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Abstract: The aim of this paper is to present a novel approach to energy use forecasting. We propose
a nested fuzzy cognitive map in which each concept at a higher level can be decomposed into another
fuzzy cognitive map, multilayer perceptron artificial neural network or long short-term memory
network. Historical data related to energy consumption are used to construct a nested fuzzy cognitive
map in order to better understand energy use behavior. Through the experiments, the usefulness
of the nested structure in energy demand prediction is demonstrated, by calculating three popular
metrics: Mean Square Error, Mean Absolute Error and the correlation coefficient. A comparative
analysis is performed, applying classic multilayer perceptron artificial neural networks, long short-
term memory networks and fuzzy cognitive maps. The results confirmed that the proposed approach
outperforms the classic methods in terms of prediction accuracy. Moreover, the advantage of the
proposed approach is the ability to present complex time series in the form of a clear nested structure
presenting the main concepts influencing energy consumption on the first level. The second level
allows for more detailed problem analysis and lower forecast errors.

Keywords: nested structure; energy use forecasting; fuzzy cognitive maps; artificial neural networks;
long short-term memory networks

1. Introduction

An important element of policy around the world and strategy formulation is energy
use analysis. The aim of this paper is to introduce a novel approach for constructing a
nested structure in which each concept at a higher level can be decomposed into another
fuzzy cognitive map, multilayer perceptron artificial neural network or long short-term
memory network. The proposed nested FCM allows for very good forecasting accuracy
thanks to the use of effective models on the second level and at the same time can facilitate
the understanding of the energy use behavior thanks to the general fuzzy cognitive map
on the first level.

In recent years, many different techniques of machine learning and deep learning have
been explored in the literature to solve the problem of energy use forecasting [1–3]. In [4],
a forecasting system based on the support vector regression model and Markov Chain
was developed in order to discover energy consumption patterns in China. The presented
results show that the proposed approach is more accurate than the moving average model
and the grey model. In [5], an Autoregressive Integrated Moving Average model was used
to analyze the demand forecasting electricity based on real data from the World Bank on
energy consumption in Morocco. The results indicated an upward trend in electrical energy
consumption by the end of 2030. Forecasting energy use provides important information
for energy suppliers and customers to improve energy management and load control.

In [6], the management of energy consumption in warehouse buildings was analyzed.
Support Vector Regression, Random Forest, Extreme Gradient Boosting, Recurrent Neural
Networks, Long Short-Term Memory network (LSTM), Gated Recurrent Unit, and Autore-
gressive Integrated Moving Average were compared in the problem of predicting daily
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energy consumption. The results show that the Extreme Gradient Boosting models outper-
form all other machine learning and deep learning models for short-term load forecasting.
Forecasting electricity consumption in Thailand with the use of multiple linear regression,
artificial neural network (ANN), support vector machine, hybrid models, and ensemble
models were implemented in [7]. The results show that a hybrid model of a multiple
regression model and artificial neural networks provided the best forecasting accuracy.

In [8], the Long Short-Term Memory, the Gated Recurrent Unit and the Drop-Gated
Recurrent Unit were used to predict power consumption in some French cities. In [9], a
deep learning approach based on recurrent neural networks and Long Short-Term Memory
networks was developed to forecast the photovoltaic output power. The proposed tech-
nique was compared with well-known regression, hybrid ANFIS and machine learning
methods achieving higher forecasting accuracy. In [10], artificial neural networks were
applied to short-term load forecasting. The enhanced min–max scaling procedure was
proposed where the importance of certain input variables on the total outcome of the
artificial neural network was taken into consideration. The results show that using some
data preprocessing techniques can lead to improved prediction accuracy.

Various factors can affect energy consumption around the world. Most of the models
used in forecasting energy consumption focus on the accuracy of the prediction. In black-
box models, such artificial neural networks are less interpretable in terms of the form of the
relationship between inputs and output variables. They can outperform other techniques,
e.g., the decision trees, predicting energy demand with lower error, but do not provide
feature importance insight [11]. Recently, there has been a growing interest in explainable
machine learning. In [12], explainable machine learning was applied in the transportation
energy field. The methodology was implemented based on the Household Travel Survey
data and artificial neural network. The importance and effect of the available inputs on
transportation energy consumption were analyzed.

Understanding and changing energy use behavior can protect environmental resources.
This raises the need to develop new techniques that will allow for understanding the
problem and facilitate decision-making based on the analysis of available data. A fuzzy
cognitive map (FCM) is a soft computing technique that allows mimicking the analyzed
problem in the form of important concepts and causal connections between them [13].
In [14], an FCM model was used to analyze the dynamic behavior of concepts and the
relations among them in renewable energy systems. In [15], a novel technique based on
fuzzy cognitive maps was applied for solar energy forecasting. Table 1 shows the relevant
literature summary.

However, a too large amount of data attributes can complicate analysis. In the case
of a large number of concepts, the problem can be described in the form of a nested
fuzzy cognitive map that allows a more readable representation of knowledge than classic
fuzzy cognitive maps. In [16], an FCM model containing a large number of concepts was
simplified by merging related or similar concepts into the same cluster allowing a more
understandable view of the problem. In [17], we have analyzed a nested fuzzy cognitive
map consisting in decomposing each concept at a higher map level into another FCM.

Artificial neural networks can achieve higher accuracy in predicting data than classic
fuzzy cognitive maps [18]. The motivation of this paper is to extend the approach for
constructing a nested structure presented in [17] to include the possibility of using artificial
neural networks at the second level for more accurate forecasting. Each concept of the
nested fuzzy cognitive map can be decomposed into another fuzzy cognitive map, multi-
layer perceptron artificial neural network or long short-term memory network. Historical
data related to hourly energy demand, generation, prices and weather are used to evaluate
the effectiveness of the proposed approach [19]. A comparative analysis is performed,
applying classic artificial neural networks, long short-term memory networks and fuzzy
cognitive maps.
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Table 1. Selected methods used for energy use forecasting.

Analyzed Approach Problem Results Reference

Support vector regression model
and Markov Chain Forecasting energy consumption Outperforms moving average model and

the grey model [4]

Extreme Gradient Boosting
models

Predicting daily energy
consumption in warehouse

buildings

Outperform Recurrent Neural Networks
and Autoregressive Integrated Moving

Average
[6]

Long Short-Term Memory
networks

Predicting the photovoltaic
output power

Outperform other well-known regression,
hybrid ANFIS and machine learning

methods
[9]

Artificial neural networks Predicting energy demand Outperform other techniques but do not
provide feature importance insight [11]

Randomized-based fuzzy
cognitive map

Solar energy
forecasting-univariate time series

Outperforms Probabilistic Weighted
Fuzzy Time Series and Seasonal

Autoregressive Integrated Moving
Average models

[15]

The objectives of the paper are briefly summarized as follows:

• To develop a methodology for the construction of nested structures based on fuzzy
cognitive maps and artificial neural networks in order to better understand energy
use behavior and extract useful knowledge.

• To apply the developed approach for energy use forecasting.
• To evaluate the performance of the nested structure on the first and the second level

and finally choose the most accurate model.
• To compare the proposed approach with classic artificial neural networks, long short-

term memory networks and fuzzy cognitive maps.

The paper is organized as follows. Section 2 describes the proposed nested structure
and the used dataset and methodologies: fuzzy cognitive maps, multilayer perceptrons
and long short-term memory networks. The results are presented in Section 3. Section 4
contains the discussion of results and further research directions.

2. Materials and Methods

This section details the proposed nested structure as well as the materials and methods
used in this research study.

2.1. Nested Structure

A nested fuzzy cognitive map in which each concept of a higher level can be decom-
posed into another fuzzy cognitive map that has been proposed in [17]. In the current
research, the approach has been extended to include the possibility of using neural net-
works at the second level for more accurate forecasting. Each concept of the nested fuzzy
cognitive map can be decomposed into another fuzzy cognitive map, multilayer perceptron
artificial neural network or long short-term memory network. Figure 1 visualizes a sample
nested structure.

The nested structure may have two or more levels depending on the complexity of
the analyzed problem. In this paper, a two-level nested structure is used. The construction
of a nested structure consists of three main steps described below: data preprocessing,
constructing the first level in the form of a general fuzzy cognitive map, and constructing
the second level based on fuzzy cognitive maps, multilayer perceptrons and long short-
term memory networks. Figure 2 shows the architecture of the proposed algorithm for
constructing a nested structure.
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Figure 1. Example of a nested structure.

Data
preprocessing

Constructing the
first level

Constructing the
second level

Data normalization

k-means clustering

Calculation of average
values for each cluster

Learning the nested
FCM with the use of

RCGA/SOGA

Learning the FCM,
ANN and LSTM

models

Selecting the best model
for each cluster

Figure 2. Architecture of the proposed approach.

Data preprocessing.

The first step of the proposed approach is complex data preprocessing. The available
data is normalized in the range [0,1] with the standard min-max normalization, described
by the formula [20]:

xnew =
xold −minA

maxA −minA
, (1)

where minA is the minimum value of an attribute A, maxA is the maximum value of
an attribute A, xold is the value of an attribute A, and xnew is the normalized value. In
our work, we performed data normalization in python based on MinMaxScaler from the
sklearn.preprocessing package [21,22].
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Then, the normalized data is clustered using the k-means method [23]. The k-means
process involves partitioning an N-dimensional population into K disjoint groups on the
basis of a sample. This method starts with K clusters, each containing a random point
(centroid). Each new point (describing data attribute) is added to the cluster whose centroid
is closest to the new point. The K-means algorithm aims to choose centroids that minimize
the potential function [24]:

Φ = ∑
x∈X

minc∈C||x− c||2, (2)

where X is a set of data points, x is a single point, C is a set of centroids, and c is a single
centroid.

When the points are added, the centroids are calculated based on the average of all
points assigned to each cluster. The algorithm repeats until the centroids stop changing.
The k-means method is a popular and fast clustering technique [24] and allows us to
group similar data attributes. All data attributes are grouped apart from decision-making
elements (the output data attributes that we want to forecast). We implemented data
clustering in python with the use of K-means from the sklearn.cluster module [21,25].

Constructing the first level

The next step is the construction of the first level of the nested structure. This is the
most general level in the form of a fuzzy cognitive map in which concepts are determined
based on the clusters and the output (decision) data attributes. The input data for this FCM
model are calculated as the average values for data within each cluster:

Xk(t) =
1
nk

∑
x∈Ck

x(t), (3)

where t = 1, . . . , T, T is the number of records, Ck is a set of data points belonging to the
k-th cluster, x is a single point, k = 1, . . . , K, K is the number of clusters, nk is the number of
points in the k-th cluster.

The connections between the concepts at the first level of the nested structure are
determined with the use of the learning process and the input data. If we have some
expert knowledge about possible connections between concepts or about the weights of
the connections, we can also include it in the learning process. In our analysis, we have
used two genetic algorithms: RCGA and SOGA to determine the connections between the
concepts.

In this paper, we focus on a case in which we do not have expert knowledge but have a
large amount of data about the problem. Therefore, the calculation of the input data in each
cluster is based on the mean value. Where expert knowledge is available, the input data
could be calculated on the basis of a weighted average, where the weights for individual
data attributes would be determined by experts. Another approach that could be explored
in future research is the use of more advanced data processing techniques, for example,
grey numbers.

Constructing the second level

In the last step, the more detailed level of the nested structure is determined. Each
concept of a higher level, if it is necessary, can be decomposed into a fuzzy cognitive map,
multilayer perceptron or long short-term memory network. All models are assessed and,
finally, the most accurate model is chosen. A separate model is constructed for each cluster
and can be used to predict energy use. Each model of the second level makes a prediction
on the basis of all data attributes belonging to its cluster and the average data from other
clusters.

2.2. Fuzzy Cognitive Maps

A fuzzy cognitive map is a graph structure for representing causal reasoning. Nodes
are concepts important for the analyzed problem. Edges are causal relationships [13].
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Values of the concepts can be calculated on the basis of the selected dynamic model [26]. In
the analysis, a nonlinear model is used:

Xi(t + 1) = f (Xi(t) +
n

∑
j=1,j 6=i

wj,iXj(t)), (4)

where Xi(t) is the value of the i-th concept, t is the number of iteration, wj,i is the weight
of the relationships between the j-th concept and the i-th concept, i, j = 1, . . . , n, n is the
number of concepts, f is a normalization function. There are four functions that can be
used to normalize the values of the concepts [26]:

• sigmoid function;
• hyperbolic tangent function;
• step function;
• threshold linear function.

The selection of the function depends on the problem. In this work, the most popular
sigmoid function is used and described as follows:

f (x) =
1

1 + e−λx (5)

where λ is a constant value that indicates the function slope.
Fuzzy cognitive maps can be learned with the use of evolutionary algorithms: the

Real-Coded Genetic Algorithm (RCGA) [27] and the Structure Optimization Genetic Algo-
rithm (SOGA) [28]. The learning process enables finding important relationships between
concepts at every nesting level and determining the weights of these relationships on the
basis of the available data.

2.3. Artificial Neural Networks

The structure of an artificial neural network that combines single neurons into a
network and is proposed [29]. One of the most well-known artificial neural networks is
a multilayer perceptron. It is composed of multiple layers of perceptrons. A multilayer
perceptron consists of an input layer, hidden layers, and an output layer [30]. The neurons
in the layers are linked by synaptic weights. These weights can be determined with the use
of the learning process.

In our analysis, multilayer perceptrons are learned based on the backpropagation
method with momentum [30]. The sigmoid function (5) is used as the activation function.
The process of learning fuzzy cognitive maps and multilayer perceptrons is carried out
using the previously developed ISEMK application [31].

2.4. Long Short-Term Memory Networks

A Long Short-Term Memory network is a recurrent network with memory cell struc-
tures developed to overcome the error-back flow problems [32]. Like a multilayer percep-
tron, an LSTM model consists of an input layer, hidden layers, and an output layer.

LSTM models can give more accurate time series forecasts compared to traditional
recurrent neural networks or multilayer perceptrons. In [33], Long Short-Term Memory
networks were analyzed based on environmental time-series problems: forecasting water
pollution, air pollution, and ozone alarm. The presented results confirm that LSTM shows
the most accurate results compared to multilayer perceptron and traditional recurrent
neural networks. The LSTM shows the best accuracy in almost all experiments.

The LSTM network is implemented with the use of Keras API and python lan-
guage [34]. Two effective models are used in the analysis: a Vanilla LSTM and a Bidi-
rectional LSTM. A Vanilla LSTM is a network with a single hidden layer and an output
layer used to make a prediction. Bidirectional LSTMs are an extension of traditional LSTMs
that allow learning the input sequence both forward and backwards. The Adam algorithm
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is used to learn the LSTM models. It is a stochastic gradient descent method that is based
on adaptive estimation of first-order and second-order moments [35].

2.5. Dataset

The analyzed dataset contains hourly energy demand, generation, prices and weather [19].
The data was initially collected on an hourly basis and contains about 0.14% of missing values.
The missing values are replaced with zero. The following 40 data attributes are used in the
analysis:

• X1—year
• X2 – month
• X3—day
• X4—hour
• X5—generation biomass
• X6—generation fossil brown coal/lignite
• X7—generation fossil coal-derived gas
• X8—generation fossil gas
• X9—generation fossil hard coal
• X10—generation fossil oil
• X11—generation fossil oil shale
• X12—generation fossil peat
• X13—generation geothermal
• X14—generation hydro pumped storage aggregated
• X15—generation hydro pumped storage consumption
• X16—generation hydro run-of-river and poundage
• X17—generation hydro water reservoir
• X18—generation marine
• X19—generation nuclear
• X20—generation other
• X21—generation other renewable
• X22—generation solar
• X23—generation waste
• X24—generation wind offshore
• X25—generation wind onshore
• X26—total load actual
• X27—price day ahead
• X28—price actual
• X29—temp
• X30—temp min
• X31—temp max
• X32—pressure
• X33—humidity
• X34—wind speed
• X35—wind degree
• X36—rain 1 h
• X37—rain 3 h
• X38—snow 3 h
• X39—clouds all
• X40—weather id

Figure 3 visualizes the selected data attributes.
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Figure 3. Box plots of selected data attributes.

3. Results

The aim of simulations is a one-step-ahead prediction of the energy use (X26 total load
actual) based on available data. Other data attributes are grouped into eight clusters with
the use of k-means clustering:

• cluster 1: X7 (generation fossil coal-derived gas), X11 (generation fossil oil shale), X12
(generation fossil peat), X13 (generation geothermal), X14 (generation hydro pumped
storage aggregated), X15 (generation hydro pumped storage consumption), X18 (gen-
eration marine), X24 (generation wind offshore), X34 (wind speed), X36 (rain 1h), X37
(rain 3h), X38 (snow 3h)

• cluster 2: X5 (generation biomass), X10 (generation fossil oil), X19 (generation nu-
clear), X21 (generation other renewable), X23 (generation waste), X33 (humidity), X40
(weather id)

• cluster 3: X8 (generation fossil gas), X17 (generation hydro water reservoir), X22
(generation solar), X25 (generation wind onshore), X39 (clouds all)

• cluster 4: X6 (generation fossil brown coal/lignite), X9 (generation fossil hard coal)
• cluster 5: X2 (month), X3 (day), X4 (hour), X16 (generation hydro run-of-river and

poundage), X20 (generation other), X27 (price day ahead), X28 (price actual), X32
(pressure)

• cluster 6: X35 (wind degree)
• cluster 7: X1 (year)
• cluster 8: X29 (temp), X30 (temp min), X31 (temp max)
• output: X26 (total load actual)

The first level of the nested structure is a fuzzy cognitive map constructed based on
the grouped data. It contains nine concepts: cluster 1, cluster 2, cluster 3, cluster 4, cluster 5,
cluster 6, cluster 7, cluster 8 and the output concept. The learning process is realized with
the use of genetic algorithms (RCGA, SOGA).

Each concept of the nested fuzzy cognitive map can be decomposed into another fuzzy
cognitive map, multilayer perceptron artificial neural network or long short-term memory
network for more detailed energy use forecasting (the second level of the nested structure).

The dataset is divided into training data and testing data. The training dataset contains
1000 records and is used during the learning process. The testing dataset contains the next
1000 records and is used to evaluate the nested structure.
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Three popular metrics are calculated based on testing data: Mean Square Error (MSE),
Mean Absolute Error (MAE) and the correlation coefficient (R):

MSE =
1
T

T

∑
t=1

(Z(t)−Y(t))2 (6)

MAE =
1
T

T

∑
t=1
|Z(t)−Y(t)| (7)

R =
∑T

t=1(Z(t)− Z̄)(Y(t)− Ȳ)√
∑T

t=1(Z(t)− Z̄)2 ∑T
t=1(Y(t)− Ȳ)2

(8)

where t = 1, . . . , T, T is the number of testing records, Z(t) is the true normalized value of
the energy use, Y(t) is the predicted value of the energy use, Z̄ the mean value of the true
normalized values, Ȳ the mean value of the predicted values.

The ANN models are learned based on the backpropagation method with momentum.
The LSTM models are learned based on the Adam algorithm. Both methods are stochastic
gradient descent algorithms consisting of the modification of weights in the neural network.
The amount that the weights are updated is determined by the learning rate (Lr). It controls
the speed at which the ANN or LSTM model learns. The momentum (M) allows the
oscillation to be dampened while the gradient is decreasing. The number of epochs (E)
controls the number of complete passes through the learning dataset.

We choose the optimal values of the parameters by the grid search method. For ANN,
the number of epochs E is searched from {100, 200, 300, 400, 500, 1000}. Learning rate Lr
is chosen from {0.001, 0.005, 0.01, 0.02}. The parameter momentum M is searched from {0,
0.5, 0.9}. The parameter λ of the sigmoid activation function is chosen from {1, 2, 3}. The
number of hidden layers is chosen from {1, 2, 3}. The number of neurons is searched from
{5, 10, 20, 40}. For LSTM, the number of epochs E is searched from {100, 200, 300, 400, 500,
1000}. Learning rate Lr is chosen from {0.001, 0.01}. The number of hidden layers is chosen
from {1 (Vanilla LSTM), 2 (Bidirectional LSTM)}. The number of neurons is searched from
{4, 5, 10}.

The FCM models are learned with the use of genetic algorithms (RCGA, SOGA). The
population size (P) denotes the number of individuals in a population. A mutation is a
random change of a single individual with some probability (Pm). Crossover is a genetic
operator that enables combining the genetic information of two parents to generate new
individuals with some probability (Pc). For FCM, the population size P is chosen from {100,
200}. The maximum number of generation G is selected from {100, 200, 500}. The mutation
is searched from {random, Mühlenbeins}. The mutation probability Pm is chosen from {0.2,
0.5}. A uniform crossover is used. The crossover probability Pc is chosen from {0.5, 0.8}.
The parameter combination yielding the best MAE and MSE metrics is selected as the final
model. Table 2 presents the sample results obtained for the nested fuzzy cognitive map.

The results show that the best forecasting accuracy is obtained for LSTM models
with two hidden layers (Bidirectional LSTM) in the second level. Figure 4 illustrates the
optimum nested structure based on the fuzzy cognitive map in the first level and the LSTM
models in the second level.
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Table 2. Results for the nested fuzzy cognitive map.

Approach Model MSE MAE R

First level of the nested structure

Nested FCM FCM RCGA 0.0025 0.0393 0.9023
FCM SOGA 0.0026 0.0400 0.9025

Second level of the nested structure

Cluster 1 FCM RCGA 0.0032 0.0452 0.8751
FCM SOGA 0.0034 0.0476 0.9019

ANN 0.0017 0.0315 0.9376
LSTM 0.0013 0.0277 0.9480

Cluster 2 FCM RCGA 0.0034 0.0464 0.8953
FCM SOGA 0.0035 0.0455 0.8622

ANN 0.0019 0.0343 0.9310
LSTM 0.0014 0.0289 0.9441

Cluster 3 FCM RCGA 0.0031 0.0466 0.8945
FCM SOGA 0.0029 0.0431 0.8990

ANN 0.0018 0.0332 0.9294
LSTM 0.0015 0.0295 0.9433

Cluster 4 FCM RCGA 0.0028 0.0432 0.8921
FCM SOGA 0.0027 0.0415 0.8949

ANN 0.0017 0.0315 0.9369
LSTM 0.0015 0.0291 0.9434

Cluster 5 FCM RCGA 0.0044 0.0542 0.8635
FCM SOGA 0.0033 0.0479 0.9088

ANN 0.0017 0.0315 0.9413
LSTM 0.0015 0.0297 0.9433

Cluster 6 FCM RCGA 0.0025 0.0393 0.9023
FCM SOGA 0.0027 0.0416 0.9025

ANN 0.0017 0.0312 0.9377
LSTM 0.0014 0.0291 0.9442

Cluster 7 FCM RCGA 0.0025 0.0393 0.9023
FCM SOGA 0.0027 0.0416 0.9025

ANN 0.0017 0.0312 0.9377
LSTM 0.0014 0.0291 0.9442

Cluster 8 FCM RCGA 0.0025 0.0397 0.9097
FCM SOGA 0.0025 0.0404 0.9034

ANN 0.0017 0.0316 0.9378
LSTM 0.0015 0.0290 0.9439

To evaluate the performance of the proposed approach, a comparative analysis be-
tween the nested structure (for the first and the second level), the standard FCM, the
multilayer perceptron artificial neural network and the Long Short-Term Memory network
is performed. We choose the optimal values of the parameters by the grid search method.
For ANN, the number of epochs E is searched from {100, 200, 300, 400, 500, 1000}. Learning
rate Lr is chosen from {0.001, 0.005, 0.01, 0.02}. The parameter momentum M is searched
from {0, 0.5, 0.9}. The parameter λ of the sigmoid function is chosen from {1, 2, 3}. The
number of hidden layers is chosen from {1, 2, 3}. The number of neurons is searched from
{5,10,20,40}. For LSTM, the number of epochs E is searched from {100, 200, 300, 400, 500,
1000}. Learning rate Lr is chosen from {0.001, 0.01}. The number of hidden layers is chosen
from {1 (Vanilla LSTM), 2 (Bidirectional LSTM)}. The number of neurons is searched from {4,
5, 10}. For FCM, the population size P is chosen from {100, 200}. The number of generation
G is selected from {100, 200, 500}. The mutation is searched from {random, Mühlenbeins}.
The mutation probability Pm is chosen from {0.2, 0.5}. A uniform crossover is used. The
crossover probability Pc is chosen from {0.5, 0.8}.
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Figure 4. Sample nested structure.

Table 3 shows the results of a comparison. These results correspond to models that are
trained using three best-obtained parameters.

Both the general fuzzy cognitive map (first structure level) and the best LSTM model
of the second level obtained lower MAE and MSE error values and a higher value of the
correlation coefficient than classic fuzzy cognitive maps and artificial neural networks.
Moreover, the second level of the proposed structure outperforms the classic Vanilla LSTM
models and Bidirectional LSTM models.

Additionally, the Wilcoxon Signed-Rank [36] and Friedman [37] tests for the forecasting
error FE = |Z(t)− Y(t)| generated by the nested structure (first level and second level)
against the compared models are analyzed. The test is realized with the use of scipy.stats
python module [38]. With a 0.05 significance level and a 2-tailed hypothesis, significant
results are shown in Table 4. The Wilcoxon Signed-Rank test labels all the models as
statistically different to the second-level model and FCM models and Bidirectional LSTM
is statistically different from the first-level model (p-value < 0.05). The Friedman test
comparing the first-level model with the remaining models (FCM, ANN, LSTM) gives a
p-value of 1.28 · 10−28 < 0.05. The Friedman test comparing the second-level model with
the remaining models (FCM, ANN, LSTM) gives a p-value of 1.01 · 10−73 < 0.05. It means
that the difference among these models is statistically significant.
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Table 3. Results of comparative analysis.

Model Parameters MSE MAE R

FCM SOGA: P = 100, G = 100, Mühlenbeins mutation, Pm = 0.2, Pc = 0.8 0.0035 0.0480 0.8635
RCGA: P = 100, G = 100, Mühlenbeins mutation, Pm = 0.2, Pc = 0.8 0.0037 0.0471 0.8573
RCGA: P = 100, G = 100, Random mutation, Pm = 0.5, Pc = 0.5 0.0038 0.0498 0.8618

ANN 1 hidden layer (20), Lr=0.01, M = 0.9, E = 300, λ = 2 0.0026 0.0402 0.8976
1 hidden layer (10), Lr=0.01,M = 0.9, E = 400, λ = 2 0.0028 0.0402 0.8948
2 hidden layers (10;5), Lr=0.01, M = 0.9, E = 1000, λ = 2 0.0028 0.0414 0.8954

LSTM Vanilla LSTM, 1 hidden layer (10), Lr = 0.001, E = 1000 0.0021 0.0345 0.9196
Vanilla LSTM, 1 hidden layer (20), Lr = 0.001, E = 1000 0.0028 0.0399 0.9075
Bidirectional LSTM, two hidden layers (10;5), Lr = 0.01, E = 500 0.0039 0.0422 0.8754

First level SOGA: P = 200, G = 200, Mühlenbeins mutation, Pm = 0.5, Pc = 0.5 0.0026 0.0400 0.9025
RCGA: P = 100, G = 200, Mühlenbeins mutation, Pm = 0.2, Pc = 0.8 0.0025 0.0393 0.9023
SOGA: P = 100, G = 100, Random mutation, Pm = 0.2, Pc = 0.8 0.0025 0.0401 0.9068

Second level Cluster 1, Bidirectional LSTM, two hidden layers (10;5), Lr = 0.01, E = 400 0.0013 0.0277 0.9480
Cluster 2, Bidirectional LSTM, two hidden layers (4;4), Lr = 0.001,E = 1000 0.0014 0.0289 0.9441
Cluster 8, Bidirectional LSTM, two hidden layers (4;4), Lr = 0.01, E = 500 0.0015 0.0290 0.9439

The training time of all models was also compared. The average training time for the
ANN models is 80 s for the number of epochs E = 500. The average training time for the
LSTM models is 30 s for the number of epochs E = 500. The difference is due to different
implementations of both models (C# and Python). The average training time for the general
FCM (first level of the nested structure) is 150 s for the number of generations G = 100 and
the population size P = 100. The average training time for the classic FCM models is the
longest and equals 1800 s for the number of generations G = 100 and the population size
P = 100.

Table 4. p-values achieved by the paired-sample Wilcoxon signed-rank test comparing the forecasting
error FE of the nested structure (first level, second level) and the remaining models.

Approach First Level Second Level

FCM SOGA 1.73 · 10−14 3.73 · 10−58

FCM RCGA 1.35 · 10−11 6.95 · 10−49

ANN 0.36 2.47 · 10−19

LSTM 0.21 1.39 · 10−17

The prediction performance of the analyzed models is presented with the use of bar
charts, scatter plots and line charts. Figure 5 shows forecasting results for the best-analyzed
models in the form of line charts. Figure 6 shows forecasting results for the analyzed
models in the form of scatter plots. Figure 7 visualizes the resulting MSE, MAE and R
metrics for the compared models in the form of bar charts.
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Figure 5. Forecasting results for the best model obtained with the use of the first and the second level
of the nested structure, the FCM RCGA approach, the FCM SOGA approach, the ANN model and
the LSTM model.
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Figure 6. Scatter plots for the best models obtained with the use of the nested structure (first level,
second level), FCM approaches (RCGA, SOGA), the LSTM model and the ANN model.
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Figure 7. Forecasting metrics: MSE, MAE and R obtained for the compared models.

4. Discussion and Conclusions

This paper presents a novel nested structure based on fuzzy cognitive maps and
artificial neural networks. The construction of a nested structure consists of three main
steps described below: data preprocessing, constructing the first level in the form of a
general fuzzy cognitive map, and constructing the second level based on fuzzy cognitive
maps, multilayer perceptrons and long short-term memory networks. Historical data
related to hourly energy demand, generation, prices and weather are used to evaluate the
nested structure.

The proposed approach allows us to obtain a readable structure with nine concepts
constructed based on the clusters and the output concept in the first level. The concepts
of the first level can be decomposed, providing a more detailed representation of energy
use time series. As shown in Table 2, a nested structure based on LSTM models in the
second level provides the lowest forecasting errors MAE, MSE and the highest value of the
correlation coefficient R. The results presented in Table 3 confirm that the proposed nested
structure outperforms the standard well-known fuzzy cognitive maps, classic multilayer
perceptron artificial neural networks and long short-term memory networks.

The main disadvantage of the proposed approach is the need to build a separate model
for each cluster, which may be time-consuming in the case of large data sets. However, we
can limit this approach to only the most general level of the nested structure.

The advantages of the proposed nested structure can be summarized as follows:

• The presented approach can be used to analyze and facilitate the understanding of
complex multivariate time series, especially in the absence of expert knowledge.
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• The nested structure allows you to analyze the problem of energy consumption at var-
ious levels of detail - from the most general (first level) to more detailed (second level).

• The proposed approach presents complex data with 40 various data attributes in
the form of a clear nested structure presenting on the first level the main concepts
influencing energy consumption. Each first-level concept contains data attributes with
similar behavior.

• Such presentation of the problem can provide valuable information about energy use
and facilitate decision-making.

• The second level allows for more detailed problem analysis. The use of artificial neural
networks at the second level, especially LSTM models, made it possible to obtain very
accurate forecasts related to energy load.

• The proposed nested structure outperforms the classic fuzzy cognitive maps and
artificial neural networks in terms of prediction accuracy.

• The approach is flexible and can also be used to analyze multivariate time series in
various fields, e.g., in economics, management or medicine.

Future work is oriented toward using fuzzy clustering techniques to construct the
nested structure. We plan to analyze the application of the developed approach to construct
fuzzy cognitive maps with three or more levels based on more complex time series. Where
expert knowledge is available, the input data could be calculated on the basis of a weighted
average, where the weights for individual data attributes would be determined by experts.
Another approach that could be explored as the next step is the use of more advanced data
processing techniques, for example, grey numbers to construct the first level of the nested
structure.
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SOGA Structure Optimization Genetic Algorithm
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