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Abstract: Climate change is one of the global issues being combatted in recent times. One of
the measures is a worldwide cutdown on carbon emissions. This has brought about the rapid
development of technologies that can best actualise this goal. The decentralised energy system
is designed to harness the strengths of small power-generating sources such as renewable energy
sources in a noncentralised manner to help meet the global need for clean energy. Renewable
energy sources are faced with the challenge of intermittency, which brings about instability in the
grid. Another source of clean energy is nuclear energy, which is traditionally large and not flexible;
however, the recent development of technology has resulted in a scaled-down version of the large
nuclear plants that are more flexible yet provide clean and stable electricity. This paper explores
the possibility of deploying nuclear microreactors in the decentralised energy system and describes
the features and the challenges of a decentralised energy system. The features of the small modular
reactor that make it a viable candidate for the generating source in the decentralised energy system
are explored. A case study for a DES system with a microreactor was conducted for a rural area in
Nigeria. The HOMER software was used in simulating the optimum system, while TOPSIS was used
in ranking the systems. The result showed that the PV/nuclear/battery system ranked first, followed
by the PV/nuclear/wind and battery system.

Keywords: climate change; decentralised energy system; renewable energy sources; small modular
reactors

1. Introduction

Energy production (electricity, heat, and transport) produces about 73.2% of the global
greenhouse gas emissions [1]. The need to address the issue of climate change has given
rise to the need to reduce carbon emissions, resulting in the worldwide interest vested in
adopting technologies that best proffer these solutions. The decentralised energy system
has gained so much attention recently because of its ability to provide electricity using
technology with minimal-to-zero carbon emissions in a sustainable manner. This is also very
useful at this time because of the global rising energy need for the burgeoning population,
with about 13% without access to electricity [2].

Conventional nuclear plants are designed to produce vast amounts of energy, mainly
as a baseload. These giant plants are used in centralised energy systems; they are not
usually flexible and cannot be integrated into a decentralised energy system. The problem
of climate change has resulted in the need for more sources of green energy, which is seen
in the influx of renewable energy sources [3]. Due to the intermittent nature of renewable
energy sources, they are mainly best deployed in a hybrid energy system. Nuclear energy
is a huge source of clean energy. To remain relevant, there is a need for flexibility and the
ability to be integrated into the distributed energy system. Small modular reactors are
small-sized nuclear reactors that can fit a decentralised energy system.

This work aims to analyse a hybrid system that comprises a nuclear reactor diesel
plant and renewable energy resources. This is achieved in a case study of a rural community
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in Nigeria, using an optimisation software, HOMER, to simulate the hybrid systems, and
further, using a ranking tool, TOPSIS, to obtain the optimal system based on multicriteria.
This paper is organised into seven sections: the remaining parts after this introduction
include Section 2, which describes a distributed energy system; Section 3, describes the
nuclear energy system of interest, Section 4, which comprises a study of the distributed
energy systems and includes using the HOMER software to simulate the energy systems;
Section 5, which comprises the ranking process using TOPSIS; Section 6, which is the
discussion; and the final section is the conclusion.

2. Decentralised Energy Systems

A decentralised energy system, also known as a distributed energy system, involves
using an energy system that generates energy close to the consumer [3]. The energy is
not generated centrally like the conventional centralised energy system, but is developed
from different sources and distributed through smaller grid systems called microgrids. In a
decentralised system, the energy sources are close to the consumers reducing the electricity
losses accrued to energy transmission. There is also flexibility in energy use, which is most
needed for renewable energy sources because of their intermittent nature. The DES is an
advancement in power systems that introduces better energy resource optimisation, smart
metering, demand response, and renewable energy sources [4]. The DES was designed
mainly as an improvement on the centralised energy system and accommodates the influx
of renewable energy in the energy systems. The DES has several unique features that
differentiate it from the centralised system; these features are further expounded.

The energy sources are close to the consumers, unlike the centralised system, in which
energy sources are far from the point of consumption. This has helped reduce the problem
associated with transporting electricity over long distances. In addition, rural areas without
access to the centralised grid can harness the advantages of DES, thereby improving rural
electrification. In DES, consumers can also be involved in the energy production process
through demand response and other generation sources, leading to prosumers. Prosumers
are energy consumers that are also able to produce energy.

DES also allows for an optimised harnessing of the available local energy resources,
allowing for energy independence. With DES, a consumer will use an energy source
with abundant raw material. For example, a community with a river will use hydropower,
another community with a lot of wind will use a wind turbine, and a community with plenty
of sunshine will use solar power. Different energy sources can be combined depending
on the available natural resource. This helps consumers to maximise the available natural
resource and gives the consumer energy independence. The grid system used in DES
is often called a microgrid [5]. A microgrid is a local electrical system that is smaller
than the conventional centralised grid. It is a cluster of micro-energy sources and loads
that operates as a controllable unit and serves its locality electricity and/or heat [6]. The
microgrid can be connected to the centralised grid and islanded (i.e., it can work alone).
DES allows for the incorporation of more than one energy source. There are different
approaches to combining this energy resource. Some terminologies used in describing
these approaches are multienergy, polyenergy, and hybrid energy. The multienergy system
uses various energy resources in a microgrid, such as solar energy, wind vanes, storage
systems, electric vehicles [7], and possibly more energy resources. A polyenergy system
refers to a source of energy producing more than one energy form, for example, using a
small modular reactor for electricity, water desalination, and heating. A polyenergy system
can also involve using a multienergy system to produce more than one energy form. The
standard polyenergy system produces electricity, heating, and cooling, which are called
the combined heat and power (CHP) system and the combined cooling, heat, and power
(CCHP) system [4]. Hybrid energy refers to an energy source powered by different energy
sources, such as an energy storage system powered by solar, wind, and other energy sources.
The combinations can be used in many ways and interwoven depending on the method
employed in a particular microgrid. When there is more than one energy resource, the
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strength of the different energy sources is harnessed and maximised, and the weaknesses of
the energy sources are minimised. For example, a community with lots of sunshine in the
daytime and lots of wind at night will combine solar energy and wind energy. The energy
solar provides electricity during the day; and at night, wind energy provides electricity.
A lot of interest has been vested in the DES technology because it can deliver power for
ancillary services, reduce demand on the central grid, maximise local energy resources, and
minimise transmission complexities [5].

Some of the notable work conducted in the literature on DES include: a study of
the impact of DES on energy transition in European urban cities, in which the role of
renewable energy sources in the future microgrid was predicted to increase to 52% in
2050 [8]; and a review of different optimisation methods for distributed energy systems for
rural electrification in India, which assessed the feasibility of rural microgrids in India [9]. In
their work, Basit et al. (2020) explained the limitations and challenges of renewable energy
systems [10]. The challenges faced by DES are mainly due to the problems associated
with the use of renewable energy sources (RES). RES, due to its intermittent nature, causes
instability in the grid. It also reduces grid reliability. There is a need for an energy source
with a high capacity factor to bring stability to the grid and make the microgrid more
reliable. The conventional fossil fuel-based generators are stable, but they can only add to
the carbon emission; for cleaner energy, they need to consider other clean energy sources
such as nuclear reactors.

The DES comprises different technologies, including bioenergy, geothermal, solar
photovoltaic (PV), wind, hydro, fuel cells, microturbines, heat storage, and internal com-
bustion engines [6]. Different designs have been developed to optimise the other energy
resources in the microgrid. Aly et al. designed a microgrid that works with flywheels
for energy storage [11]. In their study, two systems were developed, one with flywheel
storage and another without flywheel storage. The two microgrids were analysed using
the HOMER software; the microgrid with the flywheel storage system gave optimal results.
Sanjay et al. [12] used the HOMER software in deriving the optimal system for an agricul-
ture farm through the analysis of capital and operating cost of the hybrid renewable energy
system that consists of solar PV with gasifier and solar PV with biogas. Ekren et al. [13]
analysed the optimal solution for a hybrid renewable system for charging electric vehicles
using the HOMER software. Babatunde et al. used HOMER for the feasibility study of a
hybrid renewable energy system, which included batteries for a university in Nigeria.

Many researchers have used the HOMER software to analyse and obtain optimal
results for microgrid systems with different energy source [12–14]. In this work, the
HOMER software will be used to analyse the hybrid system that comprises a solar PV, a
wind turbine, and a nuclear microreactor.

3. Nuclear Reactors

Nuclear reactors are systems that generate electricity using the heat energy produced
from the fission process, which happens in the reactor’s core. Nuclear reactors can be
classified based on size, into large reactors, which generate power greater than 700 MW(e);
and small modular reactors (SMR), which are nuclear reactors that generate power of
about or lower than 300 MW(e). They are smaller than conventional nuclear power plants.
The IAEA defines small and medium reactors as reactors producing up to 300 MW(e)
(small-sized or small modular) and reactors producing 300–700 MW(e) (medium-sized),
respectively [14,15]. Small modular reactors are designed to be inherently safe using
passive safety systems. SMRs are capable of operating in the load-following mode. Small
modular reactors are also designed to offer non-electrical applications such as district
heating, desalination of seawater, and hydrogen production.

There are presently over 70 SMRs being designed across the world. There are presently
5 SMRs being operated, 4 under construction, 17 designs near the deployment stage, about
21 at the early design stage, and 11 tiny reactors (≥25 MW(e)) being designed. Small
modular reactors can also be classified based on their coolants [16] which are five types:
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integrated pressurised water, gas-cooled, molten-salt-cooled, liquid-metal-cooled, and
sodium heat pipe. Classification according to size includes medium-sized (300–700 MW(e)),
small-sized (≥300 MW(e)), and very small-sized (≥25 MW(e)) [16]. Classification based on
the technology stage includes innovative, advanced, modified, and conventional SMRs [17].
They are also classified as land-based, floating, and immersed reactors [18]. For a microgrid,
the reactor of interest is the very small-sized reactors, which are also called microreactors.
For the simulation in this work, the eVinci reactor was used. The eVinci reactor was chosen
because it can easily fit into a microgrid due to their size and capacity.

The eVinci Microreactor

The eVinci microreactor is being developed by Westinghouse with the capability of
producing between 200 kWe to 5 MW(e) of combined heat and power [19]. The reactor has
a unique design that removes decay heat using the heat pipe technology. The innovation in
this reactor is combining the heat pipe technology, liquid metal, and commercial nuclear
technology concepts in a simple, safe, and sustainable manner. The design is aimed to be
deployed commercially by 2025. It is presently in the licensing stage. The eVinci reactors
are small in size and are enclosed in canisters that allow for ease of transportation on rail,
road, and sea. They are designed to be built in the factory and transported to the site of
operation. The reactor is designed with passive safety systems that will shut down safely
without requiring the operator’s action in the event of an accident [20]. The reactor can
also be easily refuelled and decommissioned by returning it to the manufacturer [21]. The
eVinci reactor is designed to have up to 10 years’ operational lifetime. The reactor core
is designed to operate for more than 10 years, therefore removing the need for frequent
refuelling [22]. This reactor was chosen for this research because of its design, which is
proliferation-resistant due to the encapsulated core, which also enhances its safety [22].
The reactor can also be easily transported due to the size and containment. The reactor
core can operate for 10 years without refuelling, and waste management is being handled
by the manufacturer. It can also be easily integrated into a renewable-energy microgrid.
Figure 1a,b show the eVinci reactor.
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4. Case Study of SMR in a Distributed Energy System in a Rural Area in Nigeria Using
HOMER Software and TOPSIS

In this section, the possibility of having a distributed energy system (DES) with an
SMR is demonstrated using HOMER software. The location for this case study is Irele, a
local government area in Ondo state in the western part of Nigeria. The local government
has a population of about 141,000 people. For this case study, we designed an off-grid
distributed energy system for an area in the local government. The community comprises
200 households, 3 schools, 1 hospital, 2 clinics, 3 bakeries, 4 block industries, 5 borehole
water pumps, 1 bank, and 1 police station. A hypothetical load profile was developed
based on a typical load pattern of a rural community. Two scenarios were created, which
are scenario 1—DES comprised of renewable sources and a nuclear micro reactor; and
scenario 2—DES comprised of renewable energy sources and a diesel generator. Load was
classified as residential and nonresidential load. The energy resources used included a
microreactor, a diesel generator, a solar photovoltaic cell, a wind farm, a converter, and a
battery. Different combinations of resources were analysed and a ranking was made using
a multicriteria approach.

4.1. The HOMER Software

The HOMER (Hybrid Optimization Model for Electric Renewable) software was
used to analyse the microreactor and renewable distributed energy systems. HOMER
is a tool that was originally developed at the National Renewable Energy Laboratory.
HOMER combines the technical and the economical aspects of energy and is able to
conduct optimisation analysis, sensitivity analysis, and a simulation of hybrid systems. In
this case study, the HOMER was used to model the nuclear-renewable system and also
optimise the cost of electricity. The output of the HOMER software, alongside other criteria,
are used in ranking the different DES.

4.2. Input Parameters

This section contains the input to the HOMER software, which includes the load profile,
the energy sources, and the environmental resources for the location of interest (Irele).
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4.2.1. Load Profile

A hypothetical load profile was developed for a community Irele consisting of about
1800 people in 200 households. The load profile includes the residential load profile and the
nonresidential load profile. The residential load profile was calculated based on household
items, which include televisions (100 W each), refrigerators (100 W each), lighting bulbs
(15 W each), and fans (70 W each). For the 200 households, the average daily load is
1084.4 kW/day and a peak load of 176.36 kW. The nonresidential load comprises all the
other loads not included in the residential load: it covers for the 3 schools, 1 hospital, 2 clin-
ics, 3 bakeries, 4 block industries, and 5 borehole water pumps. The average nonresidential
load is 1002 kW/day and a peak load of 171.23 kW. The load profile for the community is
given in Figure 2.
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4.2.2. Energy Resources

In this study, the first simulation contained renewable energy sources, and the small
modular reactors as shown in Figure 3.

The second simulation contained renewable energy sources and a diesel generator. The
renewable energy components are solar photovoltaic cells and wind turbine. It also contains
a converter and a battery. The parameters for the energy resources are in Table 1. The cost
for the energy systems was based on the present cost of the systems in Nigeria, except for
nuclear plant, which was adapted from the National Renewable Energy Laboratory (NREL),
which gave a present average cost of the nuclear plant. The number of operating years of
the eVinci reactor, which is 10 years, was used for the life span of the nuclear reactor.
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Table 1. Energy resource parameters.

Generator Capital Cost
(USD)/KW

Replacement
(USD)

O and M
(USD)/Year

Lifespan
(Year) Source

Solar PV 3250 3200 3 20 Jumia [23]
Converter 621.8 569 3 15 Babatunde et al. [24]

Wind 12,000 11,000 100 15 Babatunde et al. [24]
Nuclear 7388 7000 145 10 NREL [25]
Diesel 7227 9885 43,848 2 Naijatechguide [26]

4.2.3. Renewable Energy Resource

The renewable resource for the wind turbine was imported on the HOMER software
from the NASA Prediction of Worldwide Energy Resources (POWER) for the location of
interest (Irele). Figure 4 shows the monthly average wind speed for this location.
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The daily solar radiation was also retrieved from the NASA Prediction of Worldwide
Energy Resources for Irele, shown in Figure 5.
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4.2.4. HOMER Software Output

This section is comprised of the results obtained from the HOMER software, which are
comprised of both the economic and technical optimisation of the DES. The output from
HOMER can be classified into economic, technical, and environmental output.

i. Economic output

The economic output obtained includes the net present cost (NPC), levellised cost
of energy (LCOE), and the operating cost. In HOMER, the NPC represents the present
value of all costs, which includes the cost of operations, maintenance, and fuel cost that is
generated by the system over their lifetime minus the revenue earned over the lifetime of
the system [27]. The NPC can be used to evaluate how feasible a project can be. The lower
the NPC, the higher the feasibility of the system. The levellised cost of energy (LCOE)
represents the price for 1 Kwh of electricity produced by the system [27]. The systems with
microreactors had lower LCOEs compared with the system, which had a fully renewable
operating cost. The operating cost is the annualised value of all cost minus the initial capital
cost [27]. In this case study, the operating costs for 100% renewables are higher than the
system with SMRs.

ii. TechnicalOutput

The technical output from HOMER is comprised of excess electricity, unmet electric
load, capacity shortage, and renewable fraction. Excess electricity is obtained when the
minimum output from the energy source is greater than the load, then the surplus electricity
needs to be dumped [27]. The unmet electric load is comprised of the loads that are unable
to receive electricity supply from the system. Capacity shortage occurs when the capacity
of a system is below that required by the microgrid. Renewable fraction represents the
fraction of power supplied from a renewable energy source.

iii. Environmental Output

The HOMER software also estimates the emissions of greenhouse gases to the environ-
ment. The diesel generator has the highest greenhouse gas emission, while the renewable
and nuclear sources do not have these emissions during electricity production.

The outputs from the HOMER software are shown in Tables 2 and 3.
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Table 2. HOMER output for scenario 1 with nuclear energy and renewable sources.

PV/N/B PV/W/N/B N/B W/N/B N PV/N W/N PV/W/N

Operating Cost USD/year 15,132 15,049 60,558 60,378 145,185 145,188 145,559 145,591
COE USD/kWh 0.581 0.604 1.13 1.15 2.45 2.45 2.48 2.49

Tot. Electrical Production
kWh/year 89,853 90,619 76,369 76,270 219,000 219,309 219,655 223,637

Ren. Fraction 86 87 0 0 0 0 0 0
Cap. Shortage kWh/year 0 0 0 0 0 0 0 0
Unmet Load kWh/year 0 0 0 0 0 0 0 0

Excess Electricity
kWh/year 19,910 20,773 418 364 158,558 158,867 159,213 163,195

CO2 Emissions kg/year 0 0 0 0 0 0 0 0
ROI % 55.6 50.7 142.8 106.2 0 −4.6 −6 −5.6

Table 3. HOMER output for scenario 2 with diesel generator and renewable sources.

PV/D/B PV/W/D/B PV/B PV/W D/B W/D/B D PV/D

Operating Cost USD/year 16,084 16,281 13,016 16,387 52,336 52,343 119,606 119,609
COE USD/kWh 0.564 0.588 0.904 0.929 0.992 1.01 2.03 2.03

Tot. Electrical Production
kWh/year 86,376 86,880 225,944 184,233 76,358 76,268 219,000 219,306

Ren. Fraction 79.7 79.9 100 100 0 0 0 0
Cap. Shortage kWh/year 0 0 58.4 57.8 0 0 0 0
Unmet Load kWh/year 0 0 48.3 44.8 0 0 0 0

Excess Electricity
kWh/year 16,396 17,004 156,855 115,072 348 367 158,558 158,864

CO2 Emissions kg/year 11,719 11,576 0 0 66,846 66,602 209,077 209,077
ROI % 49.6 45.3 17.3 17.7 110.5 83.7 0 −4.6

5. Ranking of DES Using TOPSIS

To obtain the optimal DES, it is best to use more than one criterion, which is the reason
for the choice of a multicriteria decision tool for ranking the system. The technique for
order of preference by similarity to ideal solution (TOPSIS) is a technique that can be used
in ranking using different criteria. A review of different of multicriteria decision-making
(MCDM) tools was performed by Indre et al. [28]. The TOPSIS approach is used amongst
many other MCDM tools in this work because of the computational efficiency and because
it can be easily comprehended. The following six steps are included in TOPSIS: (i) forming
a decision matrix; (ii) obtaining weights for the criteria; (iii) obtaining the weighted matrix;
(iv) obtaining the positive ideal solution and the negative ideal solution; and (vi) estimating
the closeness coefficient, which is used for ranking the systems. Eleven criteria were used as
the basis of the ranking, which include the economic, technical, and environmental output
from the HOMER simulator, as well as the social criteria, which were obtained based on
expert judgment.

(i) Step 1: The decision matrix.

The first step in TOPSIS is to build a decision matrix. The output from the HOMER
software is shown in Table 4. The energy sources in the table are represented as follows:
solar PV as PV, wind as W, nuclear as N, diesel as D, and battery as B.
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Table 4. Output from HOMER software used to form decision matrix.

PV/N/B PV/W/N/B PV/D/B W/N/B PV/W/D/B PV/W W/D/B

Operating Cost USD/year 15,132 15,049 16,084 60,378 16,281 16,387 52,343
COE USD/kWh 0.581 0.604 0.564 1.15 0.588 0.929 1.01

Tot. Electrical Production
kWh/year 89,853 90,619 86,376 76,270 86,880 184,233 76,268

Ren. Fraction 86 87 79.7 0 79.9 100 0
Cap. Shortage kWh/year 0 0 0 0 0 57.8 0
Unmet Load kWh/year 0 0 0 0 0 44.8 0

Excess Electricity
kWh/year 19,910 20,773 16,396 364 17,004 115,072 367

CO2 Emissions kg/year 0 0 11,719 0 11,576 0 66,602
ROI % 55.6 50.7 49.6 106.2 45.3 17.7 83.7

The decision matrix formed is shown in Table 5. For this work, the decision matrix
for the seven selected systems from the HOMER software was built based on 11 criteria,
which are: operating cost USD/year; cost of energy (COE) USD/kWh; total electricity
production (Tot. Electrical Production) kWh/year; renewable fraction (Ren. Fraction);
capacity shortage (Cap. Shortage) kWh/year; unmet load kWh/year; excess electricity
kWh/year; CO2 emissions kg/year; ROI (return on interest) %; availability; and public
acceptance, These criteria are classified under economic, technical, environmental, and
social criteria. Output for the systems from the HOMER software was used in forming the
decision matrix using fuzzy linguistic variables.

Table 5. Decision matrix using output from HOMER software.

PV/N/B PV/W/N/B PV/D/B W/N/B PV/W/D/B PV/W W/D/B

Operating Cost USD/year G G G Vp G G Vp
COE USD/kWh F F F p F p Vp

Tot. Electrical Production
kWh/year F G F G F Vg G

Ren. Fraction Vg Vg G F G Vg F
Cap. Shortage kWh/year Vg Vp Vp Vp Vp Vp Vg
Unmet Load kWh/year Vg Vg Vg Vg Vg Vp Vg

Excess Electricity
kWh/year G G G G G P G

CO2 Emissions kg/year Vg Vg P vg P vg P
ROI % F F F Vg F P G

Availability Mg Mg Vg mg Vg g Vg
Public Acceptance Mg Mg Vg mg Vg Vg G

The fuzzy scale is used in the decision matrix. The linguistic variables can be expressed
using fuzzy numbers. The triangular fuzzy number is used in obtaining the fuzzy scale in
Table 6. Fuzzy scales are chosen because of their robustness, as they able to analyse vague
inputs [29].

Table 6. Linguistic variables using fuzzy numbers.

Linguistic Variables Using Fuzzy Numbers.

Very poor (vp) 0,0,1
Poor (p) 0,1,3
Medium poor (mp) 1,3,5
Fair (f) 3,5,7
Medium good (mg) 5,7,9
Good (g) 7,9,10
Very good (vg) 9,10,10
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(ii) Step 2: Normalised Decision matrix

This involves normalising the decision matrix. The decision matrix is normalised and
given in Table 7.

Table 7. Normalised decision matrix.

PV/N/B PV/W/N/B PV/D/B W/N/B PV/W/D/B PV/W W/D/B

Operating Cost USD/year 0.92 0.92 0.92 0.35 0.92 0.35 0.92
COE USD/kWh 0.92 0.92 0.92 0.24 0.92 0.24 0.06

Tot. Electrical Production
kWh/year 0.35 0.6 0.35 0.6 0.35 0.67 0.6

Ren. Fraction 0.58 0.58 0.52 0.3 0.52 0.58 0.3
Cap. Shortage kWh/year 0.75 0.026 0.026 0.026 0.026 0.026 0.75
Unmet Load kWh/year 0.67 0.67 0.67 0.67 0.67 0.023 0.67

Excess Electricity
kWh/year 0.5 0.5 0.5 0.5 0.5 0.08 0.5

CO2 Emissions kg/year 0.92 0.92 0.13 0.92 0.13 0.92 0.13
ROI % 0.41 0.41 0.41 0.8 0.41 0.11 0.72

Availability 0.58 0.58 0.8 0.58 0.8 0.72 0.8
Public Acceptance 0.54 0.54 0.75 0.54 0.75 0.75 0.67

iii. Step 3: Criteria weight

The Criteria weight WAs obtained based on expert opinion. The eleven criteria used
in ranking assigned weight were based on expert judgement. These assigned weights are
shown in Table 8. The experts’ opinion was obtained from 10 nuclear experts who met
the criteria for selection for this study. The criteria for selection are: (i) that they should
be involved in SMR research; (ii) that they should be working in a nuclear agency; and
(iii) that they should be involved in nuclear power project planning. The experts that gave
their opinion are nuclear experts with the Nigeria Atomic Energy Commission; Nigeria
Nuclear Regulatory Commission; Harbin Engineering University, China; Oakridge national
laboratory (ORNL), USA; and Stellenbosch University, South Africa. The experts chosen
for this study met one or more of these selection criteria. Slottje et al. [30] in their study
recommended that the minimum number for expert judgment was 6. In this study, 10
experts’ opinions were obtained, and the average ranking for each of the criteria was
obtained and shown in Table 8. The criteria were ranked on a scale of 0 to 100%. It is an
estimate of the importance of each criterion for SMRs in a distributed energy system.

Table 8. Criteria weight (WJ).

Criteria Weight

Operating Cost USD/year 0.92
COE USD/kWh 0.92
Tot. Electrical Production kWh/year 0.67
Ren. Fraction 0.58
Cap. Shortage kWh/year 0.75
Unmet Load kWh/year 0.67
Excess Electricity kWh/year 0.50
CO2 Emissions kg/year 0.92
ROI % 0.80
Availability 0.80
Public acceptance 0.75

(iv) Step 4: Estimating the weighted decision matrix

The weighted decision matrix (Vij) is estimated using an equation. The decision matrix
obtained is shown in Table 9.

Vij = Dij·WJ (1)
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Table 9. Weighted decision matrix.

PV/N/B PV/W/N/B PV/D/B W/N/B PV/W/D/B PV/W W/D/B

Operating Cost USD/year 0.92 0.92 0.92 0.03502 0.92 0.92 0.03502
COE USD/kWh 0.92 0.92 0.92 0.2447 0.92 0.2447 0.0607

Tot. Electrical Production
kWh/year 0.3464 0.6007 0.3464 0.6007 0.3464 0.67 0.6007

Ren. Fraction 0.58 0.58 0.5200 0.2999 0.5200 0.58 0.2999
Cap. Shortage kWh/year 0.75 0.02556 0.02556 0.02556 0.02556 0.0256 0.75
Unmet Load kWh/year 0.67 0.67 0.67 0.67 0.67 0.02287 0.67

Excess Electricity
kWh/year 0.5 0.5 0.5 0.5 0.5 0.0767 0.5

CO2 Emissions kg/year 0.92 0.92 0.1265 0.92 0.1265 0.92 0.1265
ROI % 0.4137 0.4137 0.4137 0.8 0.4137 0.1100 0.7173

Availability 0.5791 0.5791 0.8 0.5791 0.8 0.7173 0.8
Public Acceptance 0.5429 0.5429 0.75 0.5429 0.75 0.75 0.6724

(v) Step 5: Estimation of the positive and negative solution

The ideal positive (P+) and negative (N−) solutions are calculated using Equations (2)
and (3). The result obtained is shown in Table 10.

P+ =
n

∑
j=1

d
(

vij, v+j
)

(2)

N− =
n

∑
j=1

d
(

vij, v−j
)

(3)

where v+j = (1,1,1), v−j = (0,0,0), vij represents elements in the matrix of interest, and d
represents the distance between two matrixes.

Table 10. The positive (P+) and negative (N−) solution.

Positive Solution P+ Negative Solution N−

1.258609 0.678116
1.484366 0.656246
1.769498 0.615881
1.92409 0.550041
1.769498 0.615881
2.122016 0.574783
1.943462 0.551013

vi. Step 6: Estimated closeness coefficient (CC)

In TOPSIS, the closeness coefficient is used in ranking and is estimated using Equation
(4). The closeness coefficient (CC) is calculated, and rankings are shown in Table 11.

CC = N−/
(

P+ + N−) (4)

Table 11. Estimation of the coefficient of closeness and ranking.

DES CC Ranking

PV/N/B 0.350135 1
PV/W/N/B 0.306569 2

PV/D/B 0.25819 3
W/N/B 0.222317 5

PV/W/D/B 0.25819 4
PV/W 0.213135 7

W/D/B 0.220893 6
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6. Discussion

The TOPSIS ranking using the eleven criteria returned the hybrid PV, nuclear, and
battery system as the optimal system; followed by the PV, wind, nuclear, and battery
system; and the third in the ranking was the PV, diesel, and battery system. This shows
that the small nuclear reactor can be a good replacement for the diesel generator.

7. Conclusions

To meet the world energy demand without damaging our environment requires every
available clean energy source to be harnessed economically and sustainably. This has
increased renewable energy resources and interest in developing technologies that most
efficiently harness them. Therefore, the development and continuing advancement in
the design of the distributed energy system has been necessitated. The DES can easily
accommodate RES better than the conventional centralised energy systems.

The influx of RES helps with green energy and the maximisation of local energy
resources. This is also not without challenges, in particular the intermittent nature of the
RES and instability to the grid. Hence, this paper has focused on introducing an energy
source that is clean, flexible, and can bring stability to the DES. This work has explored the
features of the nuclear microreactors that enable them to be suitable for DES.

A case study of electrification of a rural community in Nigeria was used to demonstrate
the distributed energy system, which included the eVinci microreactor. Two scenarios were
created: one with a hybrid nuclear and renewable energy source, and the other with a
hybrid diesel and renewable energy source. The HOMER software was used in simulating
the optimum system and TOPSIS was used in ranking the systems. The result shows
that the PV/nuclear/battery system ranked first, followed by the PV/nuclear/wind and
battery system.

Author Contributions: Formal analysis and original draft preparation, R.M.A.-I.; supervision, and
project administration, A.A.A.; Suoervision and funding acquisition, P.N.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by University Research Committee and faculty of Engineering
and built environment of the University of Johannesburg.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. 2020. Available online: https://ourworldindata.org/co2

-and-other-greenhouse-gas-emissions (accessed on 22 February 2022).
2. World Bank. Tracking SDG 7: The Energy Progress Report. 2020. Available online: https://data.worldbank.org/indicator/EG.

ELC.ACCS.ZS (accessed on 24 February 2022).
3. Burger, S.P.; Luke, M. Business models for distributed energy resources: A review and empirical analysis. Energy Policy 2017, 109,

230–248. [CrossRef]
4. Fonseca, J.D.; Camargo, M.; Commenge, J.-M.; Falk, L.; Gil, I.D. Trends in design of distributed energy systems using hydrogen as

energy vector: A systematic literature review. Int. J. Hydrogen Energy 2018, 44, 9486–9504. [CrossRef]
5. Jiayi, H.; Chuanwen, J.; Rong, X. Reviews. A review on distributed energy resources and MicroGrid. Renew. Sustain. Energy Rev.

2008, 12, 2472–2483. [CrossRef]
6. Wen, Q.; Liu, G.; Rao, Z.; Liao, S. Buildings, Applications, evaluations and supportive strategies of distributed energy systems: A

review. Energy Build. 2020, 225, 110314. [CrossRef]
7. Lan, T.; Jermsittiparsert, K.; Alrashood, S.T.; Rezaei, M.; Al-Ghussain, L.; Mohamed, M.A. An Advanced Machine Learning Based

Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand. Energies 2021, 14, 569.
[CrossRef]

8. Puri, S.; Perera, A.; Mauree, D.; Coccolo, S.; Delannoy, L.; Scartezzini, J.-L. The role of distributed energy systems in European
energy transition. Energy Procedia 2019, 159, 286–291. [CrossRef]

9. Harish, V.; Anwer, N.; Kumar, A. Applications, planning and socio-techno-economic analysis of distributed energy systems for
rural electrification in India and other countries: A review. Sustain. Energy Technol. Assess. 2022, 52, 102032. [CrossRef]

10. Basit, M.A.; Dilshad, S.; Badar, R.; Sami ur Rehman, S.M. Limitations, challenges, and solution approaches in grid-connected
renewable energy systems. Int. J. Energy Res. 2020, 44, 4132–4162. [CrossRef]

https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS
http://doi.org/10.1016/j.enpol.2017.07.007
http://doi.org/10.1016/j.ijhydene.2018.09.177
http://doi.org/10.1016/j.rser.2007.06.004
http://doi.org/10.1016/j.enbuild.2020.110314
http://doi.org/10.3390/en14030569
http://doi.org/10.1016/j.egypro.2019.01.014
http://doi.org/10.1016/j.seta.2022.102032
http://doi.org/10.1002/er.5033


Energies 2022, 15, 7496 14 of 14

11. Aly, A.M.; Kassem, A.M.; Sayed, K.; Aboelhassan, I. Design of microgrid with flywheel energy storage system using HOMER
software for case study. In Proceedings of the 2019 International Conference on Innovative Trends in Computer Engineering
(ITCE), Aswan, Egypt, 2–4 February 2019; IEEE: New York, NY, USA, 2019; pp. 485–491.

12. Sanjay, K.C.; Karthikeyan, M.; Prasannakumaran, K.M.; Kirubakaran, V. Techno Commercial Study of Hybrid Systems for the
Agriculture Farm Using Homer Software. Hybrid Renew. Energy Syst. 2021, 115–133. [CrossRef]

13. Ekren, O.; Canbaz, C.H.; Güvel, B. Sizing of a solar-wind hybrid electric vehicle charging station by using HOMER software. J.
Clean. Prod. 2021, 279, 123615. [CrossRef]

14. IAEA. Benefits and Challenges of Small Modular Fast Reactors; International Atomic Energy Agency: Vienna, Austria, 2021.
15. Michaelson, D.; Jiang, J. Review of integration of small modular reactors in renewable energy microgrids. Renew. Sustain. Energy

Rev. 2021, 152, 111638. [CrossRef]
16. World Nuclear Association. 2021. Available online: https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/

nuclear-power-reactors/small-nuclear-power-reactors.aspx (accessed on 21 February 2022).
17. Hidayatullah, H.; Susyadi, S.; Subki, M.H. Design and technology development for small modular reactors–Safety expectations,

prospects and impediments of their deployment. Prog. Nucl. Energy 2015, 79, 127–135. [CrossRef]
18. Ingersoll, D.T.; Carelli, M.D. Handbook of Small Modular Nuclear Reactors; Woodhead Publishing: Sawston, UK, 2020.
19. Arafat, Y.; Van Wyk, J. eVinci Micro Reactor. Nucl. Plant J. 2019, 37, 34–36.
20. Zohuri, B.; McDaniel, P. Advanced Smaller Modular Reactors; Springer: Berlin/Heidelberg, Germany, 2019.
21. Laturkar, K. Advances in Very Small Modular Nuclear Reactors; Springer: Berlin/Heidelberg, Germany, 2022.
22. Zohuri, B. Nuclear Micro Reactors; Springer: Berlin/Heidelberg, Germany, 2020.
23. Jumia. 250 watts SOLAR PANEL Mono. 2022. Available online: https://www.jumia.com.ng/generic-250watts-solar-panel-

mono-98186414.html (accessed on 21 March 2022).
24. Babatunde, O.; Denwigwe, I.; Oyebode, O.; Ighravwe, D.; Ohiaeri, A.; Babatunde, D. Assessing the use of hybrid renewable

energy system with battery storage for power generation in a University in Nigeria. Environ. Sci. Pollut. Res. 2021, 29, 4291–4310.
[CrossRef]

25. NREL. 2021 Electricity ATB Technologies and Data Overview. Available online: https://atb.nrel.gov/electricity/2021/index
(accessed on 17 March 2022).

26. Naijatechguide. Nigeria Electrical Generator Prices. Available online: https://www.naijatechguide.com/2008/03/nigeria-
electric-generator-prices.html#:~{}:text=135KVA%20soundproof (accessed on 9 May 2022).

27. HOMER. Homer Pro Version 3.7 User Manual; HOMER Energy: Boulder, CO, USA, 2016.
28. Siksnelyte-Butkiene, I.; Zavadskas, E.K.; Streimikiene, D. Multi-Criteria Decision-Making (MCDM) for the Assessment of

Renewable Energy Technologies in a Household: A Review. Energies 2020, 13, 1164. [CrossRef]
29. Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9.

[CrossRef]
30. Slottje, P.; Van der Sluijs, J.P.; Knol, A.B. Expert Elicitation: Methodological Suggestions for its Use in Environmental Health Impact

Assessments; Rijksinstituut voor Volksgezondheid en Milieu RIVM: Utrecht, The Netherlands, 2008.

http://doi.org/10.1002/9781119555667.ch5
http://doi.org/10.1016/j.jclepro.2020.123615
http://doi.org/10.1016/j.rser.2021.111638
https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx
https://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-power-reactors/small-nuclear-power-reactors.aspx
http://doi.org/10.1016/j.pnucene.2014.11.010
https://www.jumia.com.ng/generic-250watts-solar-panel-mono-98186414.html
https://www.jumia.com.ng/generic-250watts-solar-panel-mono-98186414.html
http://doi.org/10.1007/s11356-021-15151-3
https://atb.nrel.gov/electricity/2021/index
https://www.naijatechguide.com/2008/03/nigeria-electric-generator-prices.html#:~{}:text=135KVA%20soundproof
https://www.naijatechguide.com/2008/03/nigeria-electric-generator-prices.html#:~{}:text=135KVA%20soundproof
http://doi.org/10.3390/en13051164
http://doi.org/10.1016/S0165-0114(97)00377-1

	Introduction 
	Decentralised Energy Systems 
	Nuclear Reactors 
	Case Study of SMR in a Distributed Energy System in a Rural Area in Nigeria Using HOMER Software and TOPSIS 
	The HOMER Software 
	Input Parameters 
	Load Profile 
	Energy Resources 
	Renewable Energy Resource 
	HOMER Software Output 


	Ranking of DES Using TOPSIS 
	Discussion 
	Conclusions 
	References

