical and unsymmetrical faults. Figure 6a shows the net frequency of sags of
all the system buses for SLGF and DLGF.
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As a result of SLGF, the minimum frequency of sags occurred on bus 35, and the maxi-
mum frequency of sags occurred annually on buses 10 and 12. The associated frequencies
were 11 and 23 sags per annum, respectively. Whereas the sags per annum due to DLGF
was less than six identified on each bus, the maximum number of sags per annum due to
DLGF was five, and it occurred on buses 10 and 12. In addition, the lowest frequency of
sags per annum caused by DLGF was 2, which appeared on bus 35. The expected frequency
of sags per year caused by LLF and the symmetrical fault is shown in Figure 6b. From
Figure 6b, it is manifest that the sags per annum due to LLF was less than four identified
on each bus, and a maximum number of sags per annum due to LLF was three, and it
occurred on buses 4, 6, 10, 12, 15, 22, 26, 27, and 28.

Similarly, the highest frequency of sags per annum caused by three-phase faults was 1,
which occurred almost in all buses except 11, 19, 35, and 36. By examining Figure 6, it can
be identified that SLGF contributes to the maximum frequency of sags per annum, and it is
a result of the most frequent occurrence of SLGF.

The comparative analysis of the proposed algorithm with respect to the existing
algorithm is shown in Figure 7. Figure 7a shows the frequencies of sags due to the SLGF,
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and Figure 7b indicates the cumulative changes of voltage sags in the proposed and existing
algorithms.
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(b) Cumulative number of sags.

Figure 7 indicates that the frequency of sags is about 20% higher in the proposed
algorithm.

The joint probability mass function of the sag range and different fault types is shown
in Table 1. The values were obtained by using the Equations (28)–(32). Using that table,
we can identify the probability of sag occurrence in different ranges with respect to the
different faults. The analysis was performed on bus 15, but the table can similarly be
obtained for the other buses.

Table 1. Joint probability mass function of sag range and fault type for bus 15.

Sag Range in p.u. (W)
Probabilities of Different Fault Type (K)

Total
PProb(LLLF) PProb(SLGF) PProb(LLF) PProb(DLGF)

0.0–0.1 0.015152 0.060606 0.015152 0.015152 0.106061

0.1–0.2 0 0.045455 0.030303 0.015152 0.090909

0.2–0.3 0.015152 0.060606 0.015152 0.015152 0.106061

0.3–0.4 0 0.045455 0.030303 0.015152 0.090909

0.4–0.5 0 0.045455 0.030303 0.015152 0.090909

0.5–0.6 0.015152 0.060606 0.015152 0.015152 0.106061

0.6–0.7 0.015152 0.075758 0.030303 0.015152 0.136364

0.7–0.8 0.015152 0.075758 0.030303 0.015152 0.136364

0.8–0.9 0.015152 0.075758 0.030303 0.015152 0.136364

∑ PProb(LLLF) = 0.090909 ∑ PProb(SLGF) = 0.545455 ∑ PProb(LLF) = 0.227273 ∑ PProb(DLGF) = 0.136364 ∑ PProb = 1

The probability of the occurrence of sag due to SLGF for the range of 0.8 to 0.9 p.u.
was 0.075758.

Similarly, for the range of 0.0 to 0.1 p.u., the range was 0.060606. This analysis was
performed for a time duration of 80 ms. The variation of the joint probability of sag due to
SLGF for the different ranges of magnitude is shown in Figure 8.

From Figure 8, it is observed that for SLGF with a duration of 80 ms, the chances of
sag occurrence are maximized in the range of 0.6 to 0.9 p.u. The variation is not linear due
to the meshed system. The variation of sag magnitude with respect to the change of fault
position for the duration of 80 ms is shown in Table 2. From Table 2, we can conclude that
the highest magnitude of sag was 0.82 p.u. and the lowest was 0.07 p.u. The variation of
voltage is not linear due to the meshed network.
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Table 2. Variation of sag magnitude concerning the change of fault position for the duration of 80 ms.

S.N Fault Position Variation Duration for SLGF in Sec Variation of Magnitude of Sag

1. 0.1 0.008 0.07

2. 0.2 0.008 0.32

3. 0.3 0.008 0.5

4. 0.4 0.008 0.62

5. 0.5 0.008 0.69

6. 0.6 0.008 0.74

7. 0.7 0.008 0.78

8. 0.8 0.008 0.8

9. 0.9 0.008 0.81

10. 1 0.008 0.82

11. 1.1 0.008 0.82

12. 1.2 0.008 0.82

13. 1.3 0.008 0.81

14. 1.4 0.008 0.79

15. 1.5 0.008 0.77

16. 1.6 0.008 0.73

17. 1.7 0.008 0.67

18. 1.8 0.008 0.58

19. 1.9 0.008 0.44

20. 2 0.008 0.24

21. 2.1 0.008 0.07

22. 2.2 0.008 0.32

23. 2.3 0.008 0.5

24. 2.4 0.008 0.62

25. 2.5 0.008 0.69

26. 2.6 0.008 0.74

27. 2.7 0.008 0.77

28. 2.8 0.008 0.8

29. 2.9 0.008 0.81

30. 3 0.008 0.82
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Table 2. Cont.

S.N Fault Position Variation Duration for SLGF in Sec Variation of Magnitude of Sag

31. 3.1 0.008 0.82

32. 3.2 0.008 0.81

33. 3.3 0.008 0.8

34. 3.4 0.008 0.79

35. 3.5 0.008 0.76

36. 3.6 0.008 0.72

The three-dimensional ribbon plot of sag magnitude for different fault positions at a
fixed duration of 80 ms is shown in Figure 9.
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Figure 9. Three-dimensional ribbon plot of sag magnitude for different fault positions at a fixed
duration of 80 ms.

From Table 2 and Figure 9, we can conclude that by the variation of fault position by
0.1 unit in a 100 km line, the sag magnitude also varies continuously. When the fault occurs
close to bus 15, the voltage dip is greater, and the sag magnitude improves when the fault
position is further away from bus 15. The variation of voltage is not linear due to the mesh
system. The result may be linear for the radial distribution system.

6.2. Study of the Assessment of Sag in a Real Distribution Network

The suggested analytical approach was tested in a practical distribution system in
the district of Haridwar in the state of Uttarakhand, India [27]. This network consists
of 29 buses, 11 transformers, and 28 lines, as shown in Figure 10. The network has
two 220 kV substations, i.e., Sidcul-220 and Roorkee-220, and seven 132 kV substations,
i.e., Bhupatwala, Jwalapur, Ramnagar, Mangalore, Sidcul-132, Bhagwanpur, and Laksar.
Moreover, the network has seven 33 kV buses, i.e., Ramnagar-33, Sidcul-33, Laksar-33,
Mangalore-33, Bhagwanpur-33, Bhupatwala-33, and Jwalapur-33. The suggested approach
was tested on a distribution network where the symmetrical and unsymmetrical faults
are taken into account along the line and on the bus. The fault rates in the network are
presented in Table 3 [18].

The assessment of voltage sag was performed on the considered real distribution
network for every available bus. The frequency of sags concerning different magnitudes of
duration for any usual bus 10 is shown in Figures 11 and 12.
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Figure 13 indicates the plot between the frequency of sags and the durations of the
faults. From the graph, it is concluded that the maximum frequency of sag is associated
with the lowest time duration, which was 60 ms. The frequency of sag concerning the
duration and magnitude ranges are shown in Table 4 and Figure 13. From Table 4 and
Figure 13, it is observed that the maximum frequency of sag associated with the highest
magnitude range was 0.7–0.9 per unit and the lowest time duration was 60 ms.
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Table 4. Frequency of sag with respect to duration and magnitude ranges for bus 10.

Duration in Milliseconds (ms)

Magnitude Ranges (p.u.) 60 ms 80 ms 150 ms 300 ms

0.1–0.3 1 1 0 0
0.3–0.5 2 1 1 0
0.5–0.7 4 3 2 1
0.7–0.9 5 4 3 2

The assessment of the frequency of sag concerning the magnitude of bus 15 is shown
in Figure 14. Figure 15 indicates the plot between the frequency of sags concerning the
durations of the faults. From the graph, it is concluded that the maximum frequency of
sag is associated with the lowest time duration, which was 60 ms. The frequency of sag
concerning the duration and magnitude ranges is shown in Table 5 and Figure 15.
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Table 5. Frequency of sag for duration and magnitude ranges for bus 15.

Duration (ms)

Magnitude Ranges (p.u.) 60 ms 80 ms 150 ms 300 ms

0.1–0.3 3 2 1 0
0.3–0.5 5 3 2 1
0.5–0.7 7 4 3 2
0.7–0.9 9 7 4 2

From Figure 15 and Table 5, it is concluded that the frequency of sags is greater for the
lower sag time duration and less for the comparatively more extended period. Furthermore,
it is identified that the frequency of deep sags is less than that of shallow sags. A fault
causes deep sags in the lower magnitude voltage part of the network, which affects only
the neighboring consumer. In contrast, the shallow sags occur due to the faults in the
transmission lines, and their consequences spread over a broader part of the distribution
system. The maximum frequency of sags was 66 annually, and the minimum was 18 for
bus 15 and bus 10, respectively. The sag frequency of the four randomly chosen buses, 10,
15, 23, and 29, is presented in Table 6 and Figure 16.

Table 6. Frequency of sag versus magnitude in some observed buses.

Buses

Magnitude Range Bus 10 Bus 15 Bus 23 Bus 29

0.0–0.1 0 7 3 6
0.1–0.2 1 6 2 5
0.2–0.3 1 7 2 6
0.3–0.4 2 6 0 4
0.4–0.5 1 6 2 5
0.5–0.6 2 7 3 6
0.6–0.7 4 9 4 7
0.7–0.8 3 9 2 6
0.8–0.9 4 9 6 7
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The frequency of sag concerning different types of faults for the same randomly chosen
buses, 10, 15, 23, and 29, is shown in Figure 17. It is identified that the maximum and
minimum frequencies of sag were due to a single line to ground fault and a three-phase
fault, respectively.
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7. Conclusions and Future Scope

In the presented study, residual voltages caused by faults along the line and on the
buses were obtained and inspected. Fault impedance was incorporated into the entire
analysis. The work is extended with a comparison to reference [3]. In that paper, fault
impedance was not considered and was followed by the existing typical load flow analysis
technique. In the presented article, fault impedance is introduced, due to which more volt-
age sags occur, which is treated better so that the industrial consumer will be prepared for
this type of contingency. In this article, a fast and efficient load flow analysis technique [25]
is used that produces fast results. Computational performance is also enhanced. The sag
analysis was performed by using the bivariate joint discrete probability distribution method
that uses a joint probability mass function that gives a clear idea about the probability of
sag occurrence in a meshed network.

The suggested approach was tested in India’s IEEE 39-bus system and an existing dis-
tribution system. This proposed approach computes the probable sag frequency resulting
from symmetrical and unsymmetrical faults. The assessment result was compared with an
existing analytical method. An assessment of higher sag frequency is beneficial for indus-
trial customers so that alternate voltage sag mitigation arrangements can be introduced for
smooth industrial operation. The disadvantage of this algorithm is that it is limited to the
evaluation of sag as well as associated weak areas only, but it does not provide a clear idea
regarding the voltage sag source location, except for the created fault position. The future
research can be extended to voltage sag source location areas. Also, this voltage sag study
can be extended in the field of economic and macroeconomic analyses [28].
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